TLMW310. VISHAY Vishay Semiconductors High Intensity SMD LED Description This device has been designed to meet the increasing demand for white SMD LED. The package of the TLMW310. is the PLCC-2 (equivalent to a size B tantalum capacitor). It consists of a lead frame which is embedded in a white thermoplast. The reflector inside this package is filled with a mixture of epoxy and TAG phosphor. The TAG phosphor converts the blue emission partially to yellow, which mixes with the remaining blue to give white. e3 Pb 19225 Pb-free Features Applications • High efficient InGaN technology • Chromaticity Coordinate categorized according to CIE1931 per packing unit • Luminous intensity ratio in one packing unit IVmax/IVmin ≤ 1.6 • Typical color temperature 5500 K • ESD class 1 • EIA and ICE standard package • Compatible with infrared, vapor phase and wave solder processes according to CECC • Available in 8 mm tape reel • Lead-free device Automotive: Backlighting in dashboards and switches Telecommunication: Indicator and backlighting in telephone and fax Backlighting for audio and video equipment Backlighting in office equipment Indoor and outdoor message boards Flat backlight for LCDs, switches and symbols Illumination purposes, alternative to incandescent lamps General use Parts Table Part Color, Luminous Intensity Angle of Half Intensity (±ϕ) Technology TLMW3100 White, IV > 80 mcd 60 ° InGaN / TAG on SiC TLMW3101 White, IV = (80 to 200) mcd 60 ° InGaN / TAG on SiC TLMW3102 White, IV = (125 to 320) mcd 60 ° InGaN / TAG on SiC Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified TLMW310. Parameter Test condition Reverse voltage DC Forward current Tamb ≤ 70 °C Surge forward current tp ≤ 10 µs Power dissipation Tamb ≤ 70 °C Junction temperature Operating temperature range Document Number 83143 Rev. 1.7, 31-Aug-04 Symbol Value VR 5 Unit V IF 20 mA IFSM 0.1 A PV 85 mW Tj 100 °C Tamb - 40 to + 100 °C www.vishay.com 1 TLMW310. VISHAY Vishay Semiconductors Parameter Test condition Symbol Value Tstg - 40 to + 100 °C Tsd 260 °C RthJA 350 K/W Storage temperature range Soldering temperature t≤5s Thermal resistance junction/ ambient mounted on PC board Unit (pad size > 16 mm2) Optical and Electrical Characteristics Tamb = 25 °C, unless otherwise specified White TLMW310. Parameter Luminous intensity 1) Test condition IF = 20 mA Part Symbol Min Typ. TLMW3100 IV 80 140 TLMW3101 IV 80 125 TLMW3102 IV Chromaticity coordinate x acc. to CIE 1931 IF = 20 mA TLMW3100 x 0.33 Chromaticity coordinate y acc. to CIE 1931 IF = 20 mA TLMW3100 y 0.33 Angle of half intensity IF = 20 mA ϕ ± 60 Forward voltage IF = 20 mA VF 3.5 Max Unit mcd 200 mcd 320 mcd deg 4.2 V Reverse voltage IR = 10 µA VR Temperature coefficient of VF IF = 20 mA TCVF -4 mV/K Temperature coefficient of IV IF = 20 mA TCIV - 0.5 %/K 1) 5 V in one Packing Unit IVmax/IVmin ≤ 1.6 Typical Characteristics (Tamb = 25 °C unless otherwise specified) PV - Power Dissipation ( mW ) 90 25 IF - Forward Current ( mA ) 80 70 60 50 40 30 20 20 15 10 5 10 0 0 0 10 20 16191 30 40 50 60 70 80 90 100 T amb - Ambient Temperature ( ° C ) Figure 1. Power Dissipation vs. Ambient Temperature www.vishay.com 2 16192 0 10 20 30 40 50 60 70 80 90 100 T amb - Ambient Temperature ( ° C ) Figure 2. Forward Current vs. Ambient Temperature for AlInGaP Document Number 83143 Rev. 1.7, 31-Aug-04 TLMW310. VISHAY Vishay Semiconductors MTTF, confidence level 60% failure criteria IV/IV0 = 50% 25 Iı IIı 5000h 100 10000h I V rel - Relative Luminous Intensity I F - Forward Current ( mA ) 30 20 15 I II 10 5 0 0 80 70 60 50 40 30 20 10 0 400 450 500 550 600 650 700 750 800 10 20 30 40 50 60 70 80 90 100 Tamb - Ambient Temperature ( °C ) 16193 90 λ - Wavelength ( nm ) 16196 Figure 6. Relative Intensity vs. Wavelength Figure 3. Forward Current vs. Ambient Temperature for AlInGaP I Vrel - Relative Luminous Intensity I Vrel - Relative Luminous Intensity 10 1 0.1 0.01 1 10 100 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 I F - Forward Current ( mA ) 16194 0 10 20 Tamb - Ambient Temperature ( ° C ) 16197 Figure 4. Relative Luminous Intensity vs. Forward Current 30 40 50 60 70 80 90 100 Figure 7. Rel. Luminous Intensity vs. Ambient Temperature 10 1 2.0 16195 2.5 3.0 3.5 4.0 4.5 5.0 f - Chromaticity coordinate shift (x,y) I F - Forward Current ( mA ) 100 0.345 White 0.340 0.330 Y 0.325 0.320 0.315 V F - Forward Voltage ( V ) 16198 Figure 5. Forward Current vs. Forward Voltage Document Number 83143 Rev. 1.7, 31-Aug-04 X 0.335 0 10 20 30 40 50 60 I F - Forward Current ( mA ) Figure 8. Chromaticity Coordinate Shift vs. Forward Current www.vishay.com 3 TLMW310. VISHAY Vishay Semiconductors 3.95 I F - Forward Voltage ( V ) 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 0 10 20 30 40 50 60 70 80 90 100 T amb - Ambient Temperature ( ° C ) 16199 Figure 9. Forward Voltage vs. Ambient Temperature I V re l - Relative Luminous Intensity 0° 10° 20° 30° 40° 1.0 0.9 50° 0.8 60° 70° 0.7 80° 0.6 0.4 0.2 0 0.2 0.4 0.6 95 10319 Figure 10. Rel. Luminous Intensity vs. Angular Displacement Coordinates of Colorgroups 0.50 e 0.45 D65 d c 0.40 b . A 5 . 0.35 a 0.30 3 4 0.25 0.20 0.20 f 0.25 0.30 0.35 a= b= c= d= e= f= 0.40 20000K 10000K 7000K 6000K 5000K 4000K 0.45 0.50 Coordinates of Colorgroups 16284 Figure 11. Coordinates of Colorgroups www.vishay.com 4 Document Number 83143 Rev. 1.7, 31-Aug-04 TLMW310. VISHAY Vishay Semiconductors Package Dimensions in mm 3.5 ± 0.2 0.85 + 0.10 1.65- 0.05 technical drawings according to DIN specifications Mounting Pad Layout Pin identification area covered with solder resist 4 2.6 (2.8) A 2.2 C 2.8 + 0.15 1.2 4 1.6 (1.9) ∅ 2.4 3 + 0.15 Dimensions: IR and Vaporphase (Wave Soldering) Drawing-No. : 6.541-5025.01-4 Issue: 7; 05.04.04 95 11314 Document Number 83143 Rev. 1.7, 31-Aug-04 www.vishay.com 5 TLMW310. VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 www.vishay.com 6 Document Number 83143 Rev. 1.7, 31-Aug-04