M48Z128 M48Z128Y, M48Z128V* 5.0V OR 3.3V, 1 Mbit (128 Kbit x 8) ZEROPOWER® SRAM FEATURES SUMMARY ■ INTEGRATED, ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT, and BATTERY ■ CONVENTIONAL SRAM OPERATION; UNLIMITED WRITE CYCLES ■ 10 YEARS OF DATA RETENTION IN THE ABSENCE OF POWER ■ BATTERY INTERNALLY ISOLATED UNTIL POWER IS FIRST APPLIED ■ AUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTION ■ ■ WRITE PROTECT VOLTAGES: (VPFD = Power-fail Deselect Voltage) – M48Z128: VCC = 4.75 to 5.5V 4.5V ≤ VPFD ≤ 4.75V – M48Z128Y: VCC = 4.5 to 5.5V 4.2V ≤ VPFD ≤ 4.5V – M48Z128V: VCC = 3.0 to 3.6V 2.8V ≤ VPFD ≤ 3.0V SOIC PACKAGE PROVIDES DIRECT CONNECTION FOR A SNAPHAT TOP WHICH CONTAINS THE BATTERY ■ SNAPHAT HOUSING (BATTERY) IS REPLACEABLE ■ PIN and FUNCTION COMPATIBLE WITH JEDEC STANDARD 128K x 8 SRAMs ■ EQUIVALENT SURFACE-MOUNT (SMT) SOLUTION REQUIRES A 28-PIN M40Z300/W and A STAND-ALONE 128K x8 LPSRAM (SNAPHAT® Top to be ordered separately) Figure 1. 32-pin PMDIP Module 32 1 PMDIP32 (PM) Module * Contact Local Sales Office October 2003 Rev. 3.4 1/21 M48Z128, M48Z128Y, M48Z128V* TABLE OF CONTENTS DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Logic Diagram (Figure 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Signal Names (Table 1.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 DIP Connections (Figure 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Block Diagram (Figure 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Hardware Hookup for Equivalent Surface-Mount (SMT) Solution (Figure 5.) . . . . . . . . . . . . . . . . . . 5 Equivalent Surface-Mount (SMT) Solution (Table 2.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Absolute Maximum Ratings (Table 3.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Operating and AC Measurement Conditions (Table 4.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 AC Measurement Load Circuit (Figure 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Capacitance (Table 5.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DC Characteristics (Table 6.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Operating Modes (Table 7.). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chip Enable or Output Enable Controlled, READ Mode AC Waveforms (Figure 7.). . . . . . . . . . . . . 9 Address Controlled, READ Mode AC Waveforms (Figure 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 READ Mode AC Characteristics (Table 8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 WRITE Enable Controlled, WRITE AC Waveforms (Figure 9.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chip Enable Controlled, WRITE AC Waveforms (Figure 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 WRITE Mode AC Characteristics (Table 9.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Down/Up Mode AC Waveforms (Figure 11.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Down/Up AC Characteristics (Table 10.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power Down/Up Trip Points DC Characteristics (Table 11.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Supply Voltage Protection (Figure 12.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 SNAPHAT Battery Table (Table 13.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2/21 M48Z128, M48Z128Y, M48Z128V* DESCRIPTION The M48Z128/Y/V ZEROPOWER® RAM is a 128 Kbit x 8 non-volatile static RAM organized as131,072 words by 8 bits. The device combines an internal lithium battery, a CMOS SRAM and a control circuit in a plastic, 32-pin DIP module. This solution is available in two special packages to provide a highly integrated battery backed-up memory solution. The M48Z128/Y/V is a non-volatile pin and function equivalent to any JEDEC standard 128K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed. The 32-pin, 600mil DIP Module houses the M48Z128/Y/V silicon with a long life lithium button cell in a single package. For surface-mount environments ST provides an equivalent SMT solution consisting of a 28-pin, 330mil SOIC NVRAM SUPERVISOR (M40Z300/ W) and a 32-pin, (TSOP, 8 x 20mm) 1Mb LPSRAM. Both 5V and 3V versions are available (see Table 2, page 5). The 28-pin, 330mil SOIC provides sockets with gold plated contacts at both ends for direct connection to a separate SNAPHAT® housing containing the battery. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface-mount process. Insertion of the SNAPHAT housing after reflow prevents potential battery damage due to the high temperatures required for device surfacemounting. The SNAPHAT housing is keyed to prevent reverse insertion. The SNAPHAT battery package is shipped separately in plastic anti-static tubes or in Tape & Reel form. The part number is “M4Zxx-BR00SH” (see Table 13, page 15). Figure 2. Logic Diagram Table 1. Signal Names A0-A16 VCC DQ0-DQ7 17 8 A0-A16 W DQ0-DQ7 M48Z128 M48Z128Y M48Z128V E G Address Inputs Data Inputs / Outputs E Chip Enable Input G Output Enable Input W WRITE Enable Input VCC Supply Voltage VSS Ground NC Not Connected Internally VSS AI01194 3/21 M48Z128, M48Z128Y, M48Z128V* Figure 3. DIP Connections NC A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS VCC A15 NC W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4 DQ3 32 1 31 2 30 3 29 4 28 5 27 6 26 7 8 M48Z128 25 M48Z128Y 24 9 M48Z128V 23 10 22 11 21 12 20 13 19 14 18 15 17 16 AI01195 Figure 4. Block Diagram VCC A0-A16 POWER E VOLTAGE SENSE AND SWITCHING CIRCUITRY 131,072 x 8 DQ0-DQ7 SRAM ARRAY E W G INTERNAL BATTERY VSS 4/21 AI01196 M48Z128, M48Z128Y, M48Z128V* Figure 5. Hardware Hookup for Equivalent Surface-Mount (SMT) Solution THS(1,2) VOUT VCC E2 SNAPHAT (3) BATTERY 1Mb LPSRAM M40Z300/W DQ0-DQ7 E1CON E E E2CON E3CON E4CON A0-A16 A RST B W BL VSS VSS AI03625 Note: For pin connections, see individual data sheet for M48Z300/300W at www.st.com. 1. Connect THS pin to VOUT if 4.2V ≤ VPFD ≤ 4.5V (M48Z128Y) or connect THS pin to VSS if 4.5V ≤ VPFD ≤ 4.75V (M48Z128). 2. Connect THS pin to VSS if 2.8V ≤ VPFD ≤ 3.0V (M48Z128V). 3. SNAPHAT® Top ordered separately. Table 2. Equivalent Surface-Mount (SMT) Solution NVRAM LPSRAM SUPERVISOR THS Pin(1) M48Z128 5V 1Mb LPSRAM M40Z300 VSS M48Z128Y 5V 1Mb LPSRAM M40Z300 VOUT M48Z128V 3V 1Mb LPSRAM M40Z300W VSS Note: 1. Connection of Threshold Select Pin (Pin 13) of SUPERVISOR (M40Z300/300W). 5/21 M48Z128, M48Z128Y, M48Z128V* MAXIMUM RATING Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 3. Absolute Maximum Ratings Symbol TA Parameter Ambient Operating Temperature Value Unit 0 to 70 °C TSTG Storage Temperature (VCC Off, Oscillator Off) –40 to 85 °C TBIAS Temperature Under Bias –10 to 70 °C 260 °C –0.3 to 7 V M48Z128/Y –0.3 to 7.0 V M48Z128V –0.3 to 4.6 V TSLD(1,2) Lead Solder Temperature for 10 seconds VIO Input or Output Voltages VCC Supply Voltage IO Output Current 20 mA PD Power Dissipation 1 W Note: 1. For DIP package: Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). 2. For SO package: Reflow at peak temperature of 215°C to 225°C for < 60 seconds (total thermal budget not to exceed 180°C for between 90 to 120 seconds). CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode. CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets. 6/21 M48Z128, M48Z128Y, M48Z128V* DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 4. Operating and AC Measurement Conditions Parameter M48Z128/Y M48Z128V Unit 4.75 to 5.5V or 4.5 to 5.5 3.0 to 3.6 V 0 to 70 0 to 70 °C Load Capacitance (CL) 100 50 pF Input Rise and Fall Times ≤5 ≤5 ns 0 to 3 0 to 3 V 1.5 1.5 V Supply Voltage (VCC) Ambient Operating Temperature (TA) Input Pulse Voltages Input and Output Timing Ref. Voltages Note: Output Hi-Z is defined as the point where data is no longer driven. Figure 6. AC Measurement Load Circuit 650Ω DEVICE UNDER TEST CL = 100pF or 50pF(1) CL includes JIG capacitance 1.75V AI03630 Note: 1. 50pF for M48Z128V (3.3V). Table 5. Capacitance Symbol CIN CIO(3) Parameter(1,2) Min Max Unit Input Capacitance 10 pF Input / Output Capacitance 10 pF Note: 1. Effective capacitance measured with power supply at 5V (M48Z128/Y) or 3.3V (M48Z128V); sampled only, not 100% tested. 2. At 25°C, f = 1MHz. 3. Outputs deselected. 7/21 M48Z128, M48Z128Y, M48Z128V* Table 6. DC Characteristics Sym Parameter (1) Test Condition M48Z128/Y M48Z128V –70 / –85 / –120 –85 / –120 Min ILI ILO(2) Input Leakage Current Output Leakage Current Max Min Unit Max 0V ≤ VIN ≤ VCC ±1 ±1 µA 0V ≤ VOUT ≤ VCC ±1 ±1 µA E = VIL Outputs open 105 50 mA E = VIH 7 4 mA E = VCC – 0.2V 4 3 mA ICC Supply Current ICC1 Supply Current (Standby) TTL ICC2 Supply Current (Standby) CMOS VIL Input Low Voltage –0.3 0.8 –0.3 0.6 V VIH Input High Voltage 2.2 VCC + 0.3 2.2 VCC + 0.3 V VOL Output Low Voltage IOL = 2.1mA 0.4 V VOH Output High Voltage IOH = –1mA 0.4 2.4 2.2 V Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V, 4.5 to 5.5V, or 3.0 to 3.6V (except where noted). 2. Outputs deselected. OPERATING MODES The M48Z128/Y/V also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single VCC supply for an out of tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low VCC. As VCC falls below the switchover voltage (VSO), the control circuitry connects the battery which maintains data until valid power returns. Table 7. Operating Modes Mode Deselect WRITE READ READ VCC 4.75 to 5.5V or 4.5 to 5.5V or 3.0 to 3.6V E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active VIL VIL VIH DOUT Active VIL VIH VIH High Z Active Deselect VSO to VPFD (min)(1) X X X High Z CMOS Standby Deselect ≤ VSO(1) X X X High Z Battery Back-up Mode Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. 1. See Table 11, page 14 for details. 8/21 M48Z128, M48Z128Y, M48Z128V* READ Mode The M48Z128/Y/V is in the READ Mode whenever W (WRITE Enable) is high and E (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 1,048,576 locations in the static storage array. Thus, the unique address specified by the 17 address inputs defines which one of the 131,072 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (tAVQV) after the last address input signal is stable, providing that the E and G (Output Enable) access times are also sat- isfied. If the E and G access times are not met, valid data will be available after the later of Chip Enable Access time (tELQV) or Output Enable Access Time (tGLQV). The state of the eight threestate Data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the address inputs are changed while E and G remain low, output data will remain valid for Output Data Hold time (tAXQX) but will go indeterminate until the next Address Access. Figure 7. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms tAVAV A0-A16 VALID tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DATA OUT DQ0-DQ7 AI01197 Note: WRITE Enable (W) = High. Figure 8. Address Controlled, READ Mode AC Waveforms tAVAV A0-A16 VALID tAVQV DQ0-DQ7 tAXQX DATA VALID AI01078 Note: Chip Enable (E) and Output Enable (G) = Low, WRITE Enable (W) = High. 9/21 M48Z128, M48Z128Y, M48Z128V* Table 8. READ Mode AC Characteristics Symbol M48Z128/Y M48Z128/Y/V M48Z128/Y/V –70 –85 –120 (1) Parameter Min Max Min Max Min Unit Max tAVAV READ Cycle Time tAVQV Address Valid to Output Valid 70 85 120 ns tELQV Chip Enable Low to Output Valid 70 85 120 ns tGLQV Output Enable Low to Output Valid 35 45 60 ns 70 85 120 ns tELQX(2) Chip Enable Low to Output Transition 5 5 5 ns tGLQX(2) Output Enable Low to Output Transition 3 3 3 ns tEHQZ(2) Chip Enable High to Output Hi-Z 30 35 45 ns tGHQZ(2) Output Enable High to Output Hi-Z 20 25 35 ns tAXQX Address Transition to Output Transition 5 5 10 ns Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V, 4.5 to 5.5V, or 3.0 to 3.6V (except where noted). 2. CL = 5pF. 10/21 M48Z128, M48Z128Y, M48Z128V* WRITE Mode The M48Z128/Y/V is in the WRITE Mode whenever W and E are active. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for minimum of tEHAX from E or tWHAX from W prior to the initiation of another READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for tWHDX or tEHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G, a low on W will disable the outputs tWLQZ after W falls. Figure 9. WRITE Enable Controlled, WRITE AC Waveforms tAVAV VALID A0-A16 tAVWH tAVEL tWHAX E tWLWH tAVWL W tWHQX tWLQZ tWHDX DQ0-DQ7 DATA INPUT tDVWH AI01198 Note: Output Enable (G) = High. Figure 10. Chip Enable Controlled, WRITE AC Waveforms tAVAV A0-A16 VALID tAVEH tAVEL tELEH tEHAX E tAVWL W tEHDX DQ0-DQ7 DATA INPUT tDVEH AI01199 Note: Output Enable (G) = High. 11/21 M48Z128, M48Z128Y, M48Z128V* Table 9. WRITE Mode AC Characteristics Symbol M48Z128/Y M48Z128/Y/V M48Z128/Y/V –70 –85 –120 (1) Parameter Min Max Min Max Min Unit Max tAVAV WRITE Cycle Time 70 85 120 ns tAVWL Address Valid to WRITE Enable Low 0 0 0 ns tAVEL Address Valid to Chip Enable Low 0 0 0 ns tWLWH WRITE Enable Pulse Width 55 65 85 ns tELEH Chip Enable Low to Chip Enable High 55 75 100 ns tWHAX WRITE Enable High to Address Transition 5 5 5 ns tEHAX Chip Enable High to Address Transition 15 15 15 ns tDVWH Input Valid to WRITE Enable High 30 35 45 ns tDVEH Input Valid to Chip Enable High 30 35 45 ns tWHDX WRITE Enable High to Input Transition 0 0 0 ns tEHDX Chip Enable High to Input Transition 10 10 10 ns tWLQZ(2,3) WRITE Enable Low to Output Hi-Z 25 30 40 ns tAVWH Address Valid to WRITE Enable High 65 75 100 ns tAVEH Address Valid to Chip Enable High 65 75 100 ns WRITE Enable High to Output Transition 5 5 5 ns tWHQX(2,3) Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V, 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. CL = 5pF. 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. 12/21 M48Z128, M48Z128Y, M48Z128V* Data Retention Mode With valid VCC applied, the M48Z128/Y/V operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself tWP after VCC falls below VPFD. All outputs become high impedance, and all inputs are treated as “Don't care.” If power fail detection occurs during a valid access, the memory cycle continues to completion. If the memory cycle fails to terminate within the time tWP, write protection takes place. When VCC drops below VSO, the control circuit switches power to the internal energy source which preserves data. The internal coin cell will maintain data in the M48Z128/Y/V after the initial application of VCC for an accumulated period of at least 10 years when VCC is less than VSO. As system power returns and VCC rises above VSO, the battery is disconnected, and the power supply is switched to external VCC. Write protection continues for tER after VCC reaches VPFD to allow for processor stabilization. After tER, normal RAM operation can resume. For more information on Battery Storage Life refer to the Application Note AN1012. Figure 11. Power Down/Up Mode AC Waveforms VCC VPFD (max) VPFD (min) VSO tF tR tDR tFB tRB tER tWP E DON'T CARE RECOGNIZED RECOGNIZED HIGH-Z OUTPUTS VALID VALID (PER CONTROL INPUT) (PER CONTROL INPUT) AI01031 Table 10. Power Down/Up AC Characteristics Parameter(1) Symbol tF(2) VPFD (max) to VPFD (min) VCC Fall Time tFB(3) VPFD (min) to VSS VCC Fall Time Min Max 300 M48Z128/Y 10 M48Z128V 150 Unit µs µs tR VPFD (min) to VPFD (max) VCC Rise Time 10 µs tRB VSS to VPFD (min) VCC Rise Time 1 µs tWP Write Protect Time tER E Recovery Time M48Z128/Y 40 150 M48Z128V 40 250 40 120 µs ms Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V, 4.5 to 5.5V, or 3.0 to 3.6V (except where noted). 2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min). 3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data. 13/21 M48Z128, M48Z128Y, M48Z128V* Table 11. Power Down/Up Trip Points DC Characteristics Symbol VPFD Parameter(1,2) Power-fail Deselect Voltage VSO Battery Back-up Switchover Voltage tDR(3) Expected Data Retention Time Min Typ Max Unit M48Z128 4.5 4.6 4.75 V M48Z128Y 4.2 4.3 4.5 V M48Z128V 2.8 2.9 3.0 V M48Z128/Y 3.0 V M48Z128V 2.5 V 10 YEARS Note: 1. All voltages referenced to VSS. 2. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.75 to 5.5V, 4.5 to 5.5V, or 3.0 to 3.6V (except where noted). 3. At 25°C; VCC = 0V. VCC Noise And Negative Going Transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (see Figure 12) is recommended in order to provide the needed filtering. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, ST recommends connecting a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). (Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface-mount). 14/21 Figure 12. Supply Voltage Protection VCC VCC 0.1µF DEVICE VSS AI02169 M48Z128, M48Z128Y, M48Z128V* PART NUMBERING Table 12. Ordering Information Scheme Example: M48Z 128Y –70 PM 1 Device Type M48Z Supply Voltage and Write Protect Voltage 128 = VCC = 4.75 to 5.5V; VPFD = 4.5 to 4.75V 128Y = VCC = 4.5 to 5.5V; VPFD = 4.2 to 4.5V 128V(1) = VCC = 3.0 to 3.6V; VPFD = 2.8 to 3.0V Speed –70 = 70ns (for M48Z128/Y) –85 = 85ns (for M48Z128/Y/V) –120 = 120ns (for M48Z128/Y/V) Package(2) PM = PMDIP32 Temperature Range 1 = 0 to 70°C Note: 1. Contact Local Sales Office 2. The SOIC package (SOH28) requires the battery package (SNAPHAT ®) which is ordered separately under the part number “M4Zxx-BR00SH” in plastic tube or “M4Zxx-BR00SHTR” in Tape & Reel form. Caution: Do not place the SNAPHAT battery package “M4Zxx-BR00SH” in conductive foam as it will drain the lithium button-cell battery. For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. Table 13. SNAPHAT Battery Table Part Number Description Package M4Z28-BR00SH Lithium Battery (48mAh) SNAPHAT SH M4Z32-BR00SH Lithium Battery (120mAh) SNAPHAT SH 15/21 M48Z128, M48Z128Y, M48Z128V* PACKAGE MECHANICAL INFORMATION Figure 13. PMDIP32 – 32-pin Plastic DIP Module, Package Outline A A1 B S L C eA e1 e3 D N E 1 PMDIP Note: Drawing is not to scale. Table 14. PMDIP32 – 32-pin Plastic DIP Module, Package Mechanical Data mm inches Symb Typ 16/21 Min Max A 9.27 A1 Typ Min Max 9.52 0.365 0.375 0.38 – 0.015 – B 0.43 0.59 0.017 0.023 C 0.20 0.33 0.008 0.013 D 42.42 43.18 1.670 1.700 E 18.03 18.80 0.710 0.740 e1 2.29 2.79 0.090 0.110 e3 34.29 41.91 1.350 1.650 eA 14.99 16.00 0.590 0.630 L 3.05 3.81 0.120 0.150 S 1.91 2.79 0.075 0.110 N 32 32 M48Z128, M48Z128Y, M48Z128V* Figure 14. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Outline A2 A C B eB e CP D N E H A1 α L 1 SOH-A Note: Drawing is not to scale. Table 15. SOH28 – 28-lead Plastic Small Outline, battery SNAPHAT, Package Mechanical Data mm inch Symbol Typ Min A Max Typ Min 3.05 Max 0.120 A1 0.05 0.36 0.002 0.014 A2 2.34 2.69 0.092 0.106 B 0.36 0.51 0.014 0.020 C 0.15 0.32 0.006 0.012 D 17.71 18.49 0.697 0.728 E 8.23 8.89 0.324 0.350 – – – – eB 3.20 3.61 0.126 0.142 H 11.51 12.70 0.453 0.500 L 0.41 1.27 0.016 0.050 α 0° 8° 0° 8° N 28 e CP 1.27 0.050 28 0.10 0.004 17/21 M48Z128, M48Z128Y, M48Z128V* Figure 15. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Outline A1 eA A2 A A3 B L eB D E SHZP-A Note: Drawing is not to scale. Table 16. SH – 4-pin SNAPHAT Housing for 48mAh Battery, Package Mechanical Data mm inches Symb Typ Min A Typ Min 9.78 Max 0.385 A1 6.73 7.24 0.265 0.285 A2 6.48 6.99 0.255 0.275 A3 18/21 Max 0.38 0.015 B 0.46 0.56 0.018 0.022 D 21.21 21.84 0.835 0.860 E 14.22 14.99 0.560 0.590 eA 15.55 15.95 0.612 0.628 eB 3.20 3.61 0.126 0.142 L 2.03 2.29 0.080 0.090 M48Z128, M48Z128Y, M48Z128V* Figure 16. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Outline A1 eA A2 A A3 B L eB D E SHZP-A Note: Drawing is not to scale. Table 17. SH – 4-pin SNAPHAT Housing for 120mAh Battery, Package Mechanical Data mm inches Symb Typ Min A Max Typ Min 10.54 Max 0.415 A1 8.00 8.51 0.315 0.335 A2 7.24 8.00 0.285 0.315 A3 0.38 0.015 B 0.46 0.56 0.018 0.022 D 21.21 21.84 0.835 0.860 E 17.27 18.03 0.680 0.710 eA 15.55 15.95 0.612 0.628 eB 3.20 3.61 0.126 0.142 L 2.03 2.29 0.080 0.090 19/21 M48Z128, M48Z128Y, M48Z128V* REVISION HISTORY Table 18. Revision History Date Rev. # May 1999 1.0 First Issue 13-Apr-00 2.0 Document Layout changed; surface-Mount Chip Set solution added 20-Jun-00 2.1 tGLQX changed (Table 8) 19-Jul-00 2.2 M48Z128V added 14-Sep-01 3.0 Reformatted; added temperature information (Table 5, 6, 8, 9, 10, 11) 07-Nov-01 3.1 Remove chipset option from Ordering Information (Table 12) 20-May-02 3.2 Modify reflow time and temperature footnotes (Table 3) 18-Nov-02 3.3 Modifying SMT solution text (Figure 2, 5; Table 2) 17-Sep-03 3.4 Remove references to M68ZXXX (obsolete) parts (Figure 5; Table 2); update disclaimer 20/21 Revision Details M48Z128, M48Z128Y, M48Z128V* Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2003 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 21/21