SMP80MC ® TRISIL™ FOR TELECOM EQUIPMENT PROTECTION FEATURES ■ Bidirectional crowbar protection ■ Voltage: range from 120V to 270V ■ Low VBO / VR ratio ■ Micro capacitance equal to 12pF @ 50V ■ Low leakage current : IR = 2µA max ■ Holding current: IH = 150 mA min ■ Repetitive peak pulse current : ■ IPP = 80 A (10/1000µs) SMB (JEDEC DO-214AA) MAIN APPLICATIONS Any sensitive equipment requiring protection against lightning strikes and power crossing: ■ Terminals (phone, fax, modem...) and central office equipment Table 1: Order Codes DESCRIPTION The SMP80MC is a series of micro capacitance transient surge arrestors designed for the protection of high debit rate communication equipment on CPE side. Its micro capacitance avoids any distortion of the signal and is compatible with digital transmission like ADSL2 and ADSL2+. Part Number Marking SMP80MC-120 TP12 SMP80MC-140 TP14 SMP80MC-160 TP16 SMP80MC-200 TP20 SMP80MC-230 TP23 SMP80MC-270 TP27 BENEFITS Trisils are not subject to ageing and provide a fail safe mode in short circuit for a better protection. They are used to help equipment to meet main standards such as UL1950, IEC950 / CSA C22.2 and UL1459. They have UL94 V0 approved resin. SMB package is JEDEC registered (DO-214AA). Trisils comply with the following standards GR1089 Core, ITU-T-K20/K21, VDE0433, VDE0878, IEC61000-4-5 and FCC part 68. Figure 1: Schematic Diagram TM: TRISIL is a trademark of STMicroelectronics. June 2005 REV. 3 1/9 SMP80MC Table 2: In compliances with the following standards STANDARD Peak Surge Voltage (V) Waveform Voltage Required peak current (A) Current waveform Minimum serial resistor to meet standard (Ω) GR-1089 Core First level 2500 1000 2/10 µs 10/1000 µs 500 100 2/10 µs 10/1000 µs 5 2.5 GR-1089 Core Second level 5000 2/10 µs 500 2/10 µs 10 GR-1089 Core Intra-building 1500 2/10 µs 100 2/10 µs 0 ITU-T-K20/K21 6000 1500 10/700 µs 150 37.5 5/310 µs 10 0 ITU-T-K20 (IEC61000-4-2) 8000 15000 1/60 ns VDE0433 4000 2000 10/700 µs 100 50 5/310 µs 0 0 VDE0878 4000 2000 1.2/50 µs 100 50 1/20 µs 0 0 IEC61000-4-5 4000 4000 10/700 µs 1.2/50 µs 100 100 5/310 µs 8/20 µs 0 0 FCC Part 68, lightning surge type A 1500 800 10/160 µs 10/560 µs 200 100 10/160 µs 10/560 µs 2.5 0 FCC Part 68, lightning surge type B 1000 9/720 µs 25 5/320 µs 0 ESD contact discharge ESD air discharge 0 0 Table 3: Absolute Ratings (Tamb = 25°C) Symbol Parameter IPP Repetitive peak pulse current (see figure 2) IFS Fail-safe mode : maximum current (note 1) ITSM I2t Tstg Tj TL Non repetitive surge peak on-state current (sinusoidal) I2t value for fusing Storage temperature range Maximum junction temperature Maximum lead temperature for soldering during 10 s. Note 1: in fail safe mode, the device acts as a short circuit 2/9 Value Unit 80 200 100 120 150 200 250 A 8/20 µs 5 kA t = 0.2 s t=1s t=2s t = 15 mn 14 8 6.5 2 A t = 16.6 ms t = 20 ms 7.5 7.8 A2s -55 to 150 150 °C 260 °C 10/1000 µs 8/20 µs 10/560 µs 5/310 µs 10/160 µs 1/20 µs 2/10 µs SMP80MC Table 4: Thermal Resistances Symbol Parameter Value Unit Rth(j-a) Junction to ambient (with recommended footprint) 100 °C/W Rth(j-l) Junction to leads 20 °C/W Table 5: Electrical Characteristics (Tamb = 25°C) Symbol Parameter VRM Stand-off voltage VBR Breakdown voltage VBO Breakover voltage IRM Leakage current IPP Peak pulse current IBO Breakover current IH Holding current VR Continuous reverse voltage IR Leakage current at VR C Capacitance IRM @ VRM Types max. max. µA IR @ VR max. note1 V µA Dynamic VBO Static VBO @ IBO max. note 2 note 3 V V V SMP80MC-120 108 120 155 155 SMP80MC-140 126 140 180 180 160 205 205 200 255 255 SMP80MC-160 SMP80MC-200 2 144 180 5 SMP80MC-230 207 230 295 295 SMP80MC-270 243 270 345 345 Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: max. IH C C min. typ. typ. note 4 note 5 note 6 mA mA pF pF 800 150 12 25 IR measured at VR guarantee VBR min ≥ VR see functional test circuit 1 see test circuit 2 see functional holding current test circuit 3 VR = 50V bias, VRMS=1V, F=1MHz VR = 2V bias, VRMS=1V, F=1MHz 3/9 SMP80MC Figure 2: Pulse waveform % I PP Figure 3: Non repetitive surge peak on-state current versus overload duration ITSM(A) Repetitive peak pulse current 40 tr = rise time (µs) tp = pulse duration time (µs) F=50Hz Tj initial = 25°C 35 100 30 25 20 50 15 10 0 tr t tp 5 t(s) 0 1.E-02 Figure 4: On-state voltage versus on-state current (typical values) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Figure 5: Relative variation of holding current versus junction temperature IT(A) IH[Tj] / IH[Tj=25°C] 2.0 100 1.8 Tj=25°C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 VT(V) Tj(°C) 0.0 10 0 1 2 3 4 5 6 7 8 Figure 6: Relative variation of breakover voltage versus junction temperature -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 Figure 7: Relative variation of leakage current versus junction temperature (typical values) IR[Tj] / IR[Tj=25°C] VBO[Tj] / VBO[Tj=25°C] 1.08 1.E+03 1.07 VR=243V 1.06 1.05 1.04 1.E+02 1.03 1.02 1.01 1.00 0.99 1.E+01 0.98 0.97 0.96 Tj(°C) Tj(°C) 0.95 0.94 1.E+00 -40 -30 -20 -10 4/9 0 10 20 30 40 50 60 70 80 90 100 110 120 130 25 50 75 100 125 SMP80MC Figure 8: Variation of thermal impedance junction to ambient versus pulse duration (Printed circuit board FR4, SCu=35µm, recommended pad layout) Figure 9: Relative variation of junction capacitance versus reverse voltage applied (typical values) Zth(j-a)/Rth(j-a) C [VR] / C [VR=2V] 1.0 1.2 0.9 1.1 F =1MHz VOSC = 1VRMS Tj = 25°C 1.0 0.8 0.9 0.7 0.8 0.6 0.7 0.5 0.6 0.4 0.5 0.4 0.3 0.3 0.2 0.2 0.1 tp(s) 0.1 0.0 1.E-02 VR(V) 0.0 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1 10 100 1000 Figure 10: Test circuit 1 for dynamic IBO and VBO parameters 100 V / µs, di /dt < 10 A / µs, Ipp = 80 A 2Ω U 83 Ω 45 Ω 10 µF 66 Ω 46 µH 0.36 nF 470 Ω KeyTek 'System 2' generator with PN246I module 1 kV / µs, di /dt < 10 A / µs, Ipp = 10 A 250 Ω 26 µH U 60 µF 47 Ω 46 µH 12 Ω KeyTek 'System 2' generator with PN246I module 5/9 SMP80MC Figure 11: Test circuit 2 for IBO and VBO parameters K ton = 20ms R1 = 140Ω R2 = 240Ω 220V 50Hz VBO measurement DUT Vout 1/4 IBO measurement TEST PROCEDURE Pulse test duration (tp = 20ms): ● for Bidirectional devices = Switch K is closed ● for Unidirectional devices = Switch K is open VOUT selection: ● Device with VBO < 200V ➔ VOUT = 250 VRMS, R1 = 140Ω ● Device with VBO ≥ 200V ➔ VOUT = 480 VRMS, R2 = 240Ω Figure 12: Test circuit 3 for dynamic IH parameter R Surge generator VBAT = - 48 V D.U.T This is a GO-NOGO test which allows to confirm the holding current (IH) level in a functional test circuit. TEST PROCEDURE 1/ Adjust the current level at the IH value by short circuiting the AK of the D.U.T. 2/ Fire the D.U.T. with a surge current ➔ IPP = 10A, 10/1000µs. 3/ The D.U.T. will come back off-state within 50ms maximum. 6/9 SMP80MC Figure 13: Ordering Information Scheme SMP 80 MC - xxx Trisil Surface Mount Repetitive Peak Pulse Current 80 = 80A Capacitance MC = Micro Capacitance Voltage 270 = 270V Figure 14: SMB Package Mechanical Data DIMENSIONS E1 REF. D E Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 A1 A2 C L b Figure 15: Foot Print Dimensions (in millimeters) 2.3 1.52 2.75 1.52 7/9 SMP80MC Table 6: Ordering Information Part Number Marking SMP80MC-120 TP12 SMP80MC-140 TP14 SMP80MC-160 TP16 SMP80MC-200 TP20 SMP80MC-230 TP23 SMP80MC-270 TP27 Package Weight Base qty Delivery mode SMB 0.11 g 2500 Tape & reel Table 7: Revision History 8/9 Date Revision Description of Changes September-2001 1 First issue. 11-May-2005 2 New types introduction. 20-Jun-2005 3 Qualification of new types SMP80MC Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of compagnies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 9/9