STMICROELECTRONICS L4981BD

L4981A
L4981B

POWER FACTOR CORRECTOR
CONTROL BOOST PWM UP TO 0.99P.F.
LIMIT LINE CURRENT DISTORTION TO < 5%
UNIVERSAL INPUT MAINS
FEED FORWARD LINE AND LOAD REGULATION
AVERAGE CURRENT MODE PWM FOR
MINIMUM NOISE SENSITIVITY
HIGH CURRENT BIPOLAR AND DMOS TOTEM POLE OUTPUT
LOW START-UP CURRENT (0.3mA TYP.)
UNDER VOLTAGE LOCKOUT WITH HYSTERESIS AND PROGRAMMABLE TURN ON
THRESHOLD
OVERVOLTAGE, OVERCURRENT PROTECTION
PRECISE 2% ON CHIP REFERENCE EXTERNALLY AVAILABLE
SOFT START
DESCRIPTION
The L4981 I.C. provides the necessary features
to achieve a very high power factor up to 0.99.
Realized in BCD 60II technology this power factor
corrector (PFC) pre-regulator contains all the con-
MULTIPOWER BCD TECHNOLOGY
DIP20
SO20
ORDERING NUMBERS: L4981X (DIP20)
L4981XD (SO20)
trol functions for designing a high efficiency-mode
power supply with sinusoidal line current consumption.
The L4981 can be easily used in systems with
mains voltages between 85V to 265V without any
line switch. This new PFC offers the possibility to
work at fixed frequency (L4981A) or modulated
frequency (L4981B) optimizing the size of the in-
BLOCK DIAGRAM
September 1998
1/17
L4981A - L4981B
put filter; both the operating frequency modes
working with an average current mode PWM controller, maintaining sinusoidal line current without
slope compensation.
Besides power MOSFET gate driver, precise voltage reference (externally available), error amplifier, undervoltage lockout, current sense and the
soft start are included. To limit the number of the
external components, the device integrates protections as overvoltage and overcurrent. The
overcurrent level can be programmed using a
simple resistor for L4981A. For a better precision
and for L4981B an external divider must be used.
ABSOLUTE MAXIMUM RATINGS
Symbol
Pin
VCC
19
IGDRV
20
Parameter
Value
Unit
selflimit
V
2
1.5
Α
A
Gate driv. output voltage t = 0.1µs
-1
V
Voltages at pins 3, 14, 7, 6, 12, 15
-0.3 to 9
V
Supply Voltage (ICC ≤50mA) (*)
Gate driv. output peak current (t = 1µs)
.
VGDRV
SINK
SOURCE
VVA-OUT
13
Error Amplifier Voltage
IAC
4
AC Input Current
VCA-OUT
5
Current Amplifier Volt. (Isource = -20mA; Isink = 20mA)
17
-0.3 to 8.5
V
5
mA
Voltages at pin 8, 9
VROSC
11, 18
-0.5 to 7
V
-0.3 to 8.5
V
Voltage at pin 17
-0.3 to 3
V
Voltage at pin 11, 18
-0.3 to 7
V
ICOSC
18
Input Sink Current
15
mA
IFREQ-MOD
16
Frequency Modulation Sink Current (L4981B)
5
mA
V SYNC
16
Sync. Voltage (L4981A)
-0.3 to 7
V
V IPK
2
Voltage at pin 2
Voltage at Pin 2 t = 1µs
-0.3 to 5.5
-2
V
V
W
Ptot
Power Dissipation at Tamb = 70°C
(DIP20)
1
Power Dissipation at Tamb = 70°C
(SO20)
0.6
W
Top
Operating Ambient Temperature
-40 to 125
°C
Tstg
StorageTemperature
-55 to 150
°C
(*) Maximum package power dissipation limits must be observed.
PIN CONNECTIONS (Top views)
L4981A
2/17
L4981B
L4981A - L4981B
THERMAL DATA
Symbol
Parameter
Rth j-amb
Thermal Resistance Junction-ambient
DIP 20
SO 20
Unit
80
120
°C/W
PIN FUNCTIONS
N.
Name
1
P-GND
2
IPK
Description
Power ground.
L4981A peak current limiting. A current limitation is obtained using a single resistor connected
between Pin 2 and the sense resistor. To have a better precision another resistor between Pin
2 and a reference voltage (Pin 11) must be added.
L4981B peak current limiting. A precise current limitation is obtained using two external
resistor only. These resistors must be connected between the sense resistor, Pin 2 and the
reference voltage.
3
OVP
Overvoltage protection. At this input are compared an internal precise 5.1V (typ) voltage
reference with a sample of the boost output voltage obtained via a resistive voltage divider in
order to limit the maximum output peak voltage.
4
IAC
Input for the AC current. An input current proportional to the rectified mains voltage generates,
via a multiplier, the current reference for the current amplifier.
5
CA-OUT
6
LFF
Load feedforward; this voltage input pin allows to modify the multiplier output current
proportionally to the load, in order to give a faster response versus load transient. The best
control is obtained working between 1.5V and 5.3V. If this function is not used, connect this pin
to the voltage reference (pin = 11).
7
VRMS
Input for proportional RMS line voltage. the VRMS input compesates the line voltage changes.
Connecting a low pass filter between the rectified line and the pin 7, a DC voltage proportional
to the input line RMS voltage is obtained. The best control is reached using input voltage
between 1.5V and 5.5V. If this function is not used connect this pin to the voltage reference
(pin = 11).
8
MULT-OUT
Multiplier output. This pin common to the multiplier output and the current amplifier N.I. input is
an high impedence input like ISENSE. The MULT-OUT pin must be taken not below -0.5V.
Current amplifier output. An external RC network determinates the loop gain.
9
ISENSE
Current amplifier inverting input. Care must be taken to avoid this pin goes down -0.5V.
10
S-GND
Signal ground.
11
VREF
12
SS
13
VA-OUT
Error amplifier output, an RC network fixes the voltage loop gain characteristics.
14
VFEED
Voltage error amplifier inverting input. This feedback input is connected via a voltage divider to
the boost output voltage.
15
P-UVLO
Programmable under voltage lock out threshold input. A voltage divider between supply
voltage and GND can be connected in order to program the turn on threshold.
16
SYNC
(L4981A)
This synchronization input/output pin is CMOS logic compatible. Operating as SYNC in, a
rectangular wave must be applied at this pin. Opearting as SYNC out, a rectangular clock
pulse train is available to synchronize other devices.
FREQ-MOD
(L4981B)
Output reference voltage (typ = 5.1V).Voltage refence at ± 2% of accuracy externally available,
it’s internally current limited and can deliver an output current up to 10mA.
A capacitor connected to ground defines the soft start time. An internal current generator
delivering 100µA (typ) charges the external capacitor defining the soft start time constant. An
internal MOS discharge, the external soft start capacitor both in overvoltage and UVLO
conditions.
Frequency modulation current input. An external resistor must be connected between pin 16
and the rectified line voltage in order to modulate the oscillator frequency. Connecting pin 16 to
ground a fixed frequency imposed by ROSC and COSC is obtained.
17
R OSC
An external resistor connected to ground fixes the constant charging current of COSC.
18
C OSC
An external capacitor connected to GND fixes the switching frequency.
19
VCC
Supply input voltage.
20
GDRV
Output gate driver. Bipolar and DMOS transistors totem pole output stage can deliver peak
current in excess 1A useful to drive MOSFET or IGBT power stages.
3/17
L4981A - L4981B
ELECTRICAL CHARACTERISTICS (Unless otherwise specified VCC = 18V, COSC = 1nF,
ROSC = 24KΩ, CSS = 1µF, VCA-OUT = 3.5V, VISENSE = 0V, VLFF = VREF, IAC = 100µA, VRMS = 1V,
VFEED = GND, VIPK = 1V, V OVP = 1V, TJ = 25°C
Symbol
Prameter
Test Condition
Min.
Typ.
Max.
Unit
±8
mV
-500
-50
500
nA
70
100
5.5
6.5
7.5
V
0.4
1
V
ERROR AMPLIFIER SECTION
VIO
Input Offset Voltage
–25°C < TJ < 85°C
IIB
Input Bias Current
VFEED = 0V
Open Loop Gain
dB
V13H
Output High voltage
VFEED = 4.7V
IVA-OUT = -0.5mA
V13L
Output Low Voltage
VFEED = 5.5V
IVA-OUT = 0.5mA
-I13
Output Source Current
VFEED = 4.7V; VVA-OUT = 3.5V
2
10
mA
I13
Output Sink Current
VFEED = 5.5V; VVA-OUT = 3.5V
4
20
mA
REFERENCE SECTION
Vref
Reference Output Voltage
–25°C < TJ < 85°C
4.97
5.1
5.23
V
Tj = 25°C Iref = 0
5.01
5.1
5.19
V
∆Vref
Load Regulation
1mA ≤ Iref ≤ 10mA
–25°C < TJ < 85°C
3
15
mV
∆Vref
Line Regulation
12V ≤ VCC ≤ 19V
–25°C < TJ < 85°C
3
10
mV
Iref sc
Short Circuit Current
Vref = 0V
20
30
50
mA
Initial Accuracy
Tj = 25°C
85
100
115
KHz
Frequency Stability
12V ≤ VCC ≤ 19V
–25°C < TJ < 85°C
80
100
120
KHz
OSCILLATOR SECTION
fosc
Vsvp
Ramp Valley to Peak
I18C
Charge Current
VCOSC = 3.5V
I18D
Discharge Current
VCOSC = 3.5V
V 18
Ramp Valley Voltage
4.7
5
5.3
V
0.45
0.55
0.65
mA
11.5
0.9
1.15
mA
1.4
V
SYNC SECTION (Only for L4981A)
tW
Output Pulse Width
50% Amplitude
0.3
0.8
µs
I16
Sink Current with Low Output
Voltage
VSYNC = 0.4V
VCOSC = 0V
0.4
0.8
mA
-I16
Source Current with High Output
Voltage
VSYNC = 4.5V
VCOSC = 6.7V
1
6
mA
V16L
Low Input Voltage
V16H
High Input Voltage
0.9
Pulse for Synchronization
td
FREQUENCY MODULATION FUNCTION (Only for L4981B)
V
3.5
V
800
ns
f18max
Maximum Oscillation Frequency
VFREQ-MOD = 0V (Pin 16) Ifreq = 0
f18min
Minimum Oscillator Frequency
IFREQ-MOD = 360µA (Pin 16)
VVRMS = 4V (Pin 7)
85
100
74
115
KHz
KHz
IFREQ-MOD = 180µA (Pin 16)
VVRMS = 2V (Pin 7)
76
KHz
SOFT START SECTION
4/17
ISS
Soft Start Source Current
VSS = 3V
V12sat
Output Saturation Voltage
V3 = 6V, ISS = 2mA
60
100
140
µA
0.1
0.25
V
L4981A - L4981B
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
19.5
V
5.1
Vref
+20mV
V
SUPPLY VOLTAGE
VCC
Operating Supply Voltage
OVER VOLTAGE PROTECTION COMPARATOR
Vthr
V3Hys
Rising Threshold Voltage
Vref
-20mV
Hysteresis
I3
Input Bias Current
td
Propagation delay to output
180
VOVP = Vthr +100mV
250
320
mV
0.05
1
µA
1
2
µs
OVER CURRENT PROTECTION COMPARATOR
V th
Propagation delay to Output
VOCP = Vthr -0.2V
Iipk
Current Source Generator
VIPK = -0.1V
only for L4981A
VIPK = -0.1V
only for L4981B
Leakage Current
IL
CURRENT AMPLIFIER SECTION
Voffset
±30
mV
0.4
0.9
µs
85
105
µA
5
µA
±2
mV
Threshold Voltage
td
Input Offset Voltage
65
VMULT OUT = VSENSE = 3.5V
Input Bias Current
VSENSE = 0V
-500
50
Open Loop Gain
1.1V ≤ VCA OUT ≤ 6V
70
100
dB
SVR
Supply Voltage Rejection
12V ≤ VCC ≤ 19V
VMULT OUT = 3.5V VSENSE = 3.5V
68
90
dB
V5H
Output High Voltage
VMULT OUT = 200mV
ICA OUT = -0.5mA, VIAC = 0V
6.2
V 5L
Output Low Voltage
VMULT OUT = -200mV
ICA OUT = 0.5mA, VIAC = 0V
-I5
Output Source Current
I5
Output Sink Current
VMULT OUT = 200mV,
VIAC = 0V, VCA-OUT = 3.5V
I9bias
500
nA
V
0.9
V
2
10
mA
2
10
mA
11.5
12.5
OUTPUT SECTION
V20L
Output Voltage Low
ISINK = 250mA
V20H
Output Voltage High
ISOURCE = 250mA
VCC = 15V
tr
Output Voltage Rise Time
COUT = 1nF
50
150
ns
tf
Output Voltage Fall Time
COUT = 1nF
30
100
ns
Voltage Clamp
ISOURCE = 0mA
16
19
V
0.3
0.5
mA
8
12
mA
VGDRV
0.5
13
0.8
V
V
TOTAL STANDBY CURRENT SECTION
I19start
Supply Current before start up
VCC = 14V
I19on
Supply Current after turn on
VIAC = 0V, VCOSC = 0,
Pin17 = Open
Operating Supply Current
Pin20 = 1nF
Zener Voltage
(*)
I19
VCC
12
16
mA
20
25
30
V
UNDER VOLTAGE LOCKOUT SECTION
Vth ON
Turn on Threshold
14.5
15.5
16.5
V
Vth OFF
Turn off Threshold
9
10
11
V
10.6
12
13.4
V
V6 = 1.6V
70
140
µA
V6 = 5.3V
200
300
µA
5.3
V
Programmable Turn-on Threshold
Pin 15 to VCC = 220K
Pin15 to GND = 33K
LOAD FEED FORWARD
ILFF
VI
Bias Current
Input Voltage Range
1.6
(*) Maximum package power dissipation limits must be observed.
5/17
L4981A - L4981B
ELECTRICAL CHARACTERISTICS (continued)
Symbol
Prameter
Test Condition
Min.
Typ.
Max.
Unit
VVA-OUT = 4V, VRMS = 2V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 50µA, COSC = 0V
20
35
52
µA
VVA-OUT = 4V, VRMS = 2V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 200µA, COSC = 0V
100
135
170
µA
VVA-OUT = 2V, VRMS = 2V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 100µA, COSC = 0V
10
20
30
µA
VVA-OUT = 2V, VRMS = 4V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 100µA, COSC = 0V
2
5.5
11
µA
VVA-OUT = 4V, VRMS = 4V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 100µA, COSC = 0V
10
22
34
µA
VVA-OUT = 4V, VRMS = 2V,
VMULTOUT = 0, VLFF = 2.5V
COSC = 0V, IAC = 200µA
20
37
54
µA
VVA-OUT = 4V, VRMS = 4V
VMULTOUT = 0, VLFF = 5.1V
IAC = 200µA, COSC = 0V
20
39
54
µA
VVA-OUT = 2V, VRMS = 4V,
VMULTOUT = 0, VLFF = 5.1V
IAC = 0, COSC = 0V
-2
0
2
µA
MULTIPLIER SECTION
Multipler Output Current
K
Multiplier Gain
IMULT−OUT = K ⋅ IAC
if VLFF = VREF;
0.37
(VVA−OUT − 1.28) ⋅ (0.8 ⋅ VLFF − 1.28)
IMULT−OUT = IAC
(VVRMS)2
(VVA−OUT − 1.28)
2
(VVRMS)
⋅ K1
where: K1 = 1V
Figure 1: MULTI-OUT vs. IAC (VRMS = 1.7V;
VLFFD = 5.1V)
6/17
Figure 2: MULTI-OUT vs. IAC (VRMS = 2.2V;
VLFFD = 5.1V)
L4981A - L4981B
Figure 3: MULTI-OUT vs. IAC (VRMS = 4.4V;
VLFFD = 5.1V)
Figure 4: MULTI-OUT vs. IAC (VRMS = 5.3V;
VLFFD = 5.1V)
Figure 5: MULTI-OUT vs. IAC (VRMS = 1.7V;
VLFFD = 2.5V)
Figure 6: MULTI-OUT vs. IAC (VRMS = 2.2V;
VLFFD = 2.5V)
Figure 7: MULTI-OUT vs. IAC (VRMS = 4.4V;
VLFFD = 2.5V)
Figure 8: MULTI-OUT vs. IAC (VRMS = 5.3V;
VLFFD = 2.5V)
7/17
L4981A - L4981B
Figure 9A: L4981A Power Factor Corrector (200W)
T
C7
R14
FUSE
BRIDGE
C12
R15
D4
D3
C5
R7
C8
+
Vo=400V
D1
R6
R1
R9
C9
R8
R12
Vi
7
4
19
1
13
85VAC-265VAC
14
3
15
C1
L4981A
16
2
20
8
5
9
18
10
17
R13
R11
R3
MOS
6
12 11
D5
R21
R5
C2
C11
D2
R17
R2
R10
C3
R4
C4
R16
C6
C10
RS
D93IN029B
PART LIST
RS
0.07(3 x .22)
1/2W
5%
C1
470nF
400V
R1
820kΩ
1/4W
1%
C2
100µF
450V
R2
10kΩ
1/4W
1%
C3
2.2nF
R3
1.8kΩ
1/4W
5%
C4
1nF
R4
1.8kΩ
1/4W
5%
C5
100µF
R5
18kΩ
1/4W
5%
C6
1µF
16V
R6
1.2MΩ
1/4W
5%
C7
220nF
63V
R7
360kΩ
1/4W
5%
C8
220nF
63V
R8
33kΩ
1/4W
5%
C9
330nF
R9
1.8MΩ
1/4W
1%
C10
1µF
16V
R10
21kΩ
1/4W
1%
C11
270pF
400V
R11
402Ω
1/4W
1%
C12
8.2nF
100V
R12
120kΩ
1/4W
5%
D1
STTA506D
R13
27Ω
1/4W
5%
D2, D3
1N4148
R14
1MΩ
1/4W
1%
D4
18V
R15
120kΩ
1/2W
5%
D5
BYT11-600
R16
30kΩ
1/4W
5%
MOS
STH/STW15NA50
R17
1.8kΩ
4W
1%
R21
5.1kΩ
1/4W
1%
FUSE = 4A/250V
BRIDGE = 4 x P600M
T= primary: 88 turns of 12 x 32 AWG (0.2mm)
secondary: 9 turns of # 27AWG (0.15mm)
core: B1ET3411A THOMSON - CSF
gap: 1,6mm for a total primary inductance of
0.9mH
8/17
fSW = 80kHz PO = 200W
VOUT = 400V Irms max = 2.53A
VOVP = 442V IPK max = 6.2A
25V
1/2W
L4981A - L4981B
Figure 9B: L4981B Power Factor Corrector (200W)
T
R22
+
Vo=400V
D1
R6
C7
R14
C12
R15
D4
D3
C5
R1
R7
C8
FUSE
BRIDGE
R9
C9
R8
R12
Vi
7
4
19
1
13
14
85VAC-265VAC
3
C1
C2
C11
D2
15
L4981B
16
20
R13
MOS
6
2
8
5
9
18
10
17
12 11
D5
R21
R5
R11
R3
R17
R2
R10
C3
R4
C4
R16
C6
C10
RS
D95IN220
PART LIST
RS
R1
0.07(3 x .22)
1/2W
5%
C1
470nF
400V
820kΩ
1/4W
1%
C2
100µF
450V
R2
10kΩ
1.8kΩ
1/4W
1/4W
1%
5%
C3
2.2nF
R3
C4
1.1nF
R4
R5
1.8kΩ
18kΩ
1/4W
1/4W
5%
5%
C5
100µF
C6
1µF
16V
R6
R7
1.2MΩ
1/4W
5%
C7
220nF
63V
360kΩ
1/4W
5%
C8
220nF
63V
R8
1/4W
1/4W
1/4W
5%
1%
1%
C9
330nF
R9
R10
33kΩ
1.8MΩ
21kΩ
C10
1µF
16V
C11
270pF
400V
R11
R12
402Ω
1/4W
1%
C12
8.2nF
100V
120kΩ
1/4W
5%
D1
STTA506D
27Ω
1MΩ
1/4W
1/4W
5%
1%
D2, D3
1N4148
R14
D4
18V
R15
R16
120kΩ
24kΩ
1/2W
1/4W
5%
5%
R17
R21
1.8kΩ
4W
1%
5.1kΩ
1/4W
1%
R13
R22
1.1MΩ
1/4W
BRIDGE = 4 x P600M
D5
BYT11-600
MOS
STH/STW15NA50
25V
1/2W
FUSE = 4A/250V
1%
T= primary: 88 turns of 12 x 32 AWG (0.2mm)
secondary: 9 turns of # 27AWG (0.15mm)
core: B1ET3411A THOMSON - CSF
gap: 1,6mm for a total primary inductance of
0.9mH
fSW = 80 to 92kHz PO = 200W
VOUT = 400V Irms max = 2.53A
VOVP = 442V IPK max = 6.2A
9/17
L4981A - L4981B
Figure 10: Reference Voltage vs. Source Reference Current
Figure 11: Reference Voltage vs. Supply Voltage
Figure 12: Reference Voltage vs. Junction Temperature
Figure 13: Switching Frequency vs. Junction
Temperature
Figure 14: Gate Driver Rise and Fall Time
Figure 15: Operating Supply Current vs. Supply
Voltage
10/17
L4981A - L4981B
Figure 16: Programmable Under Voltage Lockout Thresholds
Figure 17: Modulation Frequency Normalized in
an Half Cycle of the Mains Voltage
1
fsw
Vl
1
0.8
0.8
0.4
0.4
0.2
0.2
R22 = R23 ⋅ 6.8
0
45
0
R23 (Kohm)
90
0
135
180
Electrical degrees
Table 1: Programmable Under Voltage Lockout Thresholds.
VCC ON
VCC OFF
R22
R23
11V
10V
82kΩ
12kΩ
12V
10.1V
220kΩ
33kΩ
13V
10.5V
430kΩ
62kΩ
14V
10.8V
909kΩ
133kΩ
14.5V
10.9V
1.36MΩ
200kΩ
15V
11V
2.7MΩ
390kΩ
Figure 18: Oscillator Diagram
11/17
L4981A - L4981B
Figure 19: 200W Evaluation Board Circuit.
T= primary: 75 turns of litz wire 20 x 32 AWG (0.2mm)
secondary: 8 turns of # 27AWG (0.15mm)
core: B1ET3411A THOMSON - CSF
gap: 1.4mm for a total primary inductance of 0.7mH
fsw = 100kHz; VO = 400V; PO = 200W
NOTE:
Start Up Circuit
Usually the VCC capacitor (C11 in fig. 19) can be charged by a resistor
drawing current from the rectified mains. In the evaluation board
instead the start up circuit composed by (Q2+R19+R15+Dz) has
been designed to perform a fast and effective supply in all the
conditions. Once that the L4981A/B has started, the reference
12/17
voltage available at pin 6 by R20 and Q3, ensures Q2 to be turned
off.
Programmable Under voltage Lockout
The PCB allows to insert a couple of resistor (R22, R23) to modify
the threshold input voltage. Please refer to fig. 16 and table1.
L4981A - L4981B
Figure 20: P.C. Board and Component Layout of Evaluation Board Circuit (1:1 scale).
13/17
L4981A - L4981B
a NTC resistor can be used.
The PFC demoboard performances has been
evaluated testing the following parameters:
PF (power factor), A-THD (percentage of current
total harmonic distortion), H3..H9 (percentage of
current’s nth harmonic amplitude), ∆Vo (output
voltage ripple), Vo (output voltage), η (efficiency).
The test configuration, equipments and results
are:
The evaluation board has been designed using: a
faster not dissipative start-up circuit, a diode (D2)
to speed-up the MOS start-off time and (even if a
single resistor can be used) an external divider to
improve the precision of the overcurrent threshold.
Further there is a possibility to change the input
threshold voltage using an external divider (R23
and R22) and if an inrush current problem arises
AC POWER
SOURCE
LARCET /3KW
PM1200
AC POWER
ANALYSER
PFC
L4981
DEMO
EMI
FILTER
LOAD
D94IN057
A-THD
H3
H5
H7
H9
VO
∆VO
PO
η
(%)
(%)
(%)
(%)
(%)
(V)
(V)
(W)
(%)
0.999
2.94
1.98
0.61
0.55
0.70
390
8
200
90.2
220
0.999
1.79
1.40
0.40
0.31
0.28
392
8
201
91.6
60
218
0.999
1.71
1.16
0.40
0.35
0.31
394
8
202
92.8
50
217
0.999
1.88
1.52
0.65
0.40
0.34
396
8
203
93.8
220
50
217
0.997
2.25
1.68
0.83
0.57
0.48
398
8
204
94.2
260
50
216
0.995
3.30
1.84
1.30
0.39
0.73
400
8
205
95.2
Vi
f
Pi
(Vrms)
(Hz)
(W)
88
60
222
110
60
132
180
PF
EMI/RFI FILTER
The harmonic content measurement has been
done using an EMI/RFI filter interposed between
T1
LINE
the AC source and the demoboard under test,
while the efficiency has been calculated without
the filter contribution.
T2
C1
PFC
C
EARTH
D94IN052
where:
T1 = 1mH
T2 = 27mH
14/17
C1 = 0.33µF, 630V
C2 = 2.2nF, 630V
L4981A - L4981B
SO20 PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
inch
TYP.
MAX.
MIN.
TYP.
MAX.
A
2.35
2.65
0.093
0.104
A1
0.1
0.3
0.004
0.012
B
0.33
0.51
0.013
0.020
C
0.23
0.32
0.009
0.013
D
12.6
13
0.496
0.512
E
7.4
7.6
0.291
0.299
e
1.27
0.050
H
10
10.65
0.394
0.419
h
0.25
0.75
0.010
0.030
L
0.4
1.27
0.016
0.050
K
0 (min.)8 (max.)
L
h x 45°
A
B
e
A1
K
C
H
D
20
11
E
1
10
SO20MEC
15/17
L4981A - L4981B
DIP20 PACKAGE MECHANICAL DATA
mm
DIM.
MIN.
a1
0.254
B
1.39
TYP.
MAX.
MIN.
TYP.
MAX.
0.010
1.65
0.055
0.065
b
0.45
0.018
b1
0.25
0.010
D
25.4
1.000
E
8.5
0.335
e
2.54
0.100
e3
22.86
0.900
F
7.1
0.280
I
3.93
0.155
L
Z
16/17
inch
3.3
0.130
1.34
0.053
L4981A - L4981B
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1998 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
17/17