M48Z32V 3.3V, 256 Kbit (32 Kbit x8) ZEROPOWER® SRAM FEATURES SUMMARY ■ ■ ■ ■ ■ INTEGRATED, ULTRA LOW POWER SRAM, AND POWER-FAIL CONTROL CIRCUIT READ CYCLE TIME EQUALS WRITE CYCLE TIME AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION WRITE PROTECT VOLTAGES: (VPFD = Power-fail Deselect Voltage) – M48Z32V: 2.7V ≤ VPFD ≤ 3.0V ULTRA-LOW STANDBY CURRENT Figure 2. Package 44 1 SOH44 (MT) 44-pin, Hatless SOIC Figure 1. Logic Diagram VCC B+ 15 Table 1. Signal Names A0-A14 8 A0-A14 DQ0-DQ7 DQ0-DQ7 Address Inputs Data Inputs / Outputs E Chip Enable Input G Output Enable Input E W WRITE Enable Input G VCC Supply Voltage VSS Ground B+ Positive Battery Pin NC Not Connected W M48Z32V VSS March 2004 AI04787 1/16 M48Z32V TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 3. SOIC Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 OPERATING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 5. READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure 8. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 9. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 10.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 11.SOH44 – 44-lead Plastic, Hatless, Small Package Outline. . . . . . . . . . . . . . . . . . . . . . . 13 Table 11. SOH44 – 44-lead Plastic, Hatless, Small Package Mechanical Data . . . . . . . . . . . . . . . 13 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 13. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/16 M48Z32V SUMMARY DESCRIPTION The M48Z32V ZEROPOWER® RAM is a 32 Kbit x 8, non-volatile static RAM that integrates powerfail deselect circuitry and battery control logic on a single die. The 44-pin, 330mil SOIC provides a battery pin for an external, user-supplied battery. This is all that is required to fully non-volatize the SRAM. Figure 3. SOIC Connections A14 A12 A7 A6 A5 A4 NF NC NC NC NC NC NC NC A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS 44 1 2 43 3 42 4 41 5 40 6 39 7 38 8 37 9 36 10 35 11 34 M48Z32V 12 33 13 32 14 31 15 30 16 29 17 28 27 18 19 26 20 25 21 24 22 23 VCC W A13 A8 A9 A11 G NC NC NC NC NC NC NC A10 CE DQ7 DQ6 DQ5 DQ4 DQ3 B+ AI04786 Note: NF, Pin 7 must be tied to VSS. 3/16 M48Z32V Figure 4. Block Diagram A0-A14 LITHIUM CELL POWER VOLTAGE SENSE AND SWITCHING CIRCUITRY 32K x 8 SRAM ARRAY DQ0-DQ7 E VPFD W G USER SUPPLIED VSS VCC AI04788 OPERATING MODES The M48Z32V also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single power supply for an out of tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low VCC. As VCC falls below approximately VSO, the control circuitry connects the battery which maintains data until valid power returns. Table 2. Operating Modes Mode VCC E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active READ VIL VIL VIH DOUT Active READ VIL VIH VIH High Z Active Deselect WRITE 3.0 to 3.6V Deselect VSO to VPFD (min)(1) X X X High Z CMOS Standby Deselect ≤ VSO(1) X X X High Z Battery Back-up Mode Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. Note: 1. See Table 10., page 12 for details. 4/16 M48Z32V READ Mode The M48Z32V is in the READ Mode whenever W (WRITE Enable) is high, E (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 262,144 locations in the static storage array. Thus, the unique address specified by the 15 Address Inputs defines which one of the 32,768 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (tAVQV) after the last address input signal is stable, providing that the E and G access times are also satisfied. If the E and G access times are not met, valid data will be available after the latter of the Chip Enable Access time (tELQV) or Output Enable Access time (tGLQV). The state of the eight three-state Data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the Address Inputs are changed while E and G remain active, output data will remain valid for Output Data Hold time (tAXQX) but will go indeterminate until the next Address Access. Figure 5. READ Mode AC Waveforms tAVAV A0-A14 VALID tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ7 VALID AI00925 Note: WRITE Enable (W) = High. Table 3. READ Mode AC Characteristics M48Z32V (1) Symbol –35 Parameter Min Unit Max tAVAV READ Cycle Time tAVQV Address Valid to Output Valid 35 ns tELQV Chip Enable Low to Output Valid 35 ns tGLQV Output Enable Low to Output Valid 15 ns 35 ns tELQX(2) Chip Enable Low to Output Transition 5 ns tGLQX(2) Output Enable Low to Output Transition 0 ns tEHQZ(2) Chip Enable High to Output Hi-Z 13 ns tGHQZ(2) Output Enable High to Output Hi-Z 13 ns 0 ns tAXQX Address Transition to Output Transition 5 Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 3.0 to 3.6V (except where noted). 2. CL = 5pF (see Figure 9., page 10). 5/16 M48Z32V WRITE Mode The M48Z32V is in the WRITE Mode whenever W and E are low. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tEHAX from Chip Enable or tWHAX from WRITE Enable prior to the initiation of another READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for tWHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G, a low on W will disable the outputs tWLQZ after W falls. Figure 6. WRITE Enable Controlled, WRITE Mode AC Waveforms tAVAV A0-A14 VALID tAVWH tWHAX E tWLWH tAVWL W tWHQX tWLQZ tWHDX DQ0-DQ7 DATA INPUT tDVWH AI05662 Figure 7. Chip Enable Controlled, WRITE Mode AC Waveforms tAVAV VALID A0-A14 tAVEH tAVEL tELEH tEHAX E tAVWL W tEHDX DQ0-DQ7 DATA INPUT tDVEH AI00927 6/16 M48Z32V Table 4. WRITE Mode AC Characteristics M48Z32V (1) Symbol –35 Parameter Min Unit Max tAVAV WRITE Cycle Time 35 ns tAVWL Address Valid to WRITE Enable Low 0 ns tAVEL Address Valid to Chip Enable Low 0 ns tWLWH WRITE Enable Pulse Width 25 ns tELEH Chip Enable Low to Chip Enable High 25 ns tWHAX WRITE Enable High to Address Transition 0 ns tEHAX Chip Enable High to Address Transition 0 ns tDVWH Input Valid to WRITE Enable High 12 ns tDVEH Input Valid to Chip Enable High 12 ns tWHDX WRITE Enable High to Input Transition 0 ns tEHDX Chip Enable High to Input Transition 0 ns tWLQZ (2,3) WRITE Enable Low to Output Hi-Z 13 ns tAVWH Address Valid to WRITE Enable High 25 ns tAVEH Address Valid to Chip Enable High 25 ns WRITE Enable High to Output Transition 5 ns tWHQX(2,3) Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 3.0 to 3.6V (except where noted). 2. CL = 5pF (see Figure 9., page 10). 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. 7/16 M48Z32V Data Retention Mode With valid VCC applied, the M48Z32V operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when VCC falls within the VPFD (max), VPFD (min) window. All outputs become high impedance, and all inputs are treated as “Don't care.” Note: A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below VPFD(min), the user can be assured the memory will be in a write protected state, provided the VCC fall time is not less than tF. The M48Z32V may respond to transient noise spikes on VCC that reach into the deselect window during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended. When VCC drops below VSO , the control circuit switches power to the external battery which preserves data. As system power returns and VCC rises above VSO, the battery is disconnected, and the power supply is switched to external VCC. Write protection continues until VCC reaches VPFD(min) plus tREC(min). Normal RAM operation can resume tREC after VCC exceeds VPFD(max). For more information on Battery Storage Life refer to the Application Note AN1012. VCC Noise And Negative Going Transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (see Figure 8) is recommended in order to provide the needed filtering. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, ST recommends connecting a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). (Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount). Figure 8. Supply Voltage Protection VCC VCC 0.1µF DEVICE VSS AI02169 8/16 M48Z32V MAXIMUM RATING Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Absolute Maximum Ratings Symbol TA TSTG TSLD(1,2) Parameter Value Unit Grade 1 0 to 70 °C Grade 6 –40 to 85 °C SOIC –55 to 125 °C 260 °C –0.3 to VCC + 0.3 V Ambient Operating Temperature Storage Temperature (VCC Off, Oscillator Off) Lead Solder Temperature for 10 seconds VIO Input or Output Voltages VCC Supply Voltage –0.3 to 4.6 V IO Output Current 20 mA PD Power Dissipation 1 W Note: 1. For standard (SnPb) lead finish: Reflow at peak temperature of 225°C (total thermal budget not to exceed 180°C for between 90 to 150 seconds). 2. For Lead-free (Pb-free) lead finish: Reflow at peak temperature of 260°C (total thermal budget not to exceed 245°C for greater than 30 seconds). CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode. 9/16 M48Z32V DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 6. Operating and AC Measurement Conditions Parameter(1) M48Z32V Unit 3.0 to 3.6 V Grade 1 0 to 70 °C Grade 6 –40 to 85 °C Load Capacitance (CL) 50 pF Input Rise and Fall Times ≤5 ns 0 to 3 V 1.5 V Supply Voltage (VCC) Ambient Operating Temperature (TA) Input Pulse Voltages Input and Output Timing Ref. Voltages Note: 1. Output Hi-Z is defined as the point where data is no longer driven. Figure 9. AC Measurement Load Circuit 645Ω DEVICE UNDER TEST CL = 50pF or 5pF CL includes JIG capacitance 1.75V AI04789 Table 7. Capacitance Symbol CIN CIO(3) Parameter(1,2) Min Max Unit Input Capacitance 10 pF Input / Output Capacitance 10 pF Note: 1. Effective capacitance measured with power supply at 3.3V; sampled only, not 100% tested. 2. At 25°C, f = 1MHz. 3. Outputs deselected. 10/16 M48Z32V Table 8. DC Characteristics Sym ILI Parameter Input Leakage Current Test Condition(1) Min Typ Max Unit 0V ≤ VIN ≤ VCC ±1 µA 0V ≤ VOUT ≤ VCC ±1 µA 1.2 µA ILO(2) Output Leakage Current IBAT Battery Current TA = 40°C; VCC = 0V VBAT = 3V ICC1 Supply Current IO = 0mA; Cycle Time = Min E = 0.2V, other input = VCC – 2V or 0.2V 45 mA ICC2 Supply Current (TTL Standby) E = VIH 800 µA ICC3 Supply Current (CMOS Standby) E = VCC – 0.2V 500 µA VIL(3) Input Low Voltage –0.3 0.8 V VIH Input High Voltage 2.2 VCC + 0.3 V VOL Output Low Voltage IOL = 2.1mA 0.4 V VOH Output High Voltage IOH = –1mA 0.2 0.8VCC V Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 3.0 to 3.6V (except where noted). 2. Outputs deselected. 3. Negative spikes of –1V allowed for up to 10ns once per cycle. 11/16 M48Z32V Figure 10. Power Down/Up Mode AC Waveforms VCC VPFD (max) VPFD (min) VSO tF tR tFB tDR tPD INPUTS tRB RECOGNIZED tREC DON'T CARE RECOGNIZED HIGH-Z OUTPUTS VALID VALID (PER CONTROL INPUT) (PER CONTROL INPUT) AI01168C Table 9. Power Down/Up AC Characteristics Symbol Parameter(1) tPD E or W at VIH before Power Down tF(2) VPFD (max) to VPFD (min) VCC Fall Time tFB(3) Min Max Unit 0 µs 300 µs VPFD (min) to VSS VCC Fall Time 10 µs tR VPFD (min) to VPFD (max) VCC Rise Time 10 µs tRB VSS to VPFD (min) VCC Rise Time 1 µs tREC(4) VPFD (max) to Inputs Recognized 40 200 ms Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 3.0 to 3.6V (except where noted). 2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min). 3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data. 4. tREC (min) = 20ms for industrial temperature Grade (6) device. Table 10. Power Down/Up Trip Points DC Characteristics Symbol Parameter(1,2) VPFD Power-fail Deselect Voltage VSO Battery Back-up Switchover Voltage Min Typ Max Unit 2.7 2.85 3.0 V VPFD – 100mV Note: 1. All voltages referenced to VSS. 2. Valid for Ambient Operating Temperature: TA = 0 to 70°C or –40 to 85°C; VCC = 3.0 to 3.6V (except where noted). 12/16 V M48Z32V PACKAGE MECHANICAL INFORMATION Figure 11. SOH44 – 44-lead Plastic, Hatless, Small Package Outline A2 A C B e CP D N E H A1 α L 1 SOH-C Note: Drawing is not to scale. Table 11. SOH44 – 44-lead Plastic, Hatless, Small Package Mechanical Data mm inch Symbol Typ Min A Max Typ Min 3.05 Max 0.120 A1 0.05 0.36 0.002 0.014 A2 2.34 2.69 0.092 0.106 B 0.36 0.46 0.014 0.018 C 0.15 0.32 0.006 0.012 D 17.71 18.49 0.697 0.728 E 8.23 8.89 0.324 0.350 – – – – H 11.51 12.70 0.453 0.500 L 0.41 1.27 0.016 0.050 α 0° 8° 0° 8° N 44 e CP 0.81 0.032 44 0.10 0.004 13/16 M48Z32V PART NUMBERING Table 12. Ordering Information Scheme Example: M48Z 32V –35 MT 1 F Device Type M48Z Supply Voltage and Write Protect Voltage 32V = VCC = 3.0 to 3.6V; VPFD = 2.7 to 3.0V Speed –35 = 35ns Package MT = 44-lead, Hatless SOIC Temperature Range 1 = 0 to 70°C 6 = –40 to 85°C Shipping Method blank = Tubes (Not for New Design - Use E) E = Lead-free Package (ECO PACK®), Tubes F = Lead-free Package (ECO PACK®), Tape & Reel TR = Tape & Reel (Not for New Design - Use F) For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you. 14/16 M48Z32V REVISION HISTORY Table 13. Revision History Date Rev. # Revision Details October 2002 1.0 First Issue 07-Nov-02 1.1 Update Absolute Maximum Ratings, DC Characteristics (Table 5, 8) 22-Mar-04 2.0 Reformatted; updated Lead-free information (Table 5, 12) 15/16 M48Z32V Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 16/16