TDA9102C H/V PROCESSOR FOR TTL V.D.U . . . . . . .. . . . . . .. . HORIZONTAL SECTION SYNCHRONIZATION INPUT : TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED SYNCHRONIZATION INDEPENDENT FROM DUTY CYCLE TIME OSCILLATOR : FREQUENCY RANGE FROM 15kHz to 100kHz HORIZONTAL OUTPUT PULSE SHAPER AND SHIFTER PHASE COMPARATOR BETWEEN SYNCHRO AND OSCILLATOR (PLL1) PHASE COMPARATOR BETWEEN FLYBACK AND OSCILLATOR (PLL2) INTERNAL VOLTAGE REGULATOR DC COMPATIBLE CONTROLS FOR PHASE AND FREQUENCY HORIZONTAL OUTPUT DUTY CYCLE : 41% POWERDIP20 (0.4) (Plastic package) ORDER CODES : TDA9102C VERTICAL SECTION DESCRIPTION The TDA9102C is a monolithic integrated circuit for horizontal and vertical sync processing in monochrome and color video displays driven by input TTL compatible signals. The TDA9102C is supplied in a 20 pin dual in line package with pin 11 connected to ground and used for heatsinking. May 1996 PIN CONNECTIONS Substrate Ground 11 10 Horizontal Phase Adjust Vertical Frequency Preset 12 9 Phase Comparator 2 Output C13 13 8 Horizontal Flyback Input Vertical TTL Input 14 7 Horizontal Output Vertical Ramp Output 15 6 Horizontal Power Ground Vertical Amplitude Adjust 16 5 C5 Vertical Linearity Adjust 17 4 Horizontal TTL Input Linearity Output 18 3 Phase Comparator 1 Output Vertical Reference Voltage 19 2 C2 20 1 R1 VS 9102001.EPS SYNCHRONIZATION INPUT : TTL COMPATIBLE, NEGATIVE EDGE TRIGGERED SYNCHRONIZATION INDEPENDENT FROM DUTY CYCLE TIME OSCILLATOR : FREQUENCY RANGE FROM 30Hz to 120Hz RAMP GENERATOR WITH VARIABLE GAIN STAGE VERTICAL RAMP VOLTAGE REFERENCE INTERNAL VOLTAGE REGULATOR DC COMPATIBLE CONTROLS FOR FREQUENCY, AMPLITUDE AND LINEARITY 1/7 2/7 91020S2.EPS C5 HORIZONTAL SYNC. INPUT R4 VS + 5V 7 5 4 TDA9102C 6 3 C3 R3 HOR. PULSE SHAPER HORIZONTAL TTL INTERFACE ϕ1 PHASE COMPARATOR 10 DC HORIZONTAL PHASE ADJUSTEMENT C1 R2 1 R1 2 8 R8 HORIZONTAL FLYBACK INPUT C9 ϕ2 PHASE COMPARATOR 9 C2 VERTICAL TTL INTERFACE LOW SUPPLY VOLTAGE PROTECTION HORIZONTAL OSCILLATOR DC FREQUENCY ADJUSTEMENT R14 + 5V VERTICAL SYNC. INPUT 14 11 17 VERTICAL OSCILLATOR VOLTAGE REGULATOR 20 DC VERTICAL LINEARITY ADJUSTEMENT VS 18 DC VERTICAL 12 13 C18 R18 C13 R12 DC FREQUENCY PRESET ADJUSTEMENT 16 AMPLITUDE 15 19 VREF TDA9102C BLOCK DIAGRAM TDA9102C ABSOLUTE MAXIMUM RATINGS TSTG , TJ Parameter Supply Voltage Sync Input Peak Voltage Output Sinking Peak Current (Pin 7 ; t < 3µs) Output Current (Pin 15) Output Current (Pin 19) Total power dissipation o ● Tamb < 70 C o ● Tpin < 90 C Storage and Junction Temperature Value 18 + VS 2 - 10 - 10 Unit V V A mA mA 1.4 1.5 - 40 to 150 W W o C 9102001.TBL Symbol VS VSYNC IOH I15 I19 PTOT Symbol RTH(J-C) R TH(J-A) Parameter Junction-case Thermal Resistance Junction-ambient Thermal Resistance Value 40 55 Unit C/W o C/W o 9102002.TBL THERMAL DATA ELECTRICAL CHARACTERISTICS (TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 10.5 12 40 3.5 15.5 70 3.8 4 3.04 2.5 3 17 4.3 3.2 V mA V mA VPP HORIZONTAL SECTION Supply Voltage Range Supply Current Voltage Reference at Pin 1 Current at Pin 1 Voltage Swing at Pin 2 Free Running Frequency Constant Control Voltage Range Peak Control Current Gain Phase Comparator φ1 K3 = 2 x I3 / 360 V4 Sync Threshold Input (neg. edge) I4 Current at Pin 4 T4 V5 t5 Input Pulse Duration T = 1/fH Monostable Threshold Internal Pulse Width (t5 = C5 x V5 /I5) t7 Output Pulse Duration (low) - T = 1/fH V7 sat tD IFLY Output Saturation Voltage Permissible delay between output pulse leading edge and flyback pulse leading edge 1 (for keeping a constant duty cycle) ; T = fH Flyback Input Current at Pin 8 V8 Clamp voltage at Pin 8 I8 I9 Current for switching low the output pulse Peak control current I1 = 0.5mA fo = 1/(K0 x R1 x C2) (See technical note 1) Sync high Sync low ● Input high ● Input low @ fH = 27.64kHz ● ● C5 = 220 pF (see technical note 2) fH = 27kHz fH = 70kHz I7 = 600 mA See technical note 4 @ fH = 27kHz ● ● ● ● Flyback On Flyback Off I8 = 1mA I8 = - 1mA 3.2 -1 3.7 2.8 1.6 2 - 10 1 5.6 8 0.8 10 6 3.6 0.9T 6.4 0.38T 0.41T 0.44T 0.35T 0.39T 0.43T 1.2 2.5 0.41 T - t FLY 0.7 -1 0.6 2 - 0.6 2 0.7 0.9 V mA µA degree V V µA µA µs V µs µs µs V s mA mA V V mA mA 9102003.TBL VS IS V1 I1 V2 K0 V3 - V1 I3 K3 3/7 TDA9102C ELECTRICAL CHARACTERISTICS (continued) (TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified) Symbol Parameter Test conditions Min. Typ. Max. Unit 4.5 25 + 45 degree V V degree V degree 150 ppm 400 ppm V 3.8 1.06 V HORIZONTAL SECTION K9 Phase sensitivity at Pin 9 V10 K10 Control voltage range Phase control sensitivity at Pin 10 HADJ K1 K2 (See technical note 3) 0.5 20 Horizontal phase adjustment for V10 varying from 0.5 to 4.5V (27.64kHz) Phase jitter constant (jitter = 67.5 K1 Zero degree phase: flyback centered on the middle of the pulse at Pin 5 - 45 100 ) 6 22.5 10 . fH Frequency drift versus supply voltage dF . 106 K2 = dV . fH VS = 10.5V to 15.5V VERTICAL SECTION tFALL fVL I12 = 100µA (I12 max. = 200µA) Typical Vertical Sawtooth Amplitude (Pin 13) for Center Frequency Discharge time at Pin 13 Maximum Vertical Frequency fVH Minimum Vertical Frequency K14 Synchro window constant ts = V14 K14 fV Sync input threshold (negative edge) I14 Current at Pin 14 C18 = 0.22 µF, V13 = 4VPP Vertical Sync Low CPin 13 = 220nF, R Pin 12 = 58kΩ Vertical Sync High CPin 13 = 220nF, R Pin 12 = 58kΩ 10 84 @ fV = 64.75Hz 10 Average value of voltage on Pin 15 Output current at Pin 15 Buffer gain constant at Pin 15 V15PP = K15 . V13PP Buffer variable gain constant at Pin 15 : ∆V15PP K16 = ∆V16 . V13PP V13 = 4VPP, V 16 = 2.5V I16 I17 Input bias current at Pin 16 Input bias current at Pin 17 V16 = 0.5V V17 = 4.5V V18 Average voltage at Pin 18 : V18 = 2 + K18 Linearity correction constant : K18 = Voltage reference at Pin 19 Current at Pin 19 V18PP 2 ∆V18PP ∆V17 2 - 10 V15 II15I K15 fV µs Hz Hz 8 0.8 10 V V µA µA 0.5T µs 1 V mA 4 V16 = 2.5V 0.95 2.5V < V16 < 4.5V 0.5V < V16 < 2.5V 0.1 0.1 V -1 -1 V - 50 50 V17 = 3.5V, R18 not connected 3 V13PP = 4V,1.5V < V17 < 4.5V 1 (See technical note 5) 22 0.333 Sync high Sync Low ● Input high ● Input Low V14 = 0.8V ● ● VPP 56 (See technical note 6) 1 3.5 1 4 Input pulse duration T = V19 I19 3.2 0.94 To be adjusted by I12 t14 K16 4/7 Voltage reference at Pin 12 Current gain at Pin 13 7.6 8 µA µA V 8.4 2 V mA 9102004.TBL V12 I13 I12 V13 TDA9102C ELECTRICAL CHARACTERISTICS (continued) (TAMB = 25oC, VS = 12V, refer to the test circuits, unless otherwise specified) Parameter Test conditions Min. Typ. Max. Unit VERTICAL SECTION Frequency drift versus supply voltage K17 = dF . 106 dV . fV 2 1 ϕ1 HOR. SYNC. V3H V3H V DC V3L V3L V DC Technical note 4 The second PLL can recover the storage of horizontal output stage maintaining a constant duty cycle till the trailing edge of the output pulse gets the trailing edge of the flyback pulse. From this point on, only the leading edge of the output pulse will be shifted covering a total phase shift of: 0.30T; overcoming this value, it will produce a notch in the output pulse (@ fH = 27kHz). 3 R2 C2 if I1 C1 R3 9102003.EPS R1 C3 fH (nom) = 26.8 kHz R1 = 6.8k Ω R2 = 56 kΩ C2 = 1.8 nF fpull-in = fH (nom) V3 − V1 / R2 If = fH (nom) Io V1 / R1 ppm V 300 Technical note 3 K9 = 67.5 degrees/volt represents the slope of the oscillator charging period of the waveform at Pin 2: 360 x 0.75 degree K9 = V 4 Technical note 1 HORIZONTAL OSCILLATOR VS = 10.5V to 15.5V Technical note 5 The voltage reference at Pin 19 can be used to polarize the DC operating point of the vertical booster. This voltage corresponds to the double of the mean value voltage of the vertical sawtooth at Pin 13. Technical note 6 (A) where: V1 = 3.5V and V3 - V1 is the control voltage range. The voltage at Pin 3 is limited by two clamping diodes at the voltage V3H and V3L When the PLL1 is synchronized and perfectly tuned, V3 = V1. Remark: The value of C2 influences the horizontal oscillator free running frequency; it doesn’t effect the relative pull-in range. If the horizontal frequency is changed by using R1, the pull-in range changes accordingly with the formula (A). Technical note 2 The internal pulse ”t5”, is generated by the current generator ”I5” charging the external capacitor ”C5”, according with the formula (B): C5 . V5 TH is recommended. (B), t5 = t5 = I5 12 V (V) V H = 6.8V V = 6V V L = 5.2V V LL = 2V t (s) 1/fv ts 9102004.EPS K17 9102005.TBL Symbol VH − VL VH − VLL = ts 1/fV (VH − VL) 1 K14 ts = = (VH − VLL) fV fV 5/7 6/7 9102005.EPS Fly. Input Vert. Sync. Hor. Sync. P5 47kΩ R29 2.2kΩ P4 47kΩ C20 22nF 9 8 5 R25 6.8kΩ R26 22kΩ R27 100kΩ C21 0.22nF R28 2.2kΩ R1 3.3kΩ 1 4 14 C19 2.2µ F R23 3.3kΩ 3 R4 22kΩ P1 47kΩ R24 56kΩ R2 3.3kΩ R3 51kΩ IC2 R6 5.1kΩ 16 C4 15nF C18 15nF 2 C17 1.8nF C16 220nF 11 P3 47kΩ R7 39kΩ 13 R8 5.1kΩ TDA9102C 17 C3 15nF P2 47kΩ R5 39kΩ 12 10 R22 220kΩ 20 C5 15nF 18 15 19 6 R21 62kΩ R20 150kΩ 7 C6 100nF ”C” Correction R19 47kΩ * R12 10kΩ R11 22kΩ C1 100nF C9 100nF IC1 7812 VI 1 7 2 IC3 6 R17 2.7kΩ R18 1.2kΩ 4 R9 82Ω 2W 5 C12 220nF R14 1.5Ω C10 220µF C13 47µF C14 10µF 3 D1 1N4001 TDA81 72 C7 1000µF G N D Note : * The value of R19 depends on CRT. On the mock up R19 is substitued with a resistance + trimmer for generic applications. C15 1µ F C8 100µF R10 22kΩ C2 470µF VO R15 1.5kΩ R16 1Ω R13 120Ω C11 2200µF Vert. Yoke Hor. Power GND Hor. Out 14V VS TDA9102C APPLICATION DIAGRAM (with TDA8172) TDA9102C PM-DIP20.EPS PACKAGE MECHANICAL DATA 20 PINS - PLASTIC DIP a1 B b b1 D E e e3 F I L Z Min. 0.51 0.85 Millimeters Typ. Max. 1.40 Min. 0.020 0.033 0.50 0.38 Inches Typ. Max. 0.055 0.020 0.50 24.80 0.015 8.80 2.54 22.86 0.020 0.976 0.346 0.100 0.900 7.10 5.10 3.30 0.280 0.201 DIP20PW.TBL Dimensions 0.130 1.27 0.050 Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics. 1996 SGS-THOMSON Microelectronics - All Rights Reserved Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard Specifications as defined by Philips. SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. 7/7