FAIRCHILD FDP038AN06A0_10

FDP038AN06A0 / FDI038AN06A0
N-Channel PowerTrench® MOSFET
60V, 80A, 3.8mΩ
Features
Applications
• rDS(ON) = 3.5mΩ (Typ.), VGS = 10V, ID = 80A
• Motor / Body Load Control
• Qg(tot) = 95nC (Typ.), VGS = 10V
• ABS Systems
• Low Miller Charge
• Powertrain Management
• Low QRR Body Diode
• Injection Systems
• UIS Capability (Single Pulse and Repetitive Pulse)
• DC-DC converters and Off-line UPS
• Distributed Power Architectures and VRMs
• Primary Switch for 12V and 24V systems
Formerly developmental type 82584
SOURCE
DRAIN
DRAIN
(FLANGE)
D
SOURCE
GATE
DRAIN
G
GATE
TO-220AB
DRAIN
(FLANGE)
FDP SERIES
TO-262AB
S
FDI SERIES
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol
VDSS
Drain to Source Voltage
Parameter
Ratings
60
Units
V
VGS
Gate to Source Voltage
±20
V
Drain Current
ID
Continuous (TC < 151oC, VGS = 10V)
80
A
Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 62oC/W)
17
A
Pulsed
EAS
PD
TJ, TSTG
Single Pulse Avalanche Energy (Note 1)
Figure 4
A
625
mJ
Power dissipation
310
W
Derate above 25oC
2.07
W/oC
-55 to 175
oC
Operating and Storage Temperature
Thermal Characteristics
RθJC
Thermal Resistance Junction to Case TO-220, TO-262
RθJA
Thermal Resistance Junction to Ambient TO-220, TO-262 (Note 2)
©2010 Fairchild Semiconductor Corporation
0.48
o
C/W
62
o
C/W
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
December 2010
Device Marking
FDP038AN06A0
Device
FDP038AN06A0
Package
TO-220AB
Reel Size
Tube
Tape Width
N/A
Quantity
50 units
FDI038AN06A0
FDI038AN06A0
TO-262AB
Tube
N/A
50 units
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
60
-
-
-
V
-
1
-
-
250
µA
VGS = ±20V
-
-
±100
nA
-
4
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 50V
VGS = 0V
TC = 150oC
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250µA
2
ID = 80A, VGS = 10V
-
0.0035 0.0038
ID = 40A, VGS = 6V
-
0.0049 0.0074
ID = 80A, VGS = 10V,
TJ = 175oC
-
0.0071 0.0078
Ω
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
Qg(TOT)
Total Gate Charge at 10V
VGS = 0V to 10V
Qg(TH)
Threshold Gate Charge
VGS = 0V to 2V
Qgs
Gate to Source Gate Charge
Qgs2
Gate Charge Threshold to Plateau
Qgd
Gate to Drain “Miller” Charge
Switching Characteristics
VDS = 25V, VGS = 0V,
f = 1MHz
VDD = 30V
ID = 80A
Ig = 1.0mA
-
6400
-
-
1123
-
pF
pF
-
367
-
pF
nC
96
124
-
12
15
nC
-
26
-
nC
-
15
-
nC
-
27
-
nC
(VGS = 10V)
tON
Turn-On Time
-
-
175
ns
td(ON)
Turn-On Delay Time
-
17
-
ns
tr
Rise Time
ns
td(OFF)
Turn-Off Delay Time
tf
tOFF
-
144
-
-
34
-
ns
Fall Time
-
60
-
ns
Turn-Off Time
-
-
115
ns
ISD = 80A
-
-
1.25
V
ISD = 40A
-
-
1.0
V
VDD = 30V, ID = 80A
VGS = 10V, RGS = 2.4Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD = 75A, dISD/dt = 100A/µs
-
-
38
ns
QRR
Reverse Recovered Charge
ISD = 75A, dISD/dt = 100A/µs
-
-
39
nC
Notes:
1: Starting TJ = 25°C, L = 0.255mH, IAS = 70A.
2: Pulse Width = 100s
©2010 Fairchild Semiconductor Corporation
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
Package Marking and Ordering Information
1.2
250
CURRENT LIMITED
BY PACKAGE
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
1.0
0.8
0.6
0.4
200
150
100
50
0.2
0
0
25
50
75
100
150
125
0
25
175
50
75
TC , CASE TEMPERATURE (oC)
100
125
TC, CASE TEMPERATURE
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
150
175
(oC)
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
3000
1000
IDM, PEAK CURRENT (A)
TC = 25oC
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
VGS = 10V
100
10
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2010 Fairchild Semiconductor Corporation
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics TC = 25°C unless otherwise noted
2000
100
10µs
1000
100
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10
10ms
1
DC
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
STARTING TJ = 25oC
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
100µs
STARTING TJ = 150oC
10
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
0.1
1
10
1
0.01
100
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
160
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
VGS = 20V
ID, DRAIN CURRENT (A)
ID , DRAIN CURRENT (A)
160
120
80
TJ = 175oC
TJ = 25oC
40
TJ =
VGS = 10V
120
VGS = 6V
VGS = 5V
80
40
-55oC
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
0
3.0
3.5
4.0
4.5
5.0
5.5
VGS , GATE TO SOURCE VOLTAGE (V)
6
0
Figure 7. Transfer Characteristics
0.5
1.0
VDS , DRAIN TO SOURCE VOLTAGE (V)
1.5
Figure 8. Saturation Characteristics
2.5
6
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
DRAIN TO SOURCE ON RESISTANCE(mΩ)
100
VGS = 6V
5
4
VGS = 10V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
1.5
1.0
VGS = 10V, ID =80A
3
0
20
40
60
80
ID, DRAIN CURRENT (A)
Figure 9. Drain to Source On Resistance vs Drain
Current
©2010 Fairchild Semiconductor Corporation
0.5
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
200
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics TC = 25°C unless otherwise noted
1.4
1.2
VGS = VDS, ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
1.2
1.0
0.8
0.6
0.4
0.2
-80
-40
0
40
80
120
160
1.1
1.0
0.9
200
-80
-40
TJ, JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
10000
80
120
160
200
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
C, CAPACITANCE (pF)
40
10
COSS ≅ CDS + CGD
1000
0
TJ , JUNCTION TEMPERATURE (oC)
CRSS = CGD
VGS = 0V, f = 1MHz
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Source
Voltage
©2010 Fairchild Semiconductor Corporation
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 80A
ID = 40A
2
0
100
0.1
VDD = 30V
60
0
25
50
Qg, GATE CHARGE (nC)
75
100
Figure 14. Gate Charge Waveforms for Constant
Gate Current
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
Typical Characteristics TC = 25°C unless otherwise noted
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
IAS
+
RG
REQUIRED PEAK IAS
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
L
VGS
VGS
VGS = 10V
+
Qgs2
VDD
DUT
VGS = 2V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 17. Gate Charge Test Circuit
Figure 18. Gate Charge Waveforms
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tr
VDS
tf
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
Figure 19. Switching Time Test Circuit
©2010 Fairchild Semiconductor Corporation
50%
10%
50%
PULSE WIDTH
Figure 20. Switching Time Waveforms
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
Test Circuits and Waveforms
.SUBCKT FDP038AN06A0 2 1 3 ; rev July 04, 2002
Ca 12 8 1.5e-9
Cb 15 14 1.5e-9
Cin 6 8 6.1e-9
LDRAIN
DPLCAP
DRAIN
2
5
10
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
5
51
ESLC
EVTHRES
+ 19 8
+
LGATE
GATE
1
11
+
17
EBREAK 18
-
50
RDRAIN
6
8
ESG
DBREAK
+
RSLC2
Ebreak 11 7 17 18 69.3
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
It 8 17 1
RLDRAIN
RSLC1
51
EVTEMP
RGATE + 18 22
9
20
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
Lgate 1 9 4.81e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 4.63e-9
LSOURCE
CIN
8
7
SOURCE
3
RSOURCE
RLSOURCE
RLgate 1 9 48.1
RLdrain 2 5 10
RLsource 3 7 46.3
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
S1A
12
S2A
13
8
17
18
RVTEMP
S2B
13
19
CB
6
8
VBAT
5
8
EDS
-
IT
14
+
+
EGS
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 1e-4
Rgate 9 20 1.36
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 2.8e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
15
14
13
S1B
CA
RBREAK
-
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*250),10))}
.MODEL DbodyMOD D (IS=2.4E-11 N=1.04 RS=1.65e-3 TRS1=2.7e-3 TRS2=2e-7
+ CJO=4.35e-9 M=5.4e-1 TT=1e-9 XTI=3.9)
.MODEL DbreakMOD D (RS=1.5e-1 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=1.7e-9 IS=1e-30 N=10 M=0.47)
.MODEL MmedMOD NMOS (VTO=3.3 KP=9 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.36 T_abs=25)
.MODEL MstroMOD NMOS (VTO=4.00 KP=275 IS=1e-30 N=10 TOX=1 L=1u W=1u T_abs=25)
.MODEL MweakMOD NMOS (VTO=2.72 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=13.6 RS=0.1 T_abs=25)
.MODEL RbreakMOD RES (TC1=9e-4 TC2=-9e-7)
.MODEL RdrainMOD RES (TC1=4e-2 TC2=3e-4)
.MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-5)
.MODEL RsourceMOD RES (TC1=5e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-6.7e-3 TC2=-1.5e-5)
.MODEL RvtempMOD RES (TC1=-2.5e-3 TC2=1e-6)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-1.5)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.5 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2010 Fairchild Semiconductor Corporation
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
PSPICE Electrical Model
rev July 4, 2002
template FDP038AN06A0 n2,n1,n3 = m_temp
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=2.4e-11,nl=1.04,rs=1.65e-3,trs1=2.7e-3,trs2=2e-7,cjo=4.35e-9,m=5.4e-1,tt=1e-9,xti=3.9)
dp..model dbreakmod = (rs=1.5e-1,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=1.7e-9,isl=10e-30,nl=10,m=0.47)
m..model mmedmod = (type=_n,vto=3.3,kp=9,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=4.00,kp=275,is=1e-30, tox=1)
LDRAIN
m..model mweakmod = (type=_n,vto=2.72,kp=0.03,is=1e-30, tox=1,rs=0.1)
DPLCAP 5
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-1.5)
10
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-1.5,voff=-4)
RLDRAIN
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5)
RSLC1
51
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1)
RSLC2
c.ca n12 n8 = 1.5e-9
ISCL
c.cb n15 n14 = 1.5e-9
c.cin n6 n8 = 6.1e-9
DBREAK
50
DRAIN
2
-
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
spe.ebreak n11 n7 n17 n18 = 69.3
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
21
EBREAK
+
17
18
-
MMED
MSTRO
CIN
8
LSOURCE
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
i.it n8 n17 = 1
12
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
19
CB
6
8
EGS
-
IT
14
+
+
res.rlgate n1 n9 = 48.1
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 46.3
DBODY
MWEAK
6
RLGATE
l.lgate n1 n9 = 4.81e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 4.63e-9
11
16
VBAT
5
8
EDS
-
+
8
22
RVTHRES
m.mmed n16 n6 n8 n8 = model=mmedmod, temp=m_temp, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, temp=m_temp, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, temp=m_temp, l=1u, w=1u
res.rbreak n17 n18 = 1, tc1=9e-4,tc2=-9e-7
res.rdrain n50 n16 = 1e-4, tc1=4e-2,tc2=3e-4
res.rgate n9 n20 = 1.36
res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-5
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2.8e-3, tc1=5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-6.7e-3,tc2=-1.5e-5
res.rvtemp n18 n19 = 1, tc1=-2.5e-3,tc2=1e-6
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/250))** 10))
}
©2010 Fairchild Semiconductor Corporation
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
SABER Electrical Model
th
REV 23 July 4, 2002
JUNCTION
FDP038AN06A0T
CTHERM1 TH 6 6.45e-3
CTHERM2 6 5 3e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.65e-2
CTHERM5 3 2 4.85e-2
CTHERM6 2 TL 1e-1
RTHERM1 TH 6 3.24e-3
RTHERM2 6 5 8.08e-3
RTHERM3 5 4 2.28e-2
RTHERM4 4 3 1e-1
RTHERM5 3 2 1.1e-1
RTHERM6 2 TL 1.4e-1
CTHERM1
RTHERM1
6
CTHERM2
RTHERM2
5
SABER Thermal Model
SABER thermal model FDP035AN06A0T
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =6.45e-3
ctherm.ctherm2 6 5 =3e-2
ctherm.ctherm3 5 4 =1.4e-2
ctherm.ctherm4 4 3 =1.65e-2
ctherm.ctherm5 3 2 =4.85e-2
ctherm.ctherm6 2 tl =1e-1
rtherm.rtherm1 th 6 =3.24e-3
rtherm.rtherm2 6 5 =8.08e-3
rtherm.rtherm3 5 4 =2.28e-2
rtherm.rtherm4 4 3 =1e-1
rtherm.rtherm5 3 2 =1.1e-1
rtherm.rtherm6 2 tl=1.4e-1
}
CTHERM3
RTHERM3
4
CTHERM4
RTHERM4
3
CTHERM5
RTHERM5
2
CTHERM6
RTHERM6
tl
©2010 Fairchild Semiconductor Corporation
CASE
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
PSPICE Thermal Model
*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY
THEREIN, WHICH COVERS THESE PRODUCTS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used here in:
1. Life support devices or systems are devices or systems which, (a) are
intended for surgical implant into the body or (b) support or sustain life,
and (c) whose failure to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably
expected to result in a significant injury of the user.
2.
A critical component in any component of a life support, device, or
system whose failure to perform can be reasonably expected to cause
the failure of the life support device or system, or to affect its safety or
effectiveness.
ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,
www.Fairchildsemi.com, under Sales Support.
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild
Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative / In Design
Datasheet contains the design specifications for product development. Specifications
may change in any manner without notice.
Preliminary
First Production
Datasheet contains preliminary data; supplementary data will be published at a later
date. Fairchild Semiconductor reserves the right to make changes at any time without
notice to improve design.
No Identification Needed
Full Production
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to
make changes at any time without notice to improve the design.
Obsolete
Not In Production
Datasheet contains specifications on a product that is discontinued by Fairchild
Semiconductor. The datasheet is for reference information only.
Rev. I51
©2010 Fairchild Semiconductor Corporation
FDP038AN06A0 / FDI038AN06A0 Rev. B2
FDP038AN06A0 / FDI038AN06A0
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not
intended to be an exhaustive list of all such trademarks.
F-PFS™
AccuPower™
The Power Franchise®
PowerTrench®
FRFET®
PowerXS™
The Right Technology for Your Success™
Auto-SPM™
®
Programmable Active Droop™
Global Power ResourceSM
Build it Now™
QFET®
Green FPS™
CorePLUS™
QS™
Green FPS™ e-Series™
CorePOWER™
TinyBoost™
Gmax™
Quiet Series™
CROSSVOLT™
TinyBuck™
RapidConfigure™
CTL™
GTO™
TinyCalc™
Current Transfer Logic™
IntelliMAX™
™
TinyLogic®
DEUXPEED®
ISOPLANAR™
TINYOPTO™
MegaBuck™
Saving our world, 1mW/W/kW at a time™
Dual Cool™
TinyPower™
EcoSPARK®
MICROCOUPLER™
SignalWise™
TinyPWM™
EfficentMax™
MicroFET™
SmartMax™
TinyWire™
ESBC™
MicroPak™
SMART START™
TriFault Detect™
MicroPak2™
SPM®
®
TRUECURRENT™*
STEALTH™
MillerDrive™
μSerDes™
®
®
SuperFET
MotionMax™
Fairchild
SuperSOT™-3
Motion-SPM™
Fairchild Semiconductor®
SuperSOT™-6
OptiHiT™
FACT Quiet Series™
UHC®
SuperSOT™-8
OPTOLOGIC®
FACT®
®
®
Ultra FRFET™
®
OPTOPLANAR
SupreMOS
FAST
®
UniFET™
SyncFET™
FastvCore™
VCX™
Sync-Lock™
FETBench™
VisualMax™
®*
FlashWriter® *
PDP SPM™
XS™
FPS™
Power-SPM™