STMICROELECTRONICS TDA9102

TDA9102C
H/V PROCESSOR FOR TTL V.D.U
.
.
.
.
.
.
..
.
.
.
.
.
..
.
HORIZONTAL SECTION
SYNCHRONIZATION INPUT : TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED
SYNCHRONIZATION INDEPENDENT FROM
DUTY CYCLE TIME
OSCILLATOR : FREQUENCY RANGE FROM
15kHz to 100kHz
HORIZONTAL OUTPUT PULSE SHAPER
AND SHIFTER
PHASE COMPARATOR BETWEEN SYNCHRO AND OSCILLATOR (PLL1)
PHASE COMPARATOR BETWEEN FLYBACK
AND OSCILLATOR (PLL2)
INTERNAL VOLTAGE REGULATOR
DC COMPATIBLE CONTROLS FOR PHASE
AND FREQUENCY
HORIZONTAL OUTPUT DUTY CYCLE : 41%
POWERDIP20 (0.4)
(Plastic package)
ORDER CODES : TDA9102C
VERTICAL SECTION
DESCRIPTION
The TDA9102C is a monolithic integrated circuit for
horizontal and vertical sync processing in monochrome and color video displays driven by input
TTL compatible signals.
The TDA9102C is supplied in a 20 pin dual in line
package with pin 11 connected to ground and used
for heatsinking.
May 1996
PIN CONNECTIONS
Substrate Ground
11
10
Horizontal Phase Adjust
Vertical Frequency Preset
12
9
Phase Comparator 2 Output
C13
13
8
Horizontal Flyback Input
Vertical TTL Input
14
7
Horizontal Output
Vertical Ramp Output
15
6
Horizontal Power Ground
Vertical Amplitude Adjust
16
5
C5
Vertical Linearity Adjust
17
4
Horizontal TTL Input
Linearity Output
18
3
Phase Comparator 1 Output
Vertical Reference Voltage
19
2
C2
20
1
R1
VS
9102001.EPS
SYNCHRONIZATION INPUT : TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED
SYNCHRONIZATION INDEPENDENT FROM
DUTY CYCLE TIME
OSCILLATOR : FREQUENCY RANGE FROM
30Hz to 120Hz
RAMP GENERATOR WITH VARIABLE GAIN
STAGE
VERTICAL RAMP VOLTAGE REFERENCE
INTERNAL VOLTAGE REGULATOR
DC COMPATIBLE CONTROLS FOR FREQUENCY, AMPLITUDE AND LINEARITY
1/7
2/7
91020S2.EPS
C5
HORIZONTAL
SYNC.
INPUT
R4
VS
+ 5V
7
5
4
TDA9102C
6
3
C3
R3
HOR.
PULSE
SHAPER
HORIZONTAL
TTL INTERFACE
ϕ1
PHASE
COMPARATOR
10
DC HORIZONTAL
PHASE
ADJUSTEMENT
C1
R2
1
R1
2
8
R8
HORIZONTAL
FLYBACK
INPUT
C9
ϕ2
PHASE
COMPARATOR
9
C2
VERTICAL
TTL INTERFACE
LOW SUPPLY
VOLTAGE
PROTECTION
HORIZONTAL
OSCILLATOR
DC FREQUENCY
ADJUSTEMENT
R14
+ 5V
VERTICAL
SYNC.
INPUT
14
11
17
VERTICAL
OSCILLATOR
VOLTAGE
REGULATOR
20
DC VERTICAL
LINEARITY
ADJUSTEMENT
VS
18
DC VERTICAL
12
13
C18
R18
C13
R12
DC FREQUENCY
PRESET
ADJUSTEMENT
16 AMPLITUDE
15
19 VREF
TDA9102C
BLOCK DIAGRAM
TDA9102C
ABSOLUTE MAXIMUM RATINGS
TSTG , TJ
Parameter
Supply Voltage
Sync Input Peak Voltage
Output Sinking Peak Current (Pin 7 ; t < 3µs)
Output Current (Pin 15)
Output Current (Pin 19)
Total power dissipation
o
● Tamb < 70 C
o
● Tpin < 90 C
Storage and Junction Temperature
Value
18
+ VS
2
- 10
- 10
Unit
V
V
A
mA
mA
1.4
1.5
- 40 to 150
W
W
o
C
9102001.TBL
Symbol
VS
VSYNC
IOH
I15
I19
PTOT
Symbol
RTH(J-C)
R TH(J-A)
Parameter
Junction-case Thermal Resistance
Junction-ambient Thermal Resistance
Value
40
55
Unit
C/W
o
C/W
o
9102002.TBL
THERMAL DATA
ELECTRICAL CHARACTERISTICS
(TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
10.5
12
40
3.5
15.5
70
3.8
4
3.04
2.5
3
17
4.3
3.2
V
mA
V
mA
VPP
HORIZONTAL SECTION
Supply Voltage Range
Supply Current
Voltage Reference at Pin 1
Current at Pin 1
Voltage Swing at Pin 2
Free Running Frequency Constant
Control Voltage Range
Peak Control Current
Gain Phase Comparator φ1
K3 = 2 x I3 / 360
V4
Sync Threshold Input (neg. edge)
I4
Current at Pin 4
T4
V5
t5
Input Pulse Duration T = 1/fH
Monostable Threshold
Internal Pulse Width (t5 = C5 x V5 /I5)
t7
Output Pulse Duration (low) - T = 1/fH
V7 sat
tD
IFLY
Output Saturation Voltage
Permissible delay between output pulse
leading edge and flyback pulse leading edge
1
(for keeping a constant duty cycle) ; T =
fH
Flyback Input Current at Pin 8
V8
Clamp voltage at Pin 8
I8
I9
Current for switching low the output pulse
Peak control current
I1 = 0.5mA
fo = 1/(K0 x R1 x C2)
(See technical note 1)
Sync high
Sync low
● Input high
● Input low
@ fH = 27.64kHz
●
●
C5 = 220 pF
(see technical note 2)
fH = 27kHz
fH = 70kHz
I7 = 600 mA
See technical note 4
@ fH = 27kHz
●
●
●
●
Flyback On
Flyback Off
I8 = 1mA
I8 = - 1mA
3.2
-1
3.7
2.8
1.6
2
- 10
1
5.6
8
0.8
10
6
3.6
0.9T
6.4
0.38T 0.41T 0.44T
0.35T 0.39T 0.43T
1.2
2.5
0.41 T - t FLY
0.7
-1
0.6
2
- 0.6
2
0.7
0.9
V
mA
µA
degree
V
V
µA
µA
µs
V
µs
µs
µs
V
s
mA
mA
V
V
mA
mA
9102003.TBL
VS
IS
V1
I1
V2
K0
V3 - V1
I3
K3
3/7
TDA9102C
ELECTRICAL CHARACTERISTICS (continued)
(TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
4.5
25
+ 45
degree
V
V
degree
V
degree
150
ppm
400
ppm
V
3.8
1.06
V
HORIZONTAL SECTION
K9
Phase sensitivity at Pin 9
V10
K10
Control voltage range
Phase control sensitivity at Pin 10
HADJ
K1
K2
(See technical note 3)
0.5
20
Horizontal phase adjustment for V10 varying
from 0.5 to 4.5V (27.64kHz)
Phase jitter constant (jitter =
67.5
K1
Zero degree phase: flyback
centered on the middle of the
pulse at Pin 5
- 45
100
)
6
22.5
10 . fH
Frequency drift versus supply voltage
dF . 106
K2 =
dV . fH
VS = 10.5V to 15.5V
VERTICAL SECTION
tFALL
fVL
I12 = 100µA
(I12 max. = 200µA)
Typical Vertical Sawtooth Amplitude
(Pin 13) for Center Frequency
Discharge time at Pin 13
Maximum Vertical Frequency
fVH
Minimum Vertical Frequency
K14
Synchro window constant ts =
V14
K14
fV
Sync input threshold (negative edge)
I14
Current at Pin 14
C18 = 0.22 µF, V13 = 4VPP
Vertical Sync Low
CPin 13 = 220nF, R Pin 12 = 58kΩ
Vertical Sync High
CPin 13 = 220nF, R Pin 12 = 58kΩ
10
84
@ fV = 64.75Hz
10
Average value of voltage on Pin 15
Output current at Pin 15
Buffer gain constant at Pin 15
V15PP = K15 . V13PP
Buffer variable gain constant at Pin 15 :
∆V15PP
K16 =
∆V16 . V13PP
V13 = 4VPP, V 16 = 2.5V
I16
I17
Input bias current at Pin 16
Input bias current at Pin 17
V16 = 0.5V
V17 = 4.5V
V18
Average voltage at Pin 18 : V18 = 2 +
K18
Linearity correction constant : K18 =
Voltage reference at Pin 19
Current at Pin 19
V18PP
2
∆V18PP
∆V17
2
- 10
V15
II15I
K15
fV
µs
Hz
Hz
8
0.8
10
V
V
µA
µA
0.5T
µs
1
V
mA
4
V16 = 2.5V
0.95
2.5V < V16 < 4.5V
0.5V < V16 < 2.5V
0.1
0.1
V -1
-1
V
- 50
50
V17 = 3.5V, R18 not connected
3
V13PP = 4V,1.5V < V17 < 4.5V
1
(See technical note 5)
22
0.333
Sync high
Sync Low
● Input high
● Input Low V14 = 0.8V
●
●
VPP
56
(See technical note 6)
1
3.5
1
4
Input pulse duration T =
V19
I19
3.2
0.94
To be adjusted by I12
t14
K16
4/7
Voltage reference at Pin 12
Current gain at Pin 13
7.6
8
µA
µA
V
8.4
2
V
mA
9102004.TBL
V12
I13
I12
V13
TDA9102C
ELECTRICAL CHARACTERISTICS (continued)
(TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified)
Parameter
Test conditions
Min.
Typ. Max.
Unit
VERTICAL SECTION
Frequency drift versus supply voltage K17 =
dF . 106
dV . fV
2
1
ϕ1
HOR. SYNC.
V3H
V3H
V DC
V3L
V3L
V DC
Technical note 4
The second PLL can recover the storage of horizontal output stage maintaining a constant duty
cycle till the trailing edge of the output pulse gets
the trailing edge of the flyback pulse. From this
point on, only the leading edge of the output pulse
will be shifted covering a total phase shift of: 0.30T;
overcoming this value, it will produce a notch in the
output pulse (@ fH = 27kHz).
3
R2
C2
if
I1
C1
R3
9102003.EPS
R1
C3
fH (nom) = 26.8 kHz
R1 = 6.8k Ω
R2 = 56 kΩ
C2 = 1.8 nF
fpull-in = fH (nom)
 V3 − V1  / R2
If
= fH (nom)
Io
V1 / R1
ppm
V
300
Technical note 3
K9 = 67.5 degrees/volt represents the slope of the
oscillator charging period of the waveform at
Pin 2:
360 x 0.75 degree
K9 =
V
4
Technical note 1
HORIZONTAL
OSCILLATOR
VS = 10.5V to 15.5V
Technical note 5
The voltage reference at Pin 19 can be used to
polarize the DC operating point of the vertical
booster. This voltage corresponds to the double of
the mean value voltage of the vertical sawtooth at
Pin 13.
Technical note 6
(A)
where: V1 = 3.5V and V3 - V1 is the control
voltage range.
The voltage at Pin 3 is limited by two clamping
diodes at the voltage V3H and V3L
When the PLL1 is synchronized and perfectly
tuned, V3 = V1.
Remark: The value of C2 influences the horizontal
oscillator free running frequency; it doesn’t effect
the relative pull-in range. If the horizontal frequency is changed by using R1, the pull-in range
changes accordingly with the formula (A).
Technical note 2
The internal pulse ”t5”, is generated by the current
generator ”I5” charging the external capacitor
”C5”, according with the formula (B):
C5 . V5
TH
is recommended.
(B), t5 =
t5 =
I5
12
V (V)
V H = 6.8V
V = 6V
V L = 5.2V
V LL = 2V
t (s)
1/fv
ts
9102004.EPS
K17
9102005.TBL
Symbol
VH − VL VH − VLL
=
ts
1/fV
(VH − VL) 1
K14
ts =
=
(VH − VLL) fV
fV
5/7
6/7
9102005.EPS
Fly. Input
Vert. Sync.
Hor. Sync.
P5
47kΩ
R29
2.2kΩ
P4
47kΩ
C20
22nF
9
8
5
R25
6.8kΩ
R26 22kΩ
R27 100kΩ
C21
0.22nF
R28
2.2kΩ
R1
3.3kΩ
1
4
14
C19
2.2µ F
R23
3.3kΩ
3
R4
22kΩ
P1
47kΩ
R24 56kΩ
R2
3.3kΩ
R3
51kΩ
IC2
R6
5.1kΩ
16
C4
15nF
C18
15nF
2
C17
1.8nF
C16
220nF
11
P3
47kΩ
R7
39kΩ
13
R8
5.1kΩ
TDA9102C
17
C3
15nF
P2
47kΩ
R5
39kΩ
12
10
R22
220kΩ
20
C5
15nF
18
15
19
6
R21
62kΩ
R20 150kΩ
7
C6
100nF
”C” Correction
R19
47kΩ *
R12 10kΩ
R11
22kΩ
C1
100nF
C9
100nF
IC1
7812
VI
1
7
2
IC3
6
R17 2.7kΩ
R18 1.2kΩ
4
R9
82Ω
2W
5
C12
220nF
R14
1.5Ω
C10
220µF
C13
47µF
C14 10µF
3
D1
1N4001
TDA81 72
C7
1000µF
G
N
D
Note : * The value of R19 depends on CRT. On the mock up R19 is substitued
with a resistance + trimmer for generic applications.
C15
1µ F
C8
100µF
R10 22kΩ
C2
470µF
VO
R15 1.5kΩ
R16
1Ω
R13
120Ω
C11
2200µF
Vert.
Yoke
Hor. Power GND
Hor. Out
14V
VS
TDA9102C
APPLICATION DIAGRAM (with TDA8172)
TDA9102C
PM-DIP20.EPS
PACKAGE MECHANICAL DATA
20 PINS - PLASTIC DIP
a1
B
b
b1
D
E
e
e3
F
I
L
Z
Min.
0.51
0.85
Millimeters
Typ.
Max.
1.40
Min.
0.020
0.033
0.50
0.38
Inches
Typ.
Max.
0.055
0.020
0.50
24.80
0.015
8.80
2.54
22.86
0.020
0.976
0.346
0.100
0.900
7.10
5.10
3.30
0.280
0.201
DIP20PW.TBL
Dimensions
0.130
1.27
0.050
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1996 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
7/7