HUFA75345G3, HUFA75345P3, HUFA75345S3S Data Sheet December 2001 75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs These N-Channel power MOSFETs are manufactured using the innovative UltraFET® process. This advanced process technology achieves the lowest possible on-resistance per silicon area, resulting in outstanding performance. This device is capable of withstanding high energy in the avalanche mode and the diode exhibits very low reverse recovery time and stored charge. It was designed for use in applications where power efficiency is important, such as switching regulators, switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable and battery-operated products. Features • 75A, 55V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Models - Thermal Impedance SPICE and SABER Models Available on the WEB at: www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol Formerly developmental type TA75345. D Ordering Information PART NUMBER HUFA75345G3 PACKAGE BRAND TO-247 75345G HUFA75345P3 TO-220AB 75345P HUFA75345S3S TO-263AB 75345S G S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUFA75345S3ST. Packaging JEDEC STYLE TO-247 JEDEC TO-220AB SOURCE DRAIN GATE SOURCE DRAIN GATE DRAIN (FLANGE) DRAIN (TAB) JEDEC TO-263AB GATE DRAIN (FLANGE) SOURCE This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2001 Fairchild Semiconductor Corporation HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 55 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 55 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 75 Figure 4 A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figure 6 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 2.17 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 55 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS ID = 250µA, VGS = 0V (Figure 11) VDS = 50V, VGS = 0V - - 1 µA VDS = 45V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.006 0.007 ¾ THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.46 oC/W Thermal Resistance Junction to Ambient RθJA TO-247 - - 30 oC/W TO-220, TO-263 - - 62 oC/W VDD = 30V, ID ≅ 75A, RL = 0.4Ω, VGS = 10V, RGS = 2.5Ω - - 145 ns - 20 - ns - 75 - ns td(OFF) - 45 - ns tf - 30 - ns tOFF - - 115 ns - 220 275 nC - 125 165 nC - 6.8 10 nC - 14 - nC - 58 - nC SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time tON td(ON) tr GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V Gate to Source Gate Charge Qgs Gate to Drain “Miller” Charge Qgd ©2001 Fairchild Semiconductor Corporation VDD = 30V, ID ≅ 75A, RL = 0.4Ω Ig(REF) = 1.0mA (Figure 13) HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S TC = 25oC, Unless Otherwise Specified (Continued) Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS - 4000 - pF - 1450 - pF - 450 - pF CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage MIN TYP MAX UNITS ISD = 75A - - 1.25 V trr ISD = 75A, dISD/dt = 100A/µs - - 110 ns QRR ISD = 75A, dISD/dt = 100A/µs - - 225 nC VSD Reverse Recovery Time Reverse Recovered Charge TEST CONDITIONS Typical Performance Curves 80 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 60 40 20 0.2 0 25 0 0 25 50 75 100 125 150 175 50 TC , CASE TEMPERATURE (oC) 75 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE ©2001 Fairchild Semiconductor Corporation HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S Typical Performance Curves (Continued) IDM, PEAK CURRENT (A) 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 1000 175 - TC I = I25 150 VGS = 20V VGS = 10V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 1000 1000 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) TJ = MAX RATED TC = 25oC 100µs 100 1ms 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING TJ = 25oC STARTING TJ = 150oC VDSS(MAX) = 55V 1 1 10 100 10 0.01 200 0.1 1 10 100 tAV, TIME IN AVALANCHE (ms) VDS , DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 5. FORWARD BIAS SAFE OPERATING AREA FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY 150 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 20V VGS = 10V VGS = 7V VGS = 6V 120 VGS = 5V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 150 90 60 30 0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 0 1 2 3 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 7. SATURATION CHARACTERISTICS ©2001 Fairchild Semiconductor Corporation 120 90 60 25oC 30 175oC 4 0 0 1.5 3.0 -55oC 4.5 VDD = 15V 6.0 7.5 VGS , GATE TO SOURCE VOLTAGE (V) FIGURE 8. TRANSFER CHARACTERISTICS HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S Typical Performance Curves (Continued) 1.2 PULSE DURATION = 80µs, VGS = 10V, ID = 75A DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE 2.5 2.0 1.5 1.0 0.5 -80 -40 0 40 80 120 160 1.0 0.8 0.6 0.4 -80 200 -40 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 7000 1.3 VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS ≈ CDS + CGD ID = 250µA 6000 1.2 C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 1.1 1.0 0.9 5000 CISS 4000 3000 2000 COSS 1000 CRSS 0.8 -80 0 -40 0 40 80 120 160 200 0 10 20 30 40 50 60 VDS , DRAIN TO SOURCE VOLTAGE (V) TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE VGS , GATE TO SOURCE VOLTAGE (V) 10 VDD = 30V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 55A ID = 35A ID = 20A 2 0 0 25 50 75 Qg, GATE CHARGE (nC) 100 125 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT ©2001 Fairchild Semiconductor Corporation HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + - VDD VGS = 10V VGS DUT VGS = 2V IG(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS - VDD 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 19. RESISTIVE SWITCHING WAVEFORMS HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S PSPICE Electrical Model rev 3 Feb 99 CA 12 8 5.55e-9 CB 15 14 5.55e-9 CIN 6 8 3.45e-9 LDRAIN DPLCAP 10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD RLDRAIN RSLC1 51 RSLC2 5 51 EBREAK 11 7 17 18 56.7 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 DBREAK ESLC 11 - RDRAIN 6 8 ESG EVTHRES + 19 8 + GATE 1 LDRAIN 2 5 1e-9 LGATE 1 9 2.6e-9 LSOURCE 3 7 1.1e-9 KGATE LSOURCE LGATE 0.0085 + 50 - LGATE IT 8 17 1 DRAIN 2 5 + .SUBCKT HUFA75345 2 1 3 ; EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD S1A 12 RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 1e-4 RGATE 9 20 0.36 RLDRAIN 2 5 10 RLGATE 1 9 26 RLSOURCE 3 7 11 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 3.15e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3.5))} .MODEL DBODYMOD D (IS = 6e-12 RS = 1.4e-3 IKF = 20 XTI = 5 TRS1 = 2.75e-3 TRS2 = 5.0e-6 CJO = 5.5e-9 TT = 5.9e-8 M = 0.5 VJ = 0.75) .MODEL DBREAKMOD D (RS = 2.8e-2 IKF = 3 0TRS1 = -4.0e- 3TRS2 = 1.0e-6) .MODEL DPLCAPMOD D (CJO = 6.75e- 9IS = 1e-30 M = 0.88 VJ = 1.45 FC = 0.5) .MODEL MMEDMOD NMOS (VTO = 2.93 KP = 13.75 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36) .MODEL MSTROMOD NMOS (VTO = 3.23 KP = 96 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Lambda = 0.06) .MODEL MWEAKMOD NMOS (VTO = 2.35 KP =0.02 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6) .MODEL RBREAKMOD RES (TC1 = 8.0e- 4TC2 = 4.0e-6) .MODEL RDRAINMOD RES (TC1 = 1.5e-1 TC2 = 6.5e-4) .MODEL RSLCMOD RES (TC1 = 1.0e-4 TC2 = 1.05e-6) .MODEL RSOURCEMOD RES (TC1 = 1.0e-3 TC2 = 0) .MODEL RVTHRESMOD RES (TC1 = -1.5e-3 TC2 = -2.6e-5) .MODEL RVTEMPMOD RES (TC1 = -2.75e- 3TC2 = 1.45e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -9.00 VOFF= -4.00) VON = -4.00 VOFF= -9.00) VON = 0.00 VOFF= 0.50) VON = 0.50 VOFF= 0.00) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2001 Fairchild Semiconductor Corporation HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S SABER Electrical Model REV 3 February 1999 template HUFA75345 n2, n1, n3 electrical n2, n1, n3 { var i iscl d..model dbodymod = (is = 6e-12, xti = 5, cjo = 5.5e-9, tt = 5.9e-8, m=0.5, vj=0.75) d..model dbreakmod = () d..model dplcapmod = (cjo = 6.75e-9, is = 1e-30, m = 0.88, vj = 1.45,fc=0.5) m..model mmedmod = (type=_n, vto = 2.93, kp = 13.75, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.23, kp = 96, is=1e-30,tox=1, lambda = 0.06) DPLCAP m..model mweakmod = (type=_n, vto = 2.35, kp = 0.02, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -9, voff = -4) 10 sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4, voff = -9) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = 0, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = 0) LDRAIN DRAIN 2 5 RSLC1 51 RLDRAIN RDBREAK RSLC2 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 MWEAK DBODY EBREAK + 17 18 MMED MSTRO CIN 71 11 16 6 l.ldrain n2 n5 = 1e-9 RLGATE l.lgate n1 n9 = 2.6e-9 l.lsource n3 n7 = 1.1e-9 k.k1 i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod i.it n8 n17 = 1 72 ISCL c.ca n12 n8 = 5.55e-9 c.cb n15 n14 = 5.55e-9 c.cin n6 n8 = 3.45e-9 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u res.rbreak n17 n18 = 1, tc1 = 8e-4, tc2 = 4e-6 res.rdbody n71 n5 = 1.4e-3, tc1 = 2.75e-3, tc2 = 5e-6 res.rdbreak n72 n5 = 2.8e-2, tc1 = -4e-3, tc2 = 1e-6 res.rdrain n50 n16 = 1e-4, tc1 = 1.5e-1, tc2 = 6.5e-4 res.rgate n9 n20 = 0.36 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 26 res.rlsource n3 n7 = 11 res.rslc1 n5 n51 = 1e-6, tc1 = 1e-4, tc2 = 1.05e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 3.15e-3, tc1 = 1e-3, tc2 = 0 res.rvtemp n18 n19 = 1, tc1 = -2.75e-3, tc2 = 1.45e-6 res.rvthres n22 n8 = 1, tc1 = -1.5e-3, tc2 = -2.6e-5 S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 19 CB 6 8 EGS - - IT 14 + + VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 56.7 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc = 1 equations { i (n51->n50) + = iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3.5)) } } ©2001 Fairchild Semiconductor Corporation HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B HUFA75345G3, HUFA75345P3, HUFA75345S3S SPICE Thermal Model th JUNCTION REV 5 February 1999 HUFA75345 CTHERM1 th 6 6.3e-3 CTHERM2 6 5 1.5e-2 CTHERM3 5 4 2.0e-2 CTHERM4 4 3 3.0e-2 CTHERM5 3 2 8.0e-2 CTHERM6 2 tl 1.5e-1 RTHERM1 RTHERM1 th 6 5.0e-3 RTHERM2 6 5 1.8e-2 RTHERM3 5 4 5.0e-2 RTHERM4 4 3 8.5e-2 RTHERM5 3 2 1.0e-1 RTHERM6 2 tl 1.1e-1 RTHERM2 CTHERM1 6 CTHERM2 5 RTHERM3 CTHERM3 SABER Thermal Model SABER thermal model HUFA75345 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.3e-3 ctherm.ctherm2 6 5 = 1.5e-2 ctherm.ctherm3 5 4 = 2.0e-2 ctherm.ctherm4 4 3 = 3.0e-2 ctherm.ctherm5 3 2 = 8.0e-2 ctherm.ctherm6 2 tl = 1.5e-1 rtherm.rtherm1 th 6 = 5.0e-3 rtherm.rtherm2 6 5 = 1.8e-2 rtherm.rtherm3 5 4 = 5.0e-2 rtherm.rtherm4 4 3 = 8.5e-2 rtherm.rtherm5 3 2 = 1.0e-1 rtherm.rtherm6 2 tl = 1.1e-1 } 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2001 Fairchild Semiconductor Corporation CASE HUFA75345G3, HUFA75345P3, HUFA75345S3S Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4