VISHAY TLWW9600

TLWW9600
VISHAY
Vishay Semiconductors
TELUX™ LED
Description
The TELUX™ series is a clear, non diffused LED for
high end applications where supreme luminous flux is
required.
It is designed in an industry standard 7.62 mm square
package utilizing highly developed InGaN technology.
The supreme heat dissipation of TELUX™ allows
applications at high ambient temperatures.
All packing units are binned for luminous flux and
color to achieve best homogenous light appearance
in application.
Features
•
•
•
•
•
•
•
Utilizing InGaN technology
High luminous flux
Supreme heat dissipation: RthJP is 90 K/W
High operating temperature: Tj + 100 °C
Packed in tubes for automatic insertion
Luminous flux and color categorized for each tube
Small mechanical tolerances allow precise usage
of external reflectors or lightguides
16 012
• ESD-withstand voltage:
> 1 kV acc. to MIL STD 883 D, Method 3015.7
Applications
• Exterior lighting
• Interior lighting
• Dashboard illumination
• Replaces incandescent lamps
Parts Table
Part
TLWW9600
Color, Luminous Intensity
White, φV > 800 mlm
Angle of Half Intensity (±ϕ)
Technology
30
InGaN / YAG on SiC
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
TLWW9600
Symbol
Value
Reverse voltage
Parameter
IR = 10 µA
Test condition
VR
5
Unit
V
DC forward current
Tamb ≤ 50 °C
IF
50
mA
Surge forward current
tp ≤ 10 µs
Power dissipation
Tamb ≤ 50 °C
IFSM
0.1
A
PV
255
mW
Tj
100
°C
Operating temperature range
Tamb
- 40 to + 100
°C
Storage temperature range
Tstg
- 55 to + 100
°C
Tsd
260
°C
RthJA
200
K/W
RthJP
90
K/W
Junction temperature
Soldering temperature
t ≤ 5 s, 1.5 mm from body
preheat temperature
100 °C/ 30 sec.
Thermal resistance junction/
ambient
with cathode heatsink
Thermal resistance junction/pin
Document Number 83202
Rev. A3, 22-Apr-03
of 70 mm2
www.vishay.com
1
TLWW9600
VISHAY
Vishay Semiconductors
Optical and Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
White
TLWW9600
Symbol
Min
Typ.
Total flux
Parameter
IF = 50 mA,
RthJA = 200 °K/W
Test condition
φV
800
1500
mlm
Luminous intensity/Total flux
IF = 50 mA,
RthJA = 200 °K/W
IV/φV
0.8
mcd/mlm
Color temperature
IF = 50 mA,
RthJA = 200 °K/W
TK
5500
K
Angle of half intensity
IF = 50 mA,
RthJA = 200 °K/W
ϕ
± 30
deg
Total included angle
90 % of Total Flux Captured
ϕ
75
Forward voltage
IF = 50 mA,
RthJA = 200 °K/W
VF
4.3
Reverse voltage
IR = 10 µA
VR
Junction capacitance
VR = 0, f = 1 MHz
Cj
5
Max
Unit
deg
5.2
V
10
V
50
pF
Chromaticity Coordinate Classification
Group
X
Y
min
max
min
max
31a
0.2900
0.3025
Y = 1.4x - 0.121
Y = 1.4x - 0.071
31b
0.3025
0.3150
Y = 1.4x - 0.121
Y = 1.4x - 0.071
31c
0.2900
0.3025
Y = 1.4x - 0.171
Y = 1.4x - 0.121
31d
0.3025
0.3150
Y = 1.4x - 0.171
Y = 1.4x - 0.121
41a
0.3150
0.3275
Y = 1.4x - 0.121
Y = 1.4x - 0.071
41b
0.3275
0.3400
Y = 1.4x - 0.121
Y = 1.4x - 0.071
41c
0.3150
0.3275
Y = 1.4x - 0.171
Y = 1.4x - 0.121
41d
0.3275
0.3400
Y = 1.4x - 0.171
Y = 1.4x - 0.121
51a
0.3400
0.3525
Y = 1.4x - 0.121
Y = 1.4x - 0.071
51b
0.3525
0.3650
Y = 1.4x - 0.121
Y = 1.4x - 0.071
51c
0.3400
0.3525
Y = 1.4x - 0.171
Y = 1.4x - 0.121
51d
0.3525
0.3650
Y = 1.4x - 0.171
Y = 1.4x - 0.121
tolerance ± 0.005
www.vishay.com
2
Document Number 83202
Rev. A3, 22-Apr-03
TLWW9600
VISHAY
Vishay Semiconductors
250
100
225
90
200
80
% Total Luminous Flux
PV - Power Dissipation ( mW )
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
175
150
125
100
75
RthJA = 200 K/W
50
25
0
0
20
40
60
80
100
50
40
30
20
0
120
T amb - Ambient Temperature ( ° C )
0
16005
Figure 1. Power Dissipation vs. Ambient Temperature
25
50
75
100
125
Total Included Angle (Degrees)
Figure 4. Percentage Total Luminous Flux vs. Total Included Angle
for 60 ° emission angle
60
230
50
220
Padsize 8 mm 2
per Anode Pin
210
40
R thJA in K/W
I F - Forward Current ( mA )
60
10
16066
30
20
200
190
180
10
170
RthJA = 200 K/W
0
160
0
20
40
60
80
100
120
T amb - Ambient Temperature ( ° C )
16067
0°
10°
20°
0
0.9
50°
0.8
60°
70°
80°
0.6
0.4
0.2
0
0.2
0.4
Figure 3. Rel. Luminous Intensity vs. Angular Displacement
for 60 ° emission angle
Rev. A3, 22-Apr-03
White
80
70
60
50
40
30
20
10
0
2.5
0.6
16006
Document Number 83202
I F - Forward Current ( mA )
40°
300
100
90
1.0
100 150 200 250
Cathode Padsize in mm 2
Figure 5. Thermal Resistance Junction Ambient vs. Cathode
Padsize
30°
0.7
50
16009
Figure 2. Forward Current vs. Ambient Temperature for InGaN
I v rel – Relative Luminous Intensity
70
16062
3.0
3.5
4.0
4.5
5.0
V F - Forward Voltage ( V )
5.5
Figure 6. Forward Current vs. Forward Voltage
www.vishay.com
3
TLWW9600
VISHAY
Vishay Semiconductors
White
1.6
I F = 50 mA
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-40
-20
0
20
40
60
80
100
T amb - Ambient Temperature ( ° C )
16065
1.2
White
I F = 50 mA
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
400 450 500 550 600 650 700 750 800
I V rel - Relative Luminous Intensity
Φ V rel - Relative Luminous Flux
1.8
I Spec - Specific Luminous Flux
1.0
0.1
1
10
100
Figure 8. Specific Luminous Flux vs. Forward Current
White
0.340
X
0.335
0.330
Y
0.325
0.320
0.315
0
10
20
30
40
50
60
I F - Forward Current ( mA )
Figure 11. Chromaticity Coordinate Shift vs. Forward Current
10.00
0.44
0.42
White
51b
0.40
Y and Y’ Coordinates
I V rel - Relative Luminous Flux
0.345
16198
I F - Forward Current ( mA )
16063
Figure 10. Relative Intensity vs. Wavelength
f - Chromaticity coordinate shift (x,y)
Figure 7. Rel. Luminous Flux vs. Ambient Temperature
White
ı
λ - Wavelength
( nm )
16071
1.00
0.10
51a
0.38
41b
0.36
0.34
0.32
51c
31b
41d
31a
41c
0.30
0.28
51d
41a
31d
31c
0.26
0.24
0.01
1
16064
10
I F - Forward Current ( mA )
100
Figure 9. Relative Luminous Flux vs. Forward Current
www.vishay.com
4
0.22
0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37
18068
X Coordinates
Figure 12. Coordinates of Colorgroups
Document Number 83202
Rev. A3, 22-Apr-03
TLWW9600
VISHAY
Vishay Semiconductors
Package Dimensions in mm
16004
Document Number 83202
Rev. A3, 22-Apr-03
www.vishay.com
5
TLWW9600
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.com
6
Document Number 83202
Rev. A3, 22-Apr-03