STMICROELECTRONICS SMP80MC-230

SMP80MC
®
TRISIL™ FOR TELECOM EQUIPMENT PROTECTION
FEATURES
■ Bidirectional crowbar protection
■ Voltage: range from 120V to 270V
■ Low VBO / VR ratio
■ Micro capacitance equal to 12pF @ 50V
■ Low leakage current : IR = 2µA max
■ Holding current: IH = 150 mA min
■ Repetitive peak pulse current :
■ IPP = 80 A (10/1000µs)
SMB
(JEDEC DO-214AA)
MAIN APPLICATIONS
Any sensitive equipment requiring protection
against lightning strikes and power crossing:
■
Terminals (phone, fax, modem...) and central
office equipment
Table 1: Order Codes
DESCRIPTION
The SMP80MC is a series of micro capacitance
transient surge arrestors designed for the protection of high debit rate communication equipment
on CPE side. Its micro capacitance avoids any distortion of the signal and is compatible with digital
transmission like ADSL2 and ADSL2+.
Part Number
Marking
SMP80MC-120
TP12
SMP80MC-140
TP14
SMP80MC-160
TP16
SMP80MC-200
TP20
SMP80MC-230
TP23
SMP80MC-270
TP27
BENEFITS
Trisils are not subject to ageing and provide a fail
safe mode in short circuit for a better protection.
They are used to help equipment to meet main
standards such as UL1950, IEC950 / CSA C22.2
and UL1459. They have UL94 V0 approved resin.
SMB package is JEDEC registered (DO-214AA).
Trisils comply with the following standards GR1089 Core, ITU-T-K20/K21, VDE0433, VDE0878,
IEC61000-4-5 and FCC part 68.
Figure 1: Schematic Diagram
TM: TRISIL is a trademark of STMicroelectronics.
June 2005
REV. 3
1/9
SMP80MC
Table 2: In compliances with the following standards
STANDARD
Peak Surge
Voltage
(V)
Waveform
Voltage
Required
peak current
(A)
Current
waveform
Minimum serial
resistor to meet
standard (Ω)
GR-1089 Core
First level
2500
1000
2/10 µs
10/1000 µs
500
100
2/10 µs
10/1000 µs
5
2.5
GR-1089 Core
Second level
5000
2/10 µs
500
2/10 µs
10
GR-1089 Core
Intra-building
1500
2/10 µs
100
2/10 µs
0
ITU-T-K20/K21
6000
1500
10/700 µs
150
37.5
5/310 µs
10
0
ITU-T-K20
(IEC61000-4-2)
8000
15000
1/60 ns
VDE0433
4000
2000
10/700 µs
100
50
5/310 µs
0
0
VDE0878
4000
2000
1.2/50 µs
100
50
1/20 µs
0
0
IEC61000-4-5
4000
4000
10/700 µs
1.2/50 µs
100
100
5/310 µs
8/20 µs
0
0
FCC Part 68, lightning
surge type A
1500
800
10/160 µs
10/560 µs
200
100
10/160 µs
10/560 µs
2.5
0
FCC Part 68, lightning
surge type B
1000
9/720 µs
25
5/320 µs
0
ESD contact discharge
ESD air discharge
0
0
Table 3: Absolute Ratings (Tamb = 25°C)
Symbol
Parameter
IPP
Repetitive peak pulse current (see figure 2)
IFS
Fail-safe mode : maximum current (note 1)
ITSM
I2t
Tstg
Tj
TL
Non repetitive surge peak on-state current (sinusoidal)
I2t value for fusing
Storage temperature range
Maximum junction temperature
Maximum lead temperature for soldering during 10 s.
Note 1: in fail safe mode, the device acts as a short circuit
2/9
Value
Unit
80
200
100
120
150
200
250
A
8/20 µs
5
kA
t = 0.2 s
t=1s
t=2s
t = 15 mn
14
8
6.5
2
A
t = 16.6 ms
t = 20 ms
7.5
7.8
A2s
-55 to 150
150
°C
260
°C
10/1000 µs
8/20 µs
10/560 µs
5/310 µs
10/160 µs
1/20 µs
2/10 µs
SMP80MC
Table 4: Thermal Resistances
Symbol
Parameter
Value
Unit
Rth(j-a)
Junction to ambient (with recommended footprint)
100
°C/W
Rth(j-l)
Junction to leads
20
°C/W
Table 5: Electrical Characteristics (Tamb = 25°C)
Symbol
Parameter
VRM
Stand-off voltage
VBR
Breakdown voltage
VBO
Breakover voltage
IRM
Leakage current
IPP
Peak pulse current
IBO
Breakover current
IH
Holding current
VR
Continuous reverse voltage
IR
Leakage current at VR
C
Capacitance
IRM @ VRM
Types
max.
max.
µA
IR @ VR
max.
note1
V
µA
Dynamic
VBO
Static
VBO @ IBO
max.
note 2
note 3
V
V
V
SMP80MC-120
108
120
155
155
SMP80MC-140
126
140
180
180
160
205
205
200
255
255
SMP80MC-160
SMP80MC-200
2
144
180
5
SMP80MC-230
207
230
295
295
SMP80MC-270
243
270
345
345
Note 1:
Note 2:
Note 3:
Note 4:
Note 5:
Note 6:
max.
IH
C
C
min.
typ.
typ.
note 4 note 5 note 6
mA
mA
pF
pF
800
150
12
25
IR measured at VR guarantee VBR min ≥ VR
see functional test circuit 1
see test circuit 2
see functional holding current test circuit 3
VR = 50V bias, VRMS=1V, F=1MHz
VR = 2V bias, VRMS=1V, F=1MHz
3/9
SMP80MC
Figure 2: Pulse waveform
% I PP
Figure 3: Non repetitive surge peak on-state
current versus overload duration
ITSM(A)
Repetitive peak pulse current
40
tr = rise time (µs)
tp = pulse duration time (µs)
F=50Hz
Tj initial = 25°C
35
100
30
25
20
50
15
10
0
tr
t
tp
5
t(s)
0
1.E-02
Figure 4: On-state voltage versus on-state
current (typical values)
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Figure 5: Relative variation of holding current
versus junction temperature
IT(A)
IH[Tj] / IH[Tj=25°C]
2.0
100
1.8
Tj=25°C
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
VT(V)
Tj(°C)
0.0
10
0
1
2
3
4
5
6
7
8
Figure 6: Relative variation of breakover
voltage versus junction temperature
-40 -30 -20 -10
0
10
20
30
40
50
60
70
80
90 100 110 120 130
Figure 7: Relative variation of leakage current
versus junction temperature (typical values)
IR[Tj] / IR[Tj=25°C]
VBO[Tj] / VBO[Tj=25°C]
1.08
1.E+03
1.07
VR=243V
1.06
1.05
1.04
1.E+02
1.03
1.02
1.01
1.00
0.99
1.E+01
0.98
0.97
0.96
Tj(°C)
Tj(°C)
0.95
0.94
1.E+00
-40 -30 -20 -10
4/9
0
10
20
30
40
50
60
70
80
90 100 110 120 130
25
50
75
100
125
SMP80MC
Figure 8: Variation of thermal impedance
junction to ambient versus pulse duration
(Printed circuit board FR4, SCu=35µm,
recommended pad layout)
Figure 9: Relative variation of junction
capacitance versus reverse voltage applied
(typical values)
Zth(j-a)/Rth(j-a)
C [VR] / C [VR=2V]
1.0
1.2
0.9
1.1
F =1MHz
VOSC = 1VRMS
Tj = 25°C
1.0
0.8
0.9
0.7
0.8
0.6
0.7
0.5
0.6
0.4
0.5
0.4
0.3
0.3
0.2
0.2
0.1
tp(s)
0.1
0.0
1.E-02
VR(V)
0.0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
1
10
100
1000
Figure 10: Test circuit 1 for dynamic IBO and VBO parameters
100 V / µs, di /dt < 10 A / µs, Ipp = 80 A
2Ω
U
83 Ω
45 Ω
10 µF
66 Ω
46 µH
0.36 nF
470 Ω
KeyTek 'System 2' generator with PN246I module
1 kV / µs, di /dt < 10 A / µs, Ipp = 10 A
250 Ω
26 µH
U
60 µF
47 Ω
46 µH
12 Ω
KeyTek 'System 2' generator with PN246I module
5/9
SMP80MC
Figure 11: Test circuit 2 for IBO and VBO parameters
K
ton = 20ms
R1 = 140Ω
R2 = 240Ω
220V 50Hz
VBO
measurement
DUT
Vout
1/4
IBO
measurement
TEST PROCEDURE
Pulse test duration (tp = 20ms):
● for Bidirectional devices = Switch K is closed
● for Unidirectional devices = Switch K is open
VOUT selection:
● Device with VBO < 200V ➔ VOUT = 250 VRMS, R1 = 140Ω
● Device with VBO ≥ 200V ➔ VOUT = 480 VRMS, R2 = 240Ω
Figure 12: Test circuit 3 for dynamic IH parameter
R
Surge
generator
VBAT = - 48 V
D.U.T
This is a GO-NOGO test which allows to confirm the holding current (IH) level in a
functional test circuit.
TEST PROCEDURE
1/ Adjust the current level at the IH value by short circuiting the AK of the D.U.T.
2/ Fire the D.U.T. with a surge current ➔ IPP = 10A, 10/1000µs.
3/ The D.U.T. will come back off-state within 50ms maximum.
6/9
SMP80MC
Figure 13: Ordering Information Scheme
SMP
80
MC - xxx
Trisil Surface Mount
Repetitive Peak Pulse Current
80 = 80A
Capacitance
MC = Micro Capacitance
Voltage
270 = 270V
Figure 14: SMB Package Mechanical Data
DIMENSIONS
E1
REF.
D
E
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
A1
A2
C
L
b
Figure 15: Foot Print Dimensions (in millimeters)
2.3
1.52
2.75
1.52
7/9
SMP80MC
Table 6: Ordering Information
Part Number
Marking
SMP80MC-120
TP12
SMP80MC-140
TP14
SMP80MC-160
TP16
SMP80MC-200
TP20
SMP80MC-230
TP23
SMP80MC-270
TP27
Package
Weight
Base qty
Delivery mode
SMB
0.11 g
2500
Tape & reel
Table 7: Revision History
8/9
Date
Revision
Description of Changes
September-2001
1
First issue.
11-May-2005
2
New types introduction.
20-Jun-2005
3
Qualification of new types
SMP80MC
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of compagnies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
9/9