VISHAY TLMW3100

TLMW310.
VISHAY
Vishay Semiconductors
High Intensity SMD LED
Description
This device has been designed to meet the increasing
demand for white SMD LED.
The package of the TLMW310. is the PLCC-2 (equivalent to a size B tantalum capacitor).
It consists of a lead frame which is embedded in a
white thermoplast. The reflector inside this package is
filled with a mixture of epoxy and TAG phosphor.
The TAG phosphor converts the blue emission partially to yellow, which mixes with the remaining blue to
give white.
e3 Pb
19225
Pb-free
Features
Applications
• High efficient InGaN technology
• Chromaticity Coordinate categorized according to
CIE1931 per packing unit
• Luminous intensity ratio in one packing unit
IVmax/IVmin ≤ 1.6
• Typical color temperature 5500 K
• ESD class 1
• EIA and ICE standard package
• Compatible with infrared, vapor phase and wave
solder processes according to CECC
• Available in 8 mm tape reel
• Lead-free device
Automotive: Backlighting in dashboards and switches
Telecommunication: Indicator and backlighting in
telephone and fax
Backlighting for audio and video equipment
Backlighting in office equipment
Indoor and outdoor message boards
Flat backlight for LCDs, switches and symbols
Illumination purposes, alternative to incandescent
lamps
General use
Parts Table
Part
Color, Luminous Intensity
Angle of Half Intensity (±ϕ)
Technology
TLMW3100
White, IV > 80 mcd
60 °
InGaN / TAG on SiC
TLMW3101
White, IV = (80 to 200) mcd
60 °
InGaN / TAG on SiC
TLMW3102
White, IV = (125 to 320) mcd
60 °
InGaN / TAG on SiC
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLMW310.
Parameter
Test condition
Reverse voltage
DC Forward current
Tamb ≤ 70 °C
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 70 °C
Junction temperature
Operating temperature range
Document Number 83143
Rev. 1.7, 31-Aug-04
Symbol
Value
VR
5
Unit
V
IF
20
mA
IFSM
0.1
A
PV
85
mW
Tj
100
°C
Tamb
- 40 to + 100
°C
www.vishay.com
1
TLMW310.
VISHAY
Vishay Semiconductors
Parameter
Test condition
Symbol
Value
Tstg
- 40 to + 100
°C
Tsd
260
°C
RthJA
350
K/W
Storage temperature range
Soldering temperature
t≤5s
Thermal resistance junction/
ambient
mounted on PC board
Unit
(pad size > 16 mm2)
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
White
TLMW310.
Parameter
Luminous intensity 1)
Test condition
IF = 20 mA
Part
Symbol
Min
Typ.
TLMW3100
IV
80
140
TLMW3101
IV
80
125
TLMW3102
IV
Chromaticity coordinate x acc.
to CIE 1931
IF = 20 mA
TLMW3100
x
0.33
Chromaticity coordinate y acc.
to CIE 1931
IF = 20 mA
TLMW3100
y
0.33
Angle of half intensity
IF = 20 mA
ϕ
± 60
Forward voltage
IF = 20 mA
VF
3.5
Max
Unit
mcd
200
mcd
320
mcd
deg
4.2
V
Reverse voltage
IR = 10 µA
VR
Temperature coefficient of VF
IF = 20 mA
TCVF
-4
mV/K
Temperature coefficient of IV
IF = 20 mA
TCIV
- 0.5
%/K
1)
5
V
in one Packing Unit IVmax/IVmin ≤ 1.6
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
PV - Power Dissipation ( mW )
90
25
IF - Forward Current ( mA )
80
70
60
50
40
30
20
20
15
10
5
10
0
0
0 10 20
16191
30 40 50 60 70 80 90 100
T amb - Ambient Temperature ( ° C )
Figure 1. Power Dissipation vs. Ambient Temperature
www.vishay.com
2
16192
0 10 20
30 40 50 60 70 80 90 100
T amb - Ambient Temperature ( ° C )
Figure 2. Forward Current vs. Ambient Temperature for AlInGaP
Document Number 83143
Rev. 1.7, 31-Aug-04
TLMW310.
VISHAY
Vishay Semiconductors
MTTF, confidence level 60%
failure criteria IV/IV0 = 50%
25
Iı
IIı
5000h
100
10000h
I V rel - Relative Luminous Intensity
I F - Forward Current ( mA )
30
20
15
I
II
10
5
0
0
80
70
60
50
40
30
20
10
0
400 450 500 550 600 650 700 750 800
10 20 30 40 50 60 70 80 90 100
Tamb - Ambient Temperature ( °C )
16193
90
λ - Wavelength ( nm )
16196
Figure 6. Relative Intensity vs. Wavelength
Figure 3. Forward Current vs. Ambient Temperature for AlInGaP
I Vrel - Relative Luminous Intensity
I Vrel - Relative Luminous Intensity
10
1
0.1
0.01
1
10
100
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
I F - Forward Current ( mA )
16194
0 10 20
Tamb - Ambient Temperature ( ° C )
16197
Figure 4. Relative Luminous Intensity vs. Forward Current
30 40 50 60 70 80 90 100
Figure 7. Rel. Luminous Intensity vs. Ambient Temperature
10
1
2.0
16195
2.5
3.0
3.5
4.0
4.5
5.0
f - Chromaticity coordinate shift (x,y)
I F - Forward Current ( mA )
100
0.345
White
0.340
0.330
Y
0.325
0.320
0.315
V F - Forward Voltage ( V )
16198
Figure 5. Forward Current vs. Forward Voltage
Document Number 83143
Rev. 1.7, 31-Aug-04
X
0.335
0
10
20
30
40
50
60
I F - Forward Current ( mA )
Figure 8. Chromaticity Coordinate Shift vs. Forward Current
www.vishay.com
3
TLMW310.
VISHAY
Vishay Semiconductors
3.95
I F - Forward Voltage ( V )
3.90
3.85
3.80
3.75
3.70
3.65
3.60
3.55
3.50
3.45
0 10 20
30 40 50 60 70 80 90 100
T amb - Ambient Temperature ( ° C )
16199
Figure 9. Forward Voltage vs. Ambient Temperature
I V re l - Relative Luminous Intensity
0°
10°
20°
30°
40°
1.0
0.9
50°
0.8
60°
70°
0.7
80°
0.6
0.4
0.2
0
0.2
0.4
0.6
95 10319
Figure 10. Rel. Luminous Intensity vs. Angular Displacement
Coordinates of Colorgroups
0.50
e
0.45
D65
d
c
0.40
b
.
A
5
.
0.35
a
0.30
3
4
0.25
0.20
0.20
f
0.25
0.30
0.35
a=
b=
c=
d=
e=
f=
0.40
20000K
10000K
7000K
6000K
5000K
4000K
0.45
0.50
Coordinates of Colorgroups
16284
Figure 11. Coordinates of Colorgroups
www.vishay.com
4
Document Number 83143
Rev. 1.7, 31-Aug-04
TLMW310.
VISHAY
Vishay Semiconductors
Package Dimensions in mm
3.5 ± 0.2
0.85
+ 0.10
1.65- 0.05
technical drawings
according to DIN
specifications
Mounting Pad Layout
Pin identification
area covered with
solder resist
4
2.6 (2.8)
A
2.2
C
2.8
+ 0.15
1.2
4
1.6 (1.9)
∅ 2.4
3
+ 0.15
Dimensions: IR and Vaporphase
(Wave Soldering)
Drawing-No. : 6.541-5025.01-4
Issue: 7; 05.04.04
95 11314
Document Number 83143
Rev. 1.7, 31-Aug-04
www.vishay.com
5
TLMW310.
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
6
Document Number 83143
Rev. 1.7, 31-Aug-04