FAIRCHILD HUFA76645S3ST

HUFA76645S3ST_F085
Data Sheet
September 2010
75A, 100V, 0.015 Ohm, N-Channel, Logic
Level UltraFET® Power MOSFET
Packaging
Features
JEDEC TO-263AB
DRAIN
(FLANGE)
GATE
SOURCE
• Ultra Low On-Resistance
- rDS(ON) = 0.014Ω, VGS = 10V
- rDS(ON) = 0.015Ω, VGS = 5V
• Simulation Models
- Temperature Compensated PSPICE® and SABER™
Electrical Models
- Spice and SABER Thermal Impedance Models
- www.fairchildsemi.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Switching Time vs RGS Curves
Symbol
D
• Qualified to AEC Q101
• RoHS Compliant
Ordering Information
PART NUMBER
PACKAGE
BRAND
HUFA76645S3ST_F085
TO-263AB
76645S
G
S
Absolute Maximum Ratings
NOTE: When ordering, use the entire part number. Add the suffix T
to obtain the variant in tape and reel, e.g., HUFA76645S3ST.
TC = 25oC, Unless Otherwise Specified
HUFA76645S3ST_F085
UNITS
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
100
V
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
100
V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
±16
V
Drain Current
Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
75
75
63
62
Figure 4
A
A
A
A
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS
Figures 6, 17, 18
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
310
2.07
W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
-55 to 175
oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
300
260
oC
oC
NOTES:
1. TJ = 25oC to 150oC.
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy
of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
©2010 Fairchild Semiconductor Corporation
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
ID = 250µA, VGS = 0V (Figure 12)
100
-
-
V
ID = 250µA, VGS = 0V , T C = -40oC (Figure 12)
90
-
-
V
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
BVDSS
IDSS
IGSS
VDS = 95V, VGS = 0V
-
-
1
µA
VDS = 90V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±16V
-
-
±100
nA
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 11)
1
-
3
V
Drain to Source On Resistance
rDS(ON)
ID = 75A, VGS = 10V (Figures 9, 10)
-
0.012
0.014
Ω
ID = 63A, VGS = 5V (Figure 9)
-
0.013
0.015
Ω
ID = 62A, VGS = 4.5V (Figure 9)
-
0.0135
0.0155
Ω
TO-220 and TO-263
-
-
0.48
oC/W
-
-
62
oC/W
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
Thermal Resistance Junction to
Ambient
RθJA
SWITCHING SPECIFICATIONS (VGS = 4.5V)
Turn-On Time
Turn-On Delay Time
tON
td(ON)
-
490
ns
17
-
ns
tr
-
310
-
ns
-
46
-
ns
tf
-
155
-
ns
tOFF
-
-
300
ns
-
-
175
ns
-
11
-
ns
-
106
-
ns
Fall Time
Turn-Off Time
-
td(OFF)
Rise Time
Turn-Off Delay Time
VDD = 50V, ID = 62A
VGS = 4.5V, RGS = 2.4Ω
(Figures 15, 21, 22)
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
Rise Time
tON
td(ON)
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
VDD = 50V, ID = 75A
VGS = 10V,
RGS = 2.4Ω
(Figures 16, 21, 22)
td(OFF)
-
69
-
ns
tf
-
175
-
ns
tOFF
-
-
365
ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 10V
Gate Charge at 5V
Qg(5)
VGS = 0V to 5V
Qg(TH)
VGS = 0V to 1V
Threshold Gate Charge
VDD = 50V,
ID = 63A,
Ig(REF) = 1.0mA
-
127
153
nC
-
70
84
nC
-
3.8
4.6
nC
Gate to Source Gate Charge
Qgs
-
10
-
nC
Gate to Drain “Miller” Charge
Qgd
-
34
-
nC
-
4400
-
pF
-
900
-
pF
-
280
-
pF
MIN
TYP
MAX
UNITS
(Figures 14, 19, 20)
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 13)
Source to Drain Diode Specifications
PARAMETER
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
©2010 Fairchild Semiconductor Corporation
SYMBOL
TEST CONDITIONS
ISD = 63A
-
-
1.25
V
ISD = 30A
-
-
1.0
V
trr
ISD = 63A, dISD/dt = 100A/µs
-
-
128
ns
QRR
ISD = 63A, dISD/dt = 100A/µs
-
-
520
nC
VSD
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
Typical Performance Curves
80
VGS = 10V
1.0
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.2
0.8
0.6
0.4
60
VGS = 4.5V
40
20
0.2
0
0
0
25
50
75
100
125
150
175
25
50
TC , CASE TEMPERATURE (oC)
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
2000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
1000
175 - TC
150
I = I25
VGS = 10V
100
50
VGS = 5V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
©2010 Fairchild Semiconductor Corporation
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
Typical Performance Curves
(Continued)
500
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
100µs
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
1ms
10ms
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
1
1
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
STARTING TJ = 25oC
STARTING TJ = 150oC
1
10
100
0.001
300
0.01
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING
CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
150
150
ID, DRAIN CURRENT (A)
125
ID, DRAIN CURRENT (A)
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
100
75
50
TJ = 175oC
25
VGS = 10V
VGS = 5V
125
VGS = 4V
100
75
VGS = 3V
50
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
25
TJ = 25oC
TJ = -55oC
0
0
1.5
2.0
2.5
3.0
3.5
4.0
0
2
1
VGS, GATE TO SOURCE VOLTAGE (V)
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. TRANSFER CHARACTERISTICS
FIGURE 8. SATURATION CHARACTERISTICS
3.0
ID = 75A
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
25
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
VGS = 3.5V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
20
ID = 50A
15
ID = 20A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 75A
2.5
2.0
1.5
1.0
0.5
10
2
4
6
8
10
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE
VOLTAGE AND DRAIN CURRENT
©2010 Fairchild Semiconductor Corporation
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
Typical Performance Curves
(Continued)
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.0
0.8
0.6
1.1
1.0
0.9
0.4
-80
-40
0
40
80
120
160
-80
200
-40
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
40
80
120
160
200
FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
10
VGS , GATE TO SOURCE VOLTAGE (V)
10000
CISS = CGS + CGD
C, CAPACITANCE (pF)
0
TJ , JUNCTION TEMPERATURE (oC)
COSS ≅ CDS + CGD
1000
CRSS = CGD
100
70
VGS = 0V, f = 1MHz
0.1
1
10
VDD = 50V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 75A
ID = 50A
ID = 20A
2
0
0
100
30
60
90
120
150
Qg, GATE CHARGE (nC)
VDS , DRAIN TO SOURCE VOLTAGE (V)
NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.
FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT
GATE CURRENT
1200
1200
VGS = 10V, VDD = 50V, ID = 75A
VGS = 4.5V, VDD = 50V, ID = 62A
1000
SWITCHING TIME (ns)
SWITCHING TIME (ns)
1000
tr
800
600
400
tf
td(OFF)
200
20
30
40
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 15. SWITCHING TIME vs GATE RESISTANCE
©2010 Fairchild Semiconductor Corporation
tf
400
tr
td(ON)
td(ON)
10
600
200
0
0
td(OFF)
800
0
50
0
10
20
30
40
50
RGS, GATE TO SOURCE RESISTANCE (Ω)
FIGURE 16. SWITCHING TIME vs GATE RESISTANCE
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 18. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 10V
VGS
Qg(5)
+
VDD
VGS = 5V
VGS
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 19. GATE CHARGE TEST CIRCUIT
FIGURE 20. GATE CHARGE WAVEFORMS
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 21. SWITCHING TIME TEST CIRCUIT
©2010 Fairchild Semiconductor Corporation
10%
50%
50%
PULSE WIDTH
FIGURE 22. SWITCHING TIME WAVEFORM
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
PSPICE Electrical Model
.SUBCKT HUFA76645 2 1 3 ;
rev 7 June 1999
CA 12 8 7.4e-9
CB 15 14 7.4e-9
CIN 6 8 4.13e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
LDRAIN
DPLCAP
DRAIN
2
5
10
5
51
ESLC
11
-
RDRAIN
6
8
EVTHRES
+ 19 8
+
LGATE
GATE
1
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
+
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
EBREAK
17
18
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 8.3e-3
RGATE 9 20 0.96
RLDRAIN 2 5 10
RLGATE 1 9 51
RLSOURCE 3 7 44
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 2.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DBREAK
+
RSLC2
ESG
LDRAIN 2 5 1e-9
LGATE 1 9 5.1e-9
LSOURCE 3 7 4.4e-9
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 121
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
RLSOURCE
S1A
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
-
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*200),3.2))}
.MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.24e-3 TRS1 = 2e-3 TRS2 = 1.03e-6 CJO = 4.5e-9 TT = 5.1e-8 M = 0.60)
.MODEL DBREAKMOD D (RS = 2.5e- 1TRS1 = 1e- 4TRS2 = 1e-7)
.MODEL DPLCAPMOD D (CJO = 5.4e- 9IS = 1e-3 0Vj = 1.0 M = 0.9)
.MODEL MMEDMOD NMOS (VTO = 1.77 KP = 7 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.96)
.MODEL MSTROMOD NMOS (VTO = 2.11 KP = 200 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 1.5 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 9.6 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = -5e-7)
.MODEL RDRAINMOD RES (TC1 = 8.8e-3 TC2 = 1.7e-5)
.MODEL RSLCMOD RES (TC1 = 4e-3 TC2 = 1.5e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 2e-6)
.MODEL RVTHRESMOD RES (TC1 = -1.9e-3 TC2 = -8e-6)
.MODEL RVTEMPMOD RES (TC1 = -1.7e- 3TC2 = 1e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -4.5 VOFF= -2.0)
VON = -2.0 VOFF= -4.5)
VON = -1.0 VOFF= 0.5)
VON = 0.5 VOFF= -1.0)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
©2010 Fairchild Semiconductor Corporation
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
SABER Electrical Model
REV 7 June 1999
template hufa76645 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is = 3.6e-12, cjo = 4.5e-9, tt = 5.1e-8, m = 0.60)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 5.4e-9, is = 1e-30, vj=1.0, m = 0.9 )
m..model mmedmod = (type=_n, vto = 1.77, kp = 7, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 2.11, kp = 200, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 1.5, kp = 0.12, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.0)
sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -4.5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.0, voff = 0.5)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.0)
LDRAIN
DPLCAP
10
RSLC1
51
c.ca n12 n8 = 7.4e-9
c.cb n15 n14 = 7.4e-9
c.cin n6 n8 = 4.13e-9
RLDRAIN
RDBREAK
RSLC2
72
ISCL
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
i.it n8 n17 = 1
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
MWEAK
MSTRO
CIN
DBODY
EBREAK
+
17
18
MMED
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
71
11
16
6
RLGATE
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e-7
res.rdbody n71 n5 = 2.24e-3, tc1 = 2e-3, tc2 = 1.03e-6
res.rdbreak n72 n5 = 2.5e-1, tc1 = 1e-4, tc2 = 1e-7
res.rdrain n50 n16 = 8.3e-3, tc1 = 8.8e-3, tc2 = 1.7e-5
res.rgate n9 n20 = 0.96
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 51
res.rlsource n3 n7 = 44
res.rslc1 n5 n51 = 1e-6, tc1 = 4e-3, tc2 = 1.5e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2.5e-3, tc1 = 1e-3, tc2 = 2e-6
res.rvtemp n18 n19 = 1, tc1 = -1.7e-3, tc2 = 1e-7
res.rvthres n22 n8 = 1, tc1 = -1.9e-3, tc2 = -8e-6
21
RDBODY
DBREAK
50
-
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 5.1e-9
l.lsource n3 n7 = 4.4e-9
DRAIN
2
5
-
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
12
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
+
6
8
EGS
19
CB
+
-
-
IT
14
VBAT
5
8
EDS
-
+
8
22
RVTHRES
spe.ebreak n11 n7 n17 n18 = 121
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/200))** 3.2))
}
}
©2010 Fairchild Semiconductor Corporation
HUFA76645S3ST_F085 Rev. A
HUFA76645S3ST_F085
SPICE Thermal Model
th
JUNCTION
REV 7 June 1999
HUFA76645T
CTHERM1 th 6 6.4e-3
CTHERM2 6 5 3.0e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.6e-2
CTHERM5 3 2 5.5e-2
CTHERM6 2 tl 1.5
RTHERM1 th 6 3.4e-3
RTHERM2 6 5 8.6e-3
RTHERM3 5 4 2.3e-2
RTHERM4 4 3 1.3e-1
RTHERM5 3 2 1.8e-1
RTHERM6 2 tl 3.9e-2
RTHERM1
CTHERM1
6
RTHERM2
CTHERM2
5
RTHERM3
CTHERM3
SABER Thermal Model
SABER thermal model HUFA76645T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 6.4e-3
ctherm.ctherm2 6 5 = 3.0e-2
ctherm.ctherm3 5 4 = 1.4e-2
ctherm.ctherm4 4 3 = 1.6e-2
ctherm.ctherm5 3 2 = 5.5e-2
ctherm.ctherm6 2 tl = 1.5
4
RTHERM4
CTHERM4
3
RTHERM5
rtherm.rtherm1 th 6 = 3.4e-3
rtherm.rtherm2 6 5 = 8.6e-3
rtherm.rtherm3 5 4 = 2.3e-2
rtherm.rtherm4 4 3 = 1.3e-1
rtherm.rtherm5 3 2 = 1.8e-1
rtherm.rtherm6 2 tl = 3.9e-2
CTHERM5
2
RTHERM6
CTHERM6
}
tl
©2010 Fairchild Semiconductor Corporation
CASE
HUFA76645S3ST_F085 Rev. A
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK®
EfficientMax™
ESBC™
F-PFS™
FRFET®
SM
Global Power Resource
Green FPS™
Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MillerDrive™
MotionMax™
Motion-SPM™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
®
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™
FETBench™
FlashWriter®*
FPS™
®
PDP SPM™
Power-SPM™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
QS™
Quiet Series™
RapidConfigure™
™
Saving our world, 1mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
SPM®
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS™
SyncFET™
Sync-Lock™
®
*
The Power Franchise®
TinyBoost™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TriFault Detect™
TRUECURRENT™*
μSerDes™
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR
CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,
WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its
safety or effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,
under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts.
Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications,
and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of
counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are
listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have
full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.
Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide
any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our
customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Advance Information
Formative / In Design
Preliminary
First Production
No Identification Needed
Full Production
Obsolete
Not In Production
Definition
Datasheet contains the design specifications for product development. Specifications may change in
any manner without notice.
Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild
Semiconductor reserves the right to make changes at any time without notice to improve design.
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes
at any time without notice to improve the design.
Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.
The datasheet is for reference information only.
Rev. I48
© Fairchild Semiconductor Corporation
www.fairchildsemi.com