STMICROELECTRONICS TSH111IDT

TSH110-111-112-113-114
WIDE BAND, LOW NOISE OPERATIONAL AMPLIFIERS
■
■
■
■
■
■
■
■
■
LOW NOISE: 3nV/√Hz
LOW SUPPLY CURRENT: 3.2mA
47mA OUTPUT CURRENT
BANDWIDTH: 100MHz
TSH110 : SOT23-5
Output 1
5V to 12V SUPPLY VOLTAGE
SLEW-RATE: 450V/µs
SPECIFIED FOR 100Ω Load
VERY LOW DISTORTION
TINY: SOT23-5, TSSOP and SO PACKAGES
DESCRIPTION
The singles TSH110 and TSH111, the dual
TSH112, the triple TSH113 and the quad TSH114
are current feedback operational amplifiers featuring a very high slew rate of 450V/µs and a large
bandwidth of 100MHz, with only a 3.2mA quiescent supply current. The TSH111 and TSH113
feature a Standby function for each operator. This
function is a power down mode with a high output
impedance.
These devices operate from ±2.5V to ±6V dual
supply voltage or from 5V to 12V single supply
voltage. They are able to drive a 100Ω load with a
swing of 9V minimum (for a 12V power supply).
The harmonic and intermodulation distortions of
these devices are very low, making this circuit a
good choice for applications requiring wide bandwidth with multiple carriers.
For board space and weight saving, the TSH110
comes in miniature SOT23-5 package, the
TSH111 comes in SO8 and TSSOP8 packages,
the TSH112 comes in SO8 and TSSOP8 packages, the TSH113 and TSH114 comes in SO14 and
TSSOP14 packages.
APPLICATIONS
■
■
■
■
PIN CONNECTIONS (top view)
Receiver for xDSL
+-
Non Inverting Input 3
4 Inverting Input
TSH111 : SO8/TSSOP8
NC 1
8 STANDBY
Inverting Input 2
_
7 VCC +
Non Inverting Input 3
+
6 Output
5 NC
VCC - 4
TSH112 : SO8/TSSOP8
Output1 1
8 VCC +
Inverting Input1 2
_
Non Inverting Input1 3
+
VCC - 4
7 Output2
_
6 Inverting Input2
+
5 Non Inverting Input2
TSH113 : SO14/TSSOP14
STANDBY1 1
14 Output3
STANDBY2 2
_
13 Inverting Input3
STANDBY3 3
+
12 Non Inverting Input3
VCC + 4
Non Inverting Input1 5
Inverting Input1 6
11 VCC +
_
+
_
10 Non Inverting Input2
9 Inverting Input2
8 Output2
Output1 7
TSH114 : SO14/TSSOP14
Output1 1
14 Output4
Inverting Input1 2
_
_
13 Inverting Input4
Non Inverting Input1 3
+
+
12 Non Inverting Input4
VCC + 4
Non Inverting Input2 5
High End Video Drivers
5 VCC +
VCC - 2
Inverting Input2 6
Output2 7
11 VCC +
_
+
_
10 Non Inverting Input3
9 Inverting Input3
8 Output3
A/D Converter Driver
High End Audio Applications
February 2002
1/19
TSH110-TSH111-TSH112-TSH113-TSH114
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
1)
VCC
Supply Voltage
Vid
Differential Input Voltage 2)
Vi
Input Voltage 3)
Operating Free Air Temperature Range
Storage Temperature
Toper
Tstg
Tj
Rthjc
Rthja
ESD
Maximum Junction Temperature
Thermal resistance junction to case
SOT23-5
SO8
SO14
TSSOP8
TSSOP14
Thermal resistance junction to ambiante area
SOT23-5
SO8
SO14
TSSOP8
TSSOP14
Human Body Model
Machine Model
Charged Device Model
Value
Unit
14
V
±1
V
±6
V
-40 to +85
-65 to +150
°C
°C
150
°C
80
28
22
37
32
250
157
125
130
110
2.0
0.2
1.5
°C/W
°C/W
kV
ouput short circuit duration 4)
1.
2.
3.
4.
All voltages values, except differential voltage are with respect to network ground terminal
Differential voltages are non-inverting input terminal with respect to the inverting terminal
The magnitude of input and output must never exceed V CC +0.3V
Short-circuits can cause excessive heating. Destructive dissipation can result.
OPERATING CONDITIONS
Symbol
Parameter
VCC
Supply Voltage
Vicm
Common Mode Input Voltage Range
Value
Unit
5 to 12
V
VCC-+1.5 to VCC+-1.5
V
ORDER CODES
Type
TSH110ILT (code K302)
TSH111ID
TSH111IDT
TSH111IPT
TSH112ID
TSH112IDT
TSH112IPT
TSH113ID
TSH113IDT
TSH113IPT
TSH114ID
TSH114IDT
TSH114IPT
Temperature
Package
-40° to +85°C
SOT23-5
SO8
SO8
TSSOP8
SO8
SO8
TSSOP8
SO14
SO14
TSSOP14
SO14
SO14
TSSOP14
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)
L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)
2/19
TSH110-TSH111-TSH112-TSH113-TSH114
ELECTRICAL CHARACTERISTICS (pages 3 and 4)
Dual Supply Voltage, VCC= ±2.5Volts, R*fb = 680Ω, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
-1.5
0.3
2.0
mV
DC PERFORMANCE
Vio
∆Vio
Input Offset Voltage
Tmin. < Tamb < Tmax.
1
mV
Input Offset Voltage Drift vs. Temperature Tmin. < Tamb < Tmax.
5
µV/°C
Iib+
Non Inverting Input Bias Current
Iib-
Inverting Input Bias Current
ROL
ICC
Tamb
Transimpedance
Supply Current per Operator
Tamb
-10
Tmin. < Tamb < Tmax.
Tamb
13
µA
µA
2.5
7
µA
-3
1.9
2.5
µA
500
750
kΩ
Tmin. < Tamb < Tmax.
RL=100Ω
1.4
Tamb
3.2
Tmin. < Tamb < Tmax.
3.5
mA
4
mA
CMR
Common Mode Rejection Ratio
(∆Vic/∆Vio)
56
60
dB
SVR
Supply Voltage Rejection Ratio
(∆VCC/∆Vio)
70
80
dB
PSR
Power Supply Rejection Ratio
(∆VCC/∆Vout)
48
dB
2
V
Tmin. < Tamb < Tmax.
RL = 100Ω GND
1.9
V
Tamb
RL = 100Ω
-1.8
Tmin. < Tamb < Tmax.
RL = 100Ω
-1.7
V
Gain=1, Rload=3.9kΩ
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS
Voh
Vol
High Level Output Voltage
Low Level Output Voltage
Tamb
RL = 100Ω
1.4
-1.3
V
| Isink |
Output Sink current
Tmin. < Tamb < Tmax.
20
mA
Isource
Output Source current
Tmin. < Tamb < Tmax.
18
mA
81
MHz
230
V/µs
9
ns
9
ns
Vout=1Vpk, Rfb*=820Ω//2pF
BW
-3dB Bandwidth
Load=100Ω
SR
Slew Rate
AVCL =+2, 2V step
Load=100Ω
Tr
Rise Time
AVCL =+2
Tf
Fall Time
Ov
Overshoot
St
Settling Time @ 0.05%
∆G
Differential gain
∆φ
Differential phase
for 200mV step
AVCL =+2, Rfb*=820Ω//2pF
Load=100Ω
AVCL =+2, RL=100Ω
F=4.5MHz, Vout=1Vpeak
160
16
%
60
0.05
ns
%
0.05
°
3/19
TSH110-TSH111-TSH112-TSH113-TSH114
Symbol
Parameter
NOISE AND HARMONIC PERFORMANCE
en
Equivalent Input Voltage Noise
in
THD
Equivalent Input Current Noise
Total Harmonic Distortion
Test Condition
Min.
Typ.
Max.
Unit
3
nV/√Hz
8.5
pA/√Hz
64.4
dB
@900kHz
@1.2MHz
90
90
dBc
@3.1MHz
86
@3.2MHz
83
Frequency : 1MHz
AVCL =+2, F=2MHz
RL=100Ω
Vout=2Vpeak
AVCL =+2, Vout=2Vpp
RL=100Ω
F1=1MHz, F2=1.1MHz
IM3
Third order inter modulation product
MATCHING CHARACTERISTICS
Gf
Gain Flatness
Vo1/Vo2 Channel Separation
F=(DC) to 6MHz
AVCL =+2, Vout=2Vpp
F=1MHz to 10MHz
0.1
dB
65
dB
(*) Rfb is the feedback resistance between the output and the inverting input of the amplifier.
4/19
TSH110-TSH111-TSH112-TSH113-TSH114
ELECTRICAL CHARACTERISTICS (pages 5 and 6)
Dual Supply Voltage, VCC=±6Volts, R*fb = 680Ω, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
TestCondition
Min.
Typ.
Max.
Unit
-1.0
0.9
3.0
mV
DC PERFORMANCE
Vio
∆Vio
Input Offset Voltage
Input Offset Voltage Drift vs Temperature
Iib+
Non Inverting Input Bias Current
Iib -
Inverting Input Bias Current
ROL
Transimpedance
ICC
Supply Current per Operator
Tamb
Tmin. < Tamb < Tmax.
1.3
mV
Tmin. < Tamb < Tmax.
5
µV/°C
Tamb
-12
Tmin. < Tamb < Tmax.
Tamb
14
µA
µA
3
3.4
µA
600
900
kΩ
Tamb
4
Tmin. < Tamb < Tmax.
10
µA
-4
Tmin. < Tamb < Tmax.
RL=100Ω
1
1.7
5
mA
4.1
mA
CMR
Common Mode Rejection Ratio
(∆Vic/∆Vio)
58
63
dB
SVR
Supply Voltage Rejection Ratio
(∆Vcc/∆Vio)
72
80
dB
PSR
Power Supply Rejection Ratio
(∆Vcc/∆Vout)
49
dB
4.7
V
Tmin. < Tamb < Tmax.
RL = 100Ω
4.6
V
Tamb
RL = 100Ω
-4.7
Tmin. < Tamb < Tmax.
RL = 100Ω
-4.6
V
Gain=1, Rload=3.9kΩ
DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS
Voh
Vol
High Level Output Voltage
Low Level Output Voltage
Tamb
RL = 100Ω
4.5
-4.3
V
| Isink |
Output Sink current
Tmin. < Tamb < Tmax.
47
mA
Isource
Output Source current
Tmin. < Tamb < Tmax.
46
mA
100
MHz
450
V/µs
10.4
ns
12.2
ns
Vout=1Vpk, Rfb*=680Ω//2pF
Bw
-3dB Bandwidth
Load=100Ω
SR
Slew Rate
AVCL =+2, 6V step
Load=100Ω
Tr
Rise Time
AVCL =+2
Tf
Fall Time
Ov
Overshoot
St
Settling Time @ 0.05%
∆G
Differential gain
∆φ
Differential phase
for 200mV step
AVCL =+2, Rfb*=680Ω//2pF
Load=100Ω
AVCL =+2, RL=100Ω
F=4.5MHz, Vout=2Vpeak
240
17
%
40
0.05
ns
%
0.05
°
5/19
TSH110-TSH111-TSH112-TSH113-TSH114
Symbol
Parameter
NOISE AND HARMONIC PERFORMANCE
en
Equivalent Input Voltage Noise
in
THD
Equivalent Input Current Noise
Total Harmonic Distortion
TestCondition
Min.
Typ.
Max.
Unit
3
nV/√Hz
8.6
pA/√Hz
67.7
dB
@900kHz
@1.2MHz
82
84
dBc
@3.1MHz
77
@3.2MHz
73
Frequency : 1MHz
AVCL =+2, F=2MHz
RL=100Ω
Vout=4Vpp
AVCL =+2, Vout=4Vpp
RL=100Ω
F1=1MHz, F2=1.1MHz
IM3
Third order inter modulation product
MATCHING CHARACTERISTICS
Gf
Gain Flatness
Vo1/Vo2 Channel Separation
F=(DC) to 6MHz
AVCL =+2, Vout=4Vpp
F=1MHz to 10MHz
0.1
dB
65
dB
(*) Rfb is the feedback resistance between the output and the inverting input of the amplifier.
6/19
TSH110-TSH111-TSH112-TSH113-TSH114
STANDBY MODE
Tamb = 25°C (unless otherwise specified), VCC=±6Volts
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Vlow
Standby Low Level
VCC-
(VCC+0.8)
V
Vhigh
Standby High Level
(VCC- +2)
(VCC+)
V
40
µA
ICC SBY
Isol
Current Consumption per Operator in
Standby mode
26
Input/Output Isolation
F=1MHz
-90
dB
Zout
Output Impedance (Rout // Cout)
Rout
Cout
31
25
MΩ
pF
Ton
Time from Standby Mode to Active
Mode
2
µs
Toff
Time from Active Mode to Standby
Mode
13
µs
Down to ICC SBY = 40µA
TSH111 STANDBY CONTROL pin 8 (SBY)
OPERATOR STATUS
Vlow
Standby
Vhigh
Active
TSH113 STANDBY CONTROL
OPERATOR STATUS
pin 1
(SBY OP1)
pin 2
(SBY OP2)
pin 3
(SBY OP)
OP1
OP1
OP3
Vlow
x
x
Standby
x
x
Vhigh
x
x
Active
x
x
x
Vlow
x
x
Standby
x
x
Vhigh
x
Active
x
x
x
Vlow
x
x
Standby
x
x
Vhigh
x
x
Active
7/19
TSH110-TSH111-TSH112-TSH113-TSH114
(fig.1) Closed Loop Gain vs. Frequency
(fig.2) Closed Loop Gain vs. Frequency
AV=+1, Rfb=2.2kΩ, Cfb=2pF, RL=100Ω, Vin=100mVp
AV=-1, Rfb=2.2kΩ, Cfb=2pF, RL=100Ω, Vin=100mVp
2
2
40
-140
Vcc=±2.5V
Vcc=±6V
gain
-160
20
0
0
0
-40
Vcc=±2.5V
Vcc=±6V
Vcc=±2.5V
-4
-220
Vcc=±6V
-240
-60
-6
-6
-260
-80
-8
-8
-280
-100
-10
-10
-120
10
-300
1
100
10
100
Frequency (MHz)
Frequency (MHz)
(fig.3) Closed Loop Gain vs. Frequency
(fig.4) Closed Loop Gain vs. Frequency
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vin=100mVp
AV=-2, Rfb=680kΩ, Cfb=2pF, RL=100Ω, Vin=100mVp
-140
40
Vcc=±2.5V
gain(dB)- AV
4
-20
2
-40
Vcc=±2.5V
0
-60
Vcc=±6V
-2
phase
2
-200
Vcc=±2.5V
-220
Vcc=±6V
0
-240
-260
-280
-100
-4
-4
-300
-120
10
-180
Vcc=±6V
-2
-80
1
-160
4
0
phase
gain
20
1
100
10
100
Frequency (MHz)
Frequency (MHz)
(fig.5) Closed Loop Gain vs. Frequency
(fig.6) Closed Loop Gain vs. Frequency
AV=+10, Rfb=510Ω, RL=100Ω, Vin=30mVp
AV=-10, Rfb=510Ω, RL=100Ω, Vin=30mVp
22
40
22
0
-40
Vcc=±2.5V
Vcc=±6V
Vcc=±2.5V
18
-20
-60
gain(dB)- AV
gain(dB)- AV
Vcc=±2.5V
Phase (°)
Vcc=±6V
phase
-160
gain
20
18
16
-140
20
gain
20
phase
Vcc=±6V
-180
-200
Vcc=±2.5V
16
-220
Vcc=±6V
-240
14
14
-260
-80
12
12
-280
-100
-120
10
1
10
Frequency (MHz)
Phase (°)
Vcc=±6V
gain(dB)- AV
gain
Vcc=±2.5V
6
Phase (°)
6
100
-300
10
1
10
Frequency (MHz)
100
Phase (°)
1
8/19
Phase (°)
-4
-200
gain(dB)
-20
phase
Phase (°)
gain(dB)- AV
-2
Vcc=±2.5V
-2
-180
Vcc=±6V
TSH110-TSH111-TSH112-TSH113-TSH114
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±6V
1V /div.
(fig.8): Negative Slew Rate
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±6V
1V /div.
(fig.7): Positive Slew Rate
0V
0V
5ns /div.
5ns /div.
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±2.5V
0.4V /div.
(fig.10): Negative Slew Rate
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±2.5V
0.4V /div.
(fig.9): Positive Slew Rate
0V
0V
5ns /div.
5ns /div.
(fig.12): Vio vs. Power Supply
Open loop, no load
10
1000
9
900
8
800
7
700
6
Vio (µV)
Voltage Noise (nV/√Hz)
(fig.11): Input Voltage Noise Level
AV=+100, Rfb=1kΩ, Input+ connected to Gnd via 10Ω
5
4
600
500
3
400
2
300
1
0
100
200
1k
10k
Frequency (Hz)
100k
1M
5
6
7
8
9
10
11
12
Vcc (V)
9/19
TSH110-TSH111-TSH112-TSH113-TSH114
(fig.14): Icc(+) vs. Power Supply
Open loop, no load
Open loop, no load
-3.3
3.9
-3.4
3.8
-3.5
3.7
Icc(+) (mA)
Icc(-) (mA)
(fig.13): Icc(-) vs. Power Supply
-3.6
3.6
-3.7
3.5
-3.8
3.4
-3.9
5
6
7
8
9
10
11
3.3
12
5
6
7
8
V cc (V)
9
10
11
12
10
11
12
V cc (V)
(fig.15): Iib(-) vs. Power Supply
(fig.16): Iib(+) vs. Power Supply
Open loop, no load
Open loop, no load
1.0
3.2
3.0
0.8
Iib(+) (mA)
Iib(-) (mA)
2.8
2.6
2.4
0.6
0.4
2.2
0.2
2.0
0.0
1.8
5
6
7
8
9
10
11
5
12
6
7
8
9
V cc (V)
V cc (V)
(fig.18): Voh vs. Power Supply
Open loop, RL=100Ω
-2.0
5.0
-2.5
4.5
-3.0
4.0
Voh (V)
Vol (V)
(fig.17): Vol vs. Power Supply
Open loop, RL=100Ω
-3.5
3.5
-4.0
3.0
-4.5
2.5
-5.0
2.0
5
6
7
8
9
Vcc (V)
10/19
10
11
12
5
6
7
8
9
V cc (V)
10
11
12
TSH110-TSH111-TSH112-TSH113-TSH114
(fig.19): Icc vs. Temperature
(fig.20): Icc (Standby) vs. Temperaure
Open loop, no load
Open loop, no load
5
30
Icc(+) for Vcc=±6V
4
20
3
IccStand-By (µA)
Icc(+) for Vcc=±2.5V
2
Icc (mA)
1
0
-1
-2
Icc(-) for Vcc=±2.5V
10
0
-10
-3
-20
-4
Icc(-) for Vcc=±6V
-5
-40
-20
0
20
40
60
80
-30
100
-40
-20
0
20
40
60
80
100
Temperature (°C)
Temperature (°C)
(fig.21): ROL vs. Temperature
(fig.22): CMR vs. Temperature
Open loop, no load
Open loop, no load
68
1000
Vcc=±6V
66
950
CMR (dB)
ROL (kΩ)
Vcc=±6V
900
64
62
Vcc=±2.5V
850
60
Vcc=±2.5V
800
-40
-20
0
20
40
60
80
58
100
-40
-20
0
20
Temperature (°C)
(fig.23): VOH
&
VOL vs. Temperature
80
100
AV=+2, RL=100Ω
600
VOH for Vcc=±6V
pos. SR for Vcc=±6V
5
550
4
500
Slew Rate (V/µs)
V OH for Vcc=±2.5V
3
VOH and VOL (V)
60
(fig.24): Slew Rate vs. Temperature
Open loop, RL=100Ω
6
40
Temperature (°C)
2
1
0
-1
V OL for Vcc=±2.5V
-2
450
400
350
neg. SR for Vcc=±6V
300
250
pos. SR for Vcc=±2.5V
200
neg. SR for Vcc=±2.5V
-3
V OL for Vcc=±6V
-4
150
-5
-6
100
-40
-20
0
20
40
Temperature (°C)
60
80
100
-40
-20
0
20
40
60
80
100
Temperature (°C)
11/19
TSH110-TSH111-TSH112-TSH113-TSH114
(fig.25): Group Delay
(fig.26): Gain Flatness
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω
6.30
8
Vcc=±2.5V
6.25
Gain Flatness (dB)
Delay Time (ns)
7
Vcc=±2.5V
6
5
4
6.20
6.15
6.10
6.05
6.00
3
Vcc=±6V
5.95
Vcc=±6V
5.90
2
0.1
1
10
1k
100
10k
100k
1M
10M
100M
Frequency (Hz)
Frequency (MHz)
(fig.27): Frequency Response vs. Load
(fig.28): Frequency Response vs. Load
AV=+2, Rfb=680Ω, Cfb=2pF, VCC=±2.5V, (fig.29)
AV=+2, Rfb=680Ω, Cfb=2pF, VCC=±6V, (fig.29)
7
7
C=30pF Rs=30
6
6
5
5
4
Gain(dB) - AV
Gain(dB) - AV
C=30pF Rs=39
C=100pF Rs=12
3
C=1nF Rs=6
3
2
C=1nF Rs=5
2
C=100pF Rs=12
4
1
1
0
0
1
10
1
100
(fig.29): Capacitive Load Schematic.
measurements on (fig.27) and (fig.28)
+
OUT
TSH11x
Rs(Ω)
_
1kΩ
RG
680Ω
Rfb, 680Ω
Cfb 2pF
12/19
10
Frequency (MHz)
Frequency (MHz)
C
100
TSH110-TSH111-TSH112-TSH113-TSH114
Vout=C0+C1(V in)+C2(Vin)2+C 3(Vin)3+...+C n(Vin)n
due to a non-linearity in the input-output amplitude
transfert. In the case of Vin=Asinωt, CO is the DC
component, C1(Vin) is the fundamental, C nAn is
the amplitude of the harmonics.
A one-frequency or one-tone input signal contributes to a harmonic distortion. A two-tones input
signal contributes to a harmonic distortion and intermodulation product.
This intermodulation product or intermodulation
distortion of a two-tones input signal is the first
step of the amplifier study for driving capability in
the case of a multitone signal.
In this case Vin=Asinω1t+Bsinω2t, and :
Vout=
CO+C1(Asinω1t+Bsinω2t)
+
C2(Asinω1t+Bsinω2t)2+C3(Asinω1t+Bsinω2t)3
+
...Cn(Vin)n
The following graphs show the IM3 of the amplifier
in two cases as a function of the output amplitude.
The two-tones input signal is achieved by the multisource generator Marconi 2026. Each tone has
the same amplitude. The measurement is
achieved by the spectrum analyser HP 3585A.
Both instruments are phase locked to enhance
measurement precision.
(fig.30): 3rd Order Intermodulation (180kHz &
280kHz)
AV=+4, Rfb=680Ω, no Cfb, RL=100Ω, Vcc=±6V
-60
-65
-70
IM3 (dBc)
Intermodulation Distortion
A non-ideal output of the amplifier can be described by the following development :
-75
-80
740kHz
-85
380kHz
-90
80kHz
-95
640kHz
-100
0
1
2
3
4
5
Output Amplitude (V peak )
(fig.31): 3rd Order Intermodulation (1MHz &
1.1MHz)
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±2.5V
-60
-65
-70
IM3 (dBc)
Vout=
CO+C1(Asinω1t+Bsinω2t)
+
C2(A2+B2)/2-(C2/2)(A2cos2ω1t+B2cos2ω2t)
+
2C2AB(cos(ω1-ω2)t-cos(ω1+ω2)t)
+
(3C3/4)
(A3sinω1t+B 3sinω2t+2A2Bsinω2t+2B2Asinω1t)
+
(C3A3sin3ω1t+B3sin3ω2t)
+
(3C3A2B/2)(sin(2ω1-ω2)t-1/2sin(2ω1+ω2)t)
+
(3C3B2A/2)(sin(−ω1+2ω2)t- 1/2sin(ω1+2ω2)t)
+
...Cn(Vin)n
-75
3.2MHz
-80
3.1MHz
-85
1.2MHz
-90
900kHz
-95
In this expression, we can recognize the second
order intermodulation IM2 by the frequencies
(ω1-ω2) and (ω1+ω 2) and the third order intermodulation IM3 by the frequencies (2ω1-ω2), (2ω1+ω2),
(−ω1+2ω2) and (ω1+2ω2).
-100
0.0
0.5
1.0
1.5
2.0
Output Amplitude (V peak)
13/19
TSH110-TSH111-TSH112-TSH113-TSH114
Power Supply Bypassing
A proper power supply bypassing comes very important for optimizing the performance in high frequency range. Bypass capacitors must be placed
as close as possible to the IC pins to improve high
frequency bypassing. A capacitor greater than
1µF is necessary to minimize the distortion. For a
better quality bypassing a capacitor of 0.1µF will
be added following the same condition of implementation. These bypass capacitors must be incorporated for the negative and the positive supplies.
(fig.32): Circuit for power supply bypassing.
+VCC
1µF
0.1µF
+
TSH11x
_
Nevertheless, the PCB layout has also an effect
on the crosstalk level. Capacitive coupling between signal wires, distance between critical signal nodes, power supply bypassing, are the most
significant points.
(fig.33): Crosstalk vs. Frequency.
AV=+2, Rfb=680Ω, Cfb=2pF, RL=100Ω, Vcc=±6V, ±2.5V
0
-20
X-Talk (dB)
Printed Circuit Board Layout Considerations
In this range of frequency, printed circuit board
parasitics can affect the closed-loop performance.
The implementation of a proper ground plane in
both sides of the PCB is mandatory to provide low
inductance and low resistance common return.
Most important for controlling the gain flatness
and the bandwidth are stray capacitances at the
output and inverting input. For minimizing the coupling, the space between signal lines and ground
plane will be increased. Connections of the feedback components must be as short as possible on
order to decrease the associated inductance
which affect high frequency gain errors. It is very
important to choose external components as small
as possible such as surface mounted devices,
SMD, in order to minimize the size of all the dc and
ac connections.
-40
-60
-80
-100
10k
100k
1M
10M
100M
Frequency (Hz)
Single Power Supply
The TSH11x operates from 12V down to 5V power
supplies. This is achieved with a dual power supply of ±6V and ±2.5V or a single power supply of
12V and 5V referenced to the ground. In the case
of this asymmetrical supplying, a biasing is necessary to assume a positive output dynamic range
between 0V and +Vcc supply rails. Considering
the values of VOH and VOL, the amplifier will provide an ouput dynamic from +1.35V to 10.75V for
a 12V supplying, from 0.6V to 4.5V for a 5V supplying.
The following figure show the case of a 5V single
power supply configuration.
(fig.34): Circuit for +5V single supply.
0.1µF
+5V
1µF
10µF
+
IN
-VCC
Channel Separation or Crosstalk
The following figure show the crosstalk from an
amplifier to a second amplifier. This phenomenon,
accented in high frequencies, is unavoidable and
intrinsic of the circuit.
14/19
+5V
Rin
1kΩ
100µF
50Ω
_
50Ω
R1
5kΩ
R1
5kΩ
+ 1µF
OUT
TSH11x
RG
680Ω
10nF
+
CG
Rfb, 680Ω
Cfb
2pF
TSH110-TSH111-TSH112-TSH113-TSH114
Assuming a low level active onto the disable pins
(1,2,3) as described on page 7 of the datasheet,
any operator can be disable/enable independently. The two disabled operators will be in standby
mode featuring a high ouput impedance with a
high input/output isolation and a low quiescent
current.
(fig.36): Typical output response in standby mode on/off
0.4V /div.
The amplifier must be biased with a mid supply
(nominaly +Vcc/2), in order to maintain the DC
component of the signal at this value. Several options are possible to provide this bias supply (such
as a virtual ground using an operational amplifier),
or a two-resistance divider which is the cheapest
solution. A high resistance value is required to limit the current consumption. On the other hand, the
current must be high enough to bias the non-inverting input of the amplifier. If we consider this
bias current (5µA) as the 1% of the current
through the resistance divider (500µA) to keep a
stable mid supply, two 5kΩ resistances can be
used.
The input provides a high pass filter with a break
frequency below 10Hz which is necessary to remove the original 0 volt DC component of the input
signal, and to hold it at 2.5V.
Enabled
Output
Disabled
Output
Video Multiplexing using the TSH113
+2.4V
(fig.35): Circuit for switching 3 video signals with the tri-
Standby
Signal
ple TSH113.
-2.4V
100ns /div.
IN1
+
(fig.37): Typical output response in standby mode off/on
TSH113
0.4V /div.
_
ENABLE1
Rfb, 680Ω
RG
680Ω
Enabled
Output
Cfb, 2pF
IN2
+
75Ω
TSH113
75Ω
cable
Disabled
Output
Common
OUT
_
75Ω
+2.4V
Standby
Signal
ENABLE2
-2.4V
Rfb, 680Ω
RG
680Ω
10µs /div.
Cfb, 2pF
IN3
+
TSH113
_
ENABLE3
RG
680Ω
Rfb, 680Ω
Cfb, 2pF
15/19
TSH110-TSH111-TSH112-TSH113-TSH114
(fig.38): Input / Output Isolation vs. Frequency..
(tab.1): Closed-loop Gain and Feedback Components.
VCC
0
(V)
(pF)
-3dB
Bw
(MHz)
0.1dB
Bw
(MHz)
510
-
46
14
-10
510
-
42
13
+2
680
2
105
50
-2
680
2
90
40
+1
2.2k
2
170
30
-1
2.2k
2
110
20
+10
510
-
37
13
-10
510
-
36
12
+2
680
2
93
25
-2
680
2
86
30
+1
2.2k
2
130
50
-1
2.2k
2
100
18
Rfb
Cfb
(Ω)
+10
Gain
Input/output Isolation (dB)
-20
-40
-60
±6
-80
Standby mode
-100
-120
0.01
0.1
1
10
100
Frequency (MHz)
±2.5
Choice of the Feedback Circuit
The TSH11x is a serie of current feedback
amplifiers. For a current feedback structure the
bandwidth depends on the value of the feedback
components and the value of supply voltage.
A good choice of these components is necessary
to achieve the gain flatness and the stability.
The following table shows the typical -3dB
bandwidth and 0.1dB bandwidth assuming
different gains and power supply on 100Ω load.
Please see also the Closed Loop Gain vs.
Frequency curves on page 8 of the datasheet.
(fig.39): Non-inverting and Inverting Implementation..
Input
Non-Inverting
Gain = 1+ Rfb / RG
+
Output
_
49.9Ω
Inverting Amplifier Biasing
In this case a resistance (R on fig.40) is necessary
to achieve a good input biasing.
This resistance is calculated by assuming the
negative and positive input bias current. The aim
is to make the compensation of the offset bias
current which could affect the input offset voltage
and the output DC component.
Assuming Ib-, Ib+, Rin, Rfb and a zero volt output,
the resistance R comes : R = Rin // Rfb .
(fig.40): Compensation of the Input Bias Current..
50Ω
Rfb
Rfb
RG
Cfb
Ib-
Rin
_
Vcc+
Output
Rfb
Input
Rin
_
Cfb
Inverting
Gain = - Rfb / Rin
+
Vcc-
Ib+
Output
+
R
16/19
49.9Ω
50Ω
R
Load
TSH110-TSH111-TSH112-TSH113-TSH114
PACKAGE MECHANICAL DATA
8 PINS - THIN SHRINK SMALL OUTLINE
PACKAGE (TSSOP)
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
k
0,25 mm
.010 inch
GAGE PLANE
C
SEATING
PLANE
E1
L1
L
c
A
E
A2
e
aaa
1
8
C
b
D
5
4
A1
PIN 1 IDENTIFICATION
Millimeters
Inches
Millimeters
Dim.
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Inches
Dim.
Typ.
Max.
Min.
0.1
0.65
0.35
0.19
0.25
4.8
5.8
1.27
3.81
3.8
0.4
Typ.
1.75
0.25 0.004
1.65
0.85 0.026
0.48 0.014
0.25 0.007
0.5
0.010
45° (typ.)
5.0
0.189
6.2
0.228
Max.
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.197
0.244
0.050
0.150
4.0
0.150
1.27 0.016
0.6
8° (max.)
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
0.05
0.80
0.19
0.09
2.90
4.30
0°
0.50
Typ.
1.00
3.00
6.40
4.40
0.65
0.60
Max.
Min.
1.20
0.15
1.05
0.30
0.20
3.10
0.01
0.031
0.007
0.003
0.114
4.50
0.169
8°
0.75
0°
0.09
Typ.
0.039
0.118
0.252
0.173
0.025
Max.
0.05
0.006
0.041
0.15
0.012
0.122
0.177
8°
0.0236 0.030
0.157
0.050
0.024
17/19
TSH110-TSH111-TSH112-TSH113-TSH114
PACKAGE MECHANICAL DATA
14 PINS - THIN SHRINK SMALL OUTLINE
PACKAGE (TSSOP)
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
k
c
E
D
E
A
M
C
s
b1
a1
e
e3
SEATING
PLANE
E1
L1
c1
A
a2
b
L
G
C
L
0,25 mm
.010 inch
GAGE PLANE
A2
1
7
8
7
e
8
aaa C
D
F
14
b
A1
14
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Millimeters
Dim.
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Min.
0.014
0.007
0.020
45° (typ.)
8.75 0.336
6.2
0.228
8.55
5.8
Max.
0.069
0.008
0.063
0.018
0.010
0.004
0.5
1.27
7.62
3.8
4.6
0.5
Typ.
0.344
0.244
0.050
0.300
4.0
0.150
5.3
0.181
1.27 0.020
0.68
8° (max.)
0.157
0.208
0.050
0.027
Note : (1) D and F do not include mold flash or protrusions - Mold flash
or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA
BOOK.
18/19
Inches
Dim.
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
0.05
0.80
0.19
0.09
4.90
4.30
0°
0.50
Typ.
1.00
5.00
6.40
4.40
0.65
0.60
Max.
Min.
1.20
0.15
1.05
0.30
0.20
5.10
0.01
0.031
0.007
0.003
0.192
4.50
0.169
8°
0.75
0°
0.09
Typ.
0.039
0.196
0.252
0.173
0.025
Max.
0.05
0.006
0.041
0.15
0.012
0.20
0.177
8°
0.0236 0.030
TSH110-TSH111-TSH112-TSH113-TSH114
PACKAGE MECHANICAL DATA
5 PINS - TINY PACKAGE (SOT23)
2
A
E
A2
D
b
A1
L
C
E1
Millimeters
Inches
Dim.
A
A1
A2
B
C
D
D1
e
E
F
L
K
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
0
0.90
0.35
0.09
2.80
1.20
1.45
0.15
1.30
0.50
0.20
3.00
0.035
0.047
0.035
0.014
0.004
0.110
3.00
1.75
0.60
10d
0.102
0.059
0.004
0d
0.041
0.016
0.006
0.114
0.075
0.037
0.110
0.063
0.014
0.057
0.006
0.051
0.020
0.008
0.118
2.60
1.50
0.10
0d
1.05
0.40
0.15
2.90
1.90
0.95
2.80
1.60
0.5
0.0118
0.069
0.024
10d
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
19/19