TS616 DUAL WIDE BAND OPERATIONAL AMPLIFIER WITH HIGH OUTPUT CURRENT ■ LOW NOISE : 2.5nV/√Hz ■ HIGH OUTPUT CURRENT : 420mA ■ VERY LOW HARMONIC AND INTERMODULATION DISTORTION ■ HIGH SLEW RATE : 420V/µs ■ -3dB BANDWIDTH : 40MHz@gain=12dB on 25Ω load single ended. DW SO8 Exposed-Pad (Plastic Micro package) ■ 20.7Vp-p DIFFERENTIAL OUTPUT SWING on 50Ω load, 12V power supply ■ CURRENT FEEDBACK STRUCTURE ■ 5V to 12V POWER SUPPLY ■ SPECIFIED FOR 20Ω and 50Ω DIFFERENTIAL LOAD DESCRIPTION The TS616 is a dual operational amplifier featuring a high output current of 410mA. The drivers can be configured differentially for driving signals in telecommunication systems using multiple carriers. The TS616 is ideally suited for xDSL (High Speed Asymmetrical Digital Subscriber Line) applications. This circuit is capable of driving a 10Ω or 25Ω load at ±2.5V, 5V, ±6V or +12V power supply. The TS616 is able to reach a -3dB bandwidth of 40MHz on 25Ω load with a 12dB gain. This device is designed for high slew rates supporting low harmonic distortion and intermodulation. APPLICATION ORDER CODE Part Number Temperature Range Package -40, +85°C -40, +85°C DW DW TS616IDW TS616IDWT DW = Small Outline Package with Exposed-Pad, T = Tape & Real PIN CONNECTIONS (top view) Output1 1 8 VCC + Inverting Input1 2 - Non Inverting Input1 3 + VCC - 4 7 Output2 - 6 Inverting Input2 + 5 Non Inverting Input2 Cross Section View Showing Exposed-Pad This pad can be connected to a (-Vcc) copper area on the PCB ■ Line driver for xDSL ■ Multiple Video Line Driver December 2002 1/27 TS616 ABSOLUTE MAXIMUM RATINGS Symbol VCC Vid Vin Parameter Supply voltage 1) Differential Input Voltage Input Voltage Range 2) 3) Value Unit ±7 V ±2 V ±6 V Toper Operating Free Air Temperature Range -40 to + 85 °C Tstd Storage Temperature -65 to +150 °C Tj Maximum Junction Temperature 150 °C Rthjc Thermal Resistance Junction to Case 16 °C/W °C/W Rthja Thermal Resistance Junction to Ambient Area 60 Pmax. Maximum Power Dissipation (@Ta=25°C) for Tj=150°C 2 W ESD CDM : Charged Device Model 1.5 kV only pins 1, 4, 7, 8 ESD only pins 2, 3, 5, 6 HBM : Human Body Model MM : Machine Model CDM : Charged Device Model 2 kV 200 1.5 V kV 2 kV 100 V HBM : Human Body Model MM : Machine Model 4) Output Short Circuit 1. 2. 3. 4. All voltage values, except differential voltage are with respect to network terminal. Differential voltage are non-inverting input terminal with respect to the inverting input terminal. The magnitude of input and output voltage must never exceed VCC +0.3V. An output current limitation protects the circuit from transient currents. Short-circuits can cause excessive heating. Destructive dissipation can result from short circuit on amplifiers. OPERATING CONDITIONS Symbol VCC Vicm Parameter Value Unit ±2.5 to ±6 V -VCC+1.5V to +VCC-1.5V V Power Supply Voltage Common Mode Input Voltage TYPICAL APPLICATION: Differential Line Driver for xDSL Applications 3 8 + +Vcc 1/2 TS616 TS615 2 _ 12.5Ω 1 Vi Vo R2 1:2 R1 25Ω GND R4 R3 Vi 4 5 _ 12.5Ω 1/2 TS616 TS615 + 4 2/27 Vo -Vcc 100Ω TS616 ELECTRICAL CHARACTERISTICS VCC = ±6Volts, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Note: As described on page 24 (table 71), the TS616 requires a 620Ω feedback resistor for an optimized bandwidth with a gain of 12B for a 12V power supply. Nevertheless, due to production test constraints, the TS616 is tested with the same feedback resistor for 12V and 5V power supplies (910Ω). Symbol Parameter Test Condition Min. Typ. Max. 1 1.6 3.5 Unit DC PERFORMANCE Vio ∆Vio Input Offset Voltage Differential Input Offset Voltage Iib+ Positive Input Bias Current Iib- Negative Input Bias Current ZIN+ ZINCIN+ CMR SVR Input(+) Impedance Input(-) Impedance Input(+) Capacitance Common Mode Rejection Ratio 20 log (∆Vic/∆Vio) Supply Voltage Rejection Ratio Tamb Tmin. < Tamb < Tmax. Tamb = 25°C Tamb Tmin. < Tamb < Tmax. Tamb Tmin. < Tamb < Tmax. ∆Vic = ±4.5V Tmin. < Tamb < Tmax. ∆Vcc=±2.5V to ±6V Tmin. < Tamb < Tmax. 20 log (∆Vcc/∆Vio) ICC Total Supply Current per Operator No load DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTIC Vout = 7Vp-p, RL = 25Ω ROL Open Loop Transimpedance Tmin. < Tamb. < Tmax. Small Signal Vout<20mVp -3dB Bandwidth AV = 12dB, RL = 25Ω Large Signal Vout=3Vp Full Power Bandwidth BW AV = 12dB, RL = 25Ω Small Signal Vout<20mVp Gain Flatness @ 0.1dB AV = 12dB, RL = 25Ω Vout = 6Vp-p, AV = 12dB, RL Tr Rise Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL Tf Fall Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL Ts Settling Time = 25Ω Vout = 6Vp-p, AV = 12dB, RL SR Slew Rate = 25Ω RL=25Ω Connected to GND VOH High Level Output Voltage RL=25Ω Connected to GND VOL Low Level Output Voltage Vout = -4Vp Output Sink Current Tmin. < Tamb < Tmax. Iout Vout = +4Vp Output Source Current Tmin. < Tamb < Tmax. 58 72 5 7.2 3 3.1 82 54 1 64 62 2.5 30 mV 15 µA 5 13.5 5.7 25 40 µA kΩ Ω pF dB 81 80 13.5 mV dB 17 mA MΩ MHz 26 7 MHz 10.6 ns 12.2 ns 50 ns 330 420 V/µs 4.8 5.05 -5.3 -490 -395 420 370 -320 330 -5.1 V V mA 3/27 TS616 Note: As described on page 24 (table 71), the TS616 requires a 620Ω feedback resistor for an optimized bandwidth with a gain of 12B for a 12V power supply. Nevertheless, due to production test constraints, the TS616 is tested with the same feedback resistor for 12V and 5V power supplies (910Ω). Symbol Parameter NOISE AND DISTORTION eN Equivalent Input Noise Voltage iNp Equivalent Input Noise Current (+) iNn Equivalent Input Noise Current (-) 2nd Harmonic Distortion HD2 (differential configuration) HD3 3rd Harmonic Distortion (differential configuration) IM2 2nd Order Intermodulation Product (differential configuration) IM3 4/27 3rd Order Intermodulation Product (differential configuration) Test Condition F = 100kHz F = 100kHz F = 100kHz Vout = 14Vp-p, AV = 12dB F= 110kHz, RL = 50Ω diff. Vout = 14Vp-p, AV = 12dB F= 110kHz, RL = 50Ω diff. F1= 100kHz, F2 = 110kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. F1= 370kHz, F2 = 400kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. F1 = 100kHz, F2 = 110kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. F1 = 370kHz, F2 = 400kHz Vout = 16Vp-p, AV = 12dB RL = 50Ω diff. Min. Typ. Max. Unit 2.5 15 21 nV/√Hz pA/√Hz pA/√Hz -87 dBc -83 dBc -76 dBc -75 -88 dBc -87 TS616 ELECTRICAL CHARACTERISTICS VCC = ±2.5Volts, Rfb=910Ω,Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. 0.2 2.5 Unit DC PERFORMANCE Vio ∆Vio Input Offset Voltage Differential Input Offset Voltage Iib+ Positive Input Bias Current Iib- Negative Input Bias Current Tamb Tmin. < Tamb < Tmax. 1 Tamb = 25°C Tamb 4 Tmin. < Tamb < Tmax. 7 Tamb 1.1 Tmin. < Tamb < Tmax. 1.2 mV 2.5 mV 30 µA 11 µA ZIN+ Input(+) Impedance 71 ZIN- Input(-) Impedance 62 Ω CIN+ Input(+) Capacitance Common Mode Rejection Ratio 1.5 pF ∆Vic = ±1V 20 log (∆Vic/∆Vio) Tmin. < Tamb. < Tmax. Supply Voltage Rejection Ratio ∆Vcc=±2V to ±2.5V 20 log (∆Vcc/∆Vio) Tmin. < Tamb. < Tmax. CMR SVR 55 61 dB 60 63 79 dB 78 ICC Total Supply Current per Operator No load DYNAMIC PERFORMANCE and OUTPUT CHARACTERISTICS Vout = 2Vp-p, RL = 10Ω ROL Open Loop Transimpedance Tmin. < Tamb. < Tmax. kΩ 11.5 2 15 4.2 mA MΩ 1.5 -3dB Bandwidth Small Signal Vout<20mVp AV = 12dB, RL = 10Ω Full Power Bandwidth Large Signal Vout = 1.4Vp AV = 12dB, RL = 10Ω 20 Gain Flatness @ 0.1dB Small Signal Vout<20mVp AV = 12dB, RL = 10Ω 5.7 MHz Tr Rise Time Vout = 2.8Vp-p, AV = 12dB RL = 10Ω 11 ns Tf Fall Time Vout = 2.8Vp-p, AV = 12dB RL = 10Ω 11.5 ns Ts Settling Time Vout = 2.2Vp-p, AV = 12dB RL = 10Ω 39 ns SR Slew Rate Vout = 2.2Vp-p, AV = 12dB RL = 10Ω 100 130 V/µs VOH High Level Output Voltage RL=10Ω Connected to GND 1.5 1.7 V Low Level Output Voltage RL=10Ω Connected to GND -300 -400 BW VOL Iout Output Sink Current Output Source Current Vout = -1.25Vp 20 MHz -1.9 Tmin. < Tamb < Tmax. Vout = +1.25Vp Tmin. < Tamb < Tmax. 28 -360 200 270 -1.7 V mA 240 5/27 TS616 Symbol Parameter NOISE AND DISTORTION eN Equivalent Input Noise Voltage iNp Equivalent Input Noise Current (+) iNn Equivalent Input Noise Current (-) Test Condition Min. Typ. HD2 2nd Harmonic Distortion (differential configuration) F = 100kHz F = 100kHz F = 100kHz Vout = 6Vp-p, AV = 12dB F= 110kHz, RL = 20Ω diff. HD3 3rd Harmonic Distortion (differential configuration) Vout = 6Vp-p, AV = 12dB F= 110kHz, RL = 20Ω diff. -98 F1= 100kHz, F2 = 110kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -86 F1= 370kHz, F2 = 400kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -88 F1 = 100kHz, F2 = 110kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -90 F1 = 370kHz, F2 = 400kHz Vout = 6Vp-p, AV = 12dB RL = 20Ω diff. -85 IM2 IM3 6/27 2nd Order Intermodulation Product (differential configuration) 3rd Order Intermodulation Product (differential configuration) Max. Unit 2.5 15 21 nV/√Hz pA/√Hz pA/√Hz -97 dBc dBc dBc dBc TS616 Figure 1: Load Configuration Figure 4: Load Configuration Load: RL=25Ω, VCC=±6V Load: RL=10Ω, VCC=±2.5V +6V + TS616 _ 50Ω cable 49.9Ω TS616 25Ω 50Ω cable 10Ω _ 50Ω 33Ω 1W -6V +2.5V + 49.9Ω 11Ω 0.5W -2.5V 50Ω Figure 2: Closed Loop Gain vs. Frequency Figure 5: Closed Loop Gain vs. Frequency AV=+1 AV=-1 2 2 20 0 -160 (Vcc=±2.5V) -2 0 -4 phase (Vcc=±6V) -180 (Vcc=±2.5V) -40 -8 (Vcc=±6V) -10 -60 -12 -80 (Vcc=±2.5V, Rfb=1.1kΩ, Rload=10Ω) (Vcc=±6V, Rfb=750Ω, Rload=25Ω) -14 -200 (Vcc=±2.5V) -6 -220 -8 (Vcc=±6V) -240 -10 -12 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=1kΩ, Rload=10Ω) (Vcc=±6V, Rfb=680Ω, Rin=680Ω, Rload=25Ω) -14 -100 -16 -280 -16 -120 100 1k 10k 100k 1M 10M -300 100M 100 1k Frequency (Hz) 10k 100k 1M 10M 100M Frequency (Hz) Figure 3: Closed Loop Gain vs. Frequency Figure 6: Closed Loop Gain vs. Frequency AV=+2 AV=-2 8 40 8 (Vcc=±6V) gain 6 20 (Vcc=±2.5V) phase 4 -140 gain 6 -160 0 (Vcc=±2.5V) phase 4 2 (Vcc=±6V) -180 -40 -2 (Vcc=±6V) -60 -4 -6 -80 (Vcc=±2.5V, Rfb=1kΩ, Rload=10Ω) (Vcc=±6V, Rfb=680Ω, Rload=25Ω) -8 -100 -10 -200 (Vcc=±2.5V) 0 -220 -2 (Vcc=±6V) Phase (°) -20 (Vcc=±2.5V) 0 (gain (dB)) 2 Phase (°) (gain (dB)) Phase (°) -20 -6 (gain (dB)) -4 Phase (°) (gain (dB) -140 gain (Vcc=±2.5V) phase -2 40 (Vcc=±6V) gain 0 -240 -4 -6 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=510Ω, Rload=10Ω) (Vcc=±6V, Rfb=680Ω, Rin=750//620Ω, Rload=25Ω) -8 -280 -10 -120 100 1k 10k 100k 1M Frequency (Hz) 10M 100M -300 100 1k 10k 100k 1M 10M 100M Frequency (Hz) 7/27 TS616 Figure 7: Closed Loop Gain vs. Frequency Figure 10: Closed Loop Gain vs. Frequency AV=+4 AV=-4 14 14 40 -140 gain gain 12 12 20 phase 10 (Vcc=±6V) phase 0 (Vcc=±6V) -180 -40 4 (Vcc=±6V) 2 -60 0 -80 (Vcc=±2.5V, Rfb=910Ω, Rg=300Ω, Rload=10Ω) (Vcc=±6V, Rfb=620Ω, Rg=560//330Ω, Rload=25Ω) -2 (gain (dB)) Phase (°) -20 (Vcc=±2.5V) 6 -200 (Vcc=±2.5V) 6 -220 4 (Vcc=±6V) 2 -240 0 -260 (Vcc=±2.5V, Rfb=1kΩ, Rin=320//360Ω, Rload=10Ω) (Vcc=±6V, Rfb=620Ω, Rin=360//270Ω, Rload=25Ω) -2 -100 -280 -4 -4 -300 -120 100 1k 10k 100k 1M 10M 100 100M 1k 10k 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure 8: Closed Loop Gain vs. Frequency Figure 11: Closed Loop Gain vs. Frequency AV=+8 AV=-8 20 20 40 -140 gain gain 18 18 20 phase -160 (Vcc=±2.5V) (Vcc=±2.5V) 16 16 (Vcc=±6V) phase 0 -180 (Vcc=±6V) -40 10 (Vcc=±6V) -60 8 6 (gain (dB)) Phase (°) -20 (Vcc=±2.5V) 12 -220 10 (Vcc=±6V) -240 8 6 -80 (Vcc=±2.5V, Rfb=680Ω, Rg=240//160Ω, Rload=10Ω) (Vcc=±6V, Rfb=510Ω, Rg=270//100Ω, Rload=25Ω) 4 -200 (Vcc=±2.5V) 12 Phase (°) 14 14 (gain (dB)) Phase (°) 8 8 (gain (dB)) -160 (Vcc=±2.5V) (Vcc=±2.5V) 10 -260 (Vcc=±2.5V, Rfb=680Ω, Rin=160//180Ω, Rload=10Ω) (Vcc=±6V, Rfb=510Ω, Rin=150//110Ω, Rload=25Ω) 4 -100 -280 2 2 -300 -120 100 1k 10k 100k 1M 10M 100 100M 1k 10k 100k 1M 10M 100M Frequency (Hz) Frequency (Hz) Figure 9: Bandwidth vs. Temperature Figure 12: Positive Slew Rate AV=+4, Rfb=620Ω, VCC=±6V, RL=25Ω AV=+4, Rfb=910Ω 4 50 Vcc=±6V Load=25Ω 45 2 VOUT (V) Bw (MHz) 40 35 0 30 -2 Vcc=±2.5V Load=10Ω 25 20 -40 -20 0 20 40 Temperature (°C) 8/27 60 80 -4 0.0 10.0n 20.0n 30.0n Time (s) 40.0n 50.0n TS616 Figure 16: Positive Slew Rate AV= - 4, Rfb=620Ω, VCC=±6V, R L=25Ω 2 4 1 2 VOUT (V) VOUT (V) Figure 13: Positive Slew Rate AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω 0 -2 -1 -2 0.0 0 10.0n 20.0n 30.0n 40.0n -4 0.0 50.0n 10.0n Figure 14: Negative Slew Rate 2 2 1 VOUT (V) VOUT (V) 4 0 -2 50.0n 40.0n 50.0n -1 10.0n 20.0n 30.0n 40.0n -2 0.0 50.0n 10.0n 20.0n 30.0n Time (s) Figure 15: Negative Slew Rate AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω Figure 18: Negative Slew Rate AV= - 4, Rfb=620Ω, VCC=±6V, RL=25Ω 2 4 1 2 VOUT (V) VOUT (V) 40.0n 0 Time (s) 0 -1 -2 0.0 30.0n Figure 17: Positive Slew Rate AV= - 4, Rfb=910Ω, VCC=±2.5V, RL=10Ω AV=+4, Rfb=620Ω, VCC=±6V, RL=25Ω -4 0.0 20.0n Time (s) Time (s) 0 -2 10.0n 20.0n 30.0n Time (s) 40.0n 50.0n -4 0.0 10.0n 20.0n 30.0n 40.0n 50.0n Time (s) 9/27 TS616 Figure 19: Negative Slew Rate AV= - 4, Rfb=910Ω, VCC=±2.5V, RL=10Ω Figure 22: Input Voltage Noise Level AV=+92, Rfb=910Ω, Input+ connected to Gnd via 10Ω 2 5.0 Input Voltage Noise (nV/√Hz) VOUT (V) + 0 -2 0.0 10.0n 20.0n 30.0n 40.0n 4.5 _ 4.0 10Ω Output - 6V Ω 910 910Ω 3.5 3.0 2.5 2.0 100 50.0n + 6V 1k 10k Time (s) 100k 1M (Frequency (Hz) Figure 20: Slew Rate vs. Temperature AV=+4, Rfb=910Ω, VCC=±2.5V, RL=10Ω Figure 23: Transimpedance vs. Temperature Open Loop 30 200 150 25 Vcc=±6V Positive SR 20 50 ROL (MΩ) Slew Rate (V/µs) 100 0 -50 15 10 Negative SR -100 Vcc=±2.5V 5 -150 -200 -40 -20 0 20 40 60 0 -40 80 -20 0 20 40 60 80 Temperature (°C) Temperature (°C) Figure 21: Slew Rate vs. Temperature AV=+4, Rfb=910Ω, VCC=±6V, RL=25Ω Figure 24: Icc vs. Power Supply Open loop, no load 600 30 500 400 20 Icc(+) 200 100 0 10 Positive&Negative SR Rfb=620Ω ICC (mA) Slew Rate (V/µs) 300 Positive&Negative SR Rfb=910Ω -100 -200 0 -10 -300 -400 Icc(-) -20 -500 -600 -40 -20 0 20 40 Temperature (°C) 10/27 60 80 -30 0 1 2 3 4 5 6 VCC (V) 7 8 9 10 11 12 TS616 Figure 25: Iib vs. Power Supply Figure 28: Iib(+) vs. Temperature Open loop, no load Open loop, no load 7 8 IB+ 6 7 Vcc=±6V 6 5 IIB(+) (µA) IB (µA) 5 4 3 IB - 2 4 3 2 Vcc=±2.5V 1 1 0 0 5 6 7 8 9 10 11 12 -1 -40 -20 0 Vcc (V) 20 40 60 80 Temperature (°C) Figure 26: Iib(-) vs. Temperature Figure 29: Voh & Vol vs. Power Supply Open loop, no load Open loop, RL=25Ω 6 5 5 VOH 4 4 3 VOH & VOL (V) Vcc=±6V IIB(-) (µA) 3 2 2 1 0 VOL -1 -2 Vcc=±2.5V -3 1 -4 -5 0 -40 -6 -20 0 20 40 60 5 80 6 7 8 Temperature (°C) 9 10 11 12 Vcc (V) Figure 27: Icc vs. Temperature Figure 30: Voh vs. Temperature Open loop, no load Open loop 6 14 12 10 5 Icc(+) for Vcc=±2.5V 8 6 Icc(+) for Vcc=±6V 4 2 VOH (V) ICC (mA) 4 0 -2 -4 -6 -8 Vcc=±6vV Load=25Ω 3 2 Icc(-) for Vcc=±6V Icc(-) for Vcc=±2.5V 1 -10 Vcc=±2.5V Load=10Ω -12 -14 -40 -20 0 20 40 Temperature (°C) 60 80 0 -40 -20 0 20 40 60 80 Temperature (°C) 11/27 TS616 Figure 31: Vol vs. Temperature Figure 34: CMR vs. Temperature Open loop Open loop, no load 0 70 Vcc=±2.5V Load=10Ω -1 68 66 CMR (dB) -2 VOL (V) Vcc=±6V 64 -3 Vcc=±6V Load=25Ω -4 62 60 58 56 Vcc=±2.5V 54 -5 52 -6 -40 -20 0 20 40 60 50 -40 80 -20 0 Temperature (°C) 20 40 60 80 Temperature (°C) Figure 32: Differential Vio vs. Temperature Figure 35: SVR vs. Temperature Open loop, no load Open loop, no load 450 84 400 82 350 SVR (dB) ∆VIO (µV) Vcc=±2.5V 300 Vcc=±6V 80 78 Vcc=±6V 250 76 200 -40 -20 0 20 40 60 80 -40 Vcc=±2.5V -20 0 Temperature (°C) 20 40 60 80 60 80 Temperature (°C) Figure 33: Vio vs. Temperature Figure 36: Iout vs. Temperature Open loop, no load Open loop, VCC=±6V, RL=10Ω 300 2.0 250 Vcc=±6V 200 150 1.5 100 Isource 1.0 Iout (mA) VIO (mV) 50 0.5 0 -50 -100 -150 -200 -250 Isink -300 0.0 -350 Vcc=±2.5V -0.5 -40 -20 0 20 -400 40 Temperature (°C) 12/27 60 80 -450 -40 -20 0 20 40 Temperature (°C) TS616 Figure 37: Iout vs. Temperature Figure 40: Isource vs. Output Amplitude. Open loop, VCC=±2.5V, RL=25Ω VCC=±2.5V, Open Loop, no Load 700 300 250 200 600 150 Isource 50 Iout (mA) Isource (mA) 100 0 -50 -100 -150 500 400 300 -200 -250 200 Isink -300 100 -350 -400 -450 -40 -20 0 20 40 60 0 0.0 80 0.5 1.0 Temperature (°C) 1.5 2.0 2.5 Vout (V) Figure 38: Maximum Output Amplitude vs. Load Figure 41: Isink vs. Output Amplitude AV=+4, Rfb=620Ω, VCC=±6V VCC=±6V, Open Loop, no Load 12 0 Vcc=±6V -100 -200 8 Isink (mA) VOUT-MAX (VP-P) 10 6 4 -300 -400 Vcc=±2.5V -500 2 -600 0 0 50 100 150 -700 200 -6 -5 -4 RLOAD (Ω) -3 -2 -1 Figure 42: Isource vs. Output Amplitude VCC=±2.5V, Open Loop, no Load VCC=±6V, Open Loop, no Load 0 700 -100 600 -200 500 Isource (mA) Isink (mA) Figure 39: Isink vs. Output Amplitude. -300 -400 400 300 -500 200 -600 100 -700 -2.5 0 Vout (V) 0 -2.0 -1.5 -1.0 Vout (V) -0.5 0.0 0 1 2 3 4 5 6 Vout (V) 13/27 TS616 Figure 43: Group Delay SAFE OPERATING AREA VCC=±6V, VCC=±2.5V Figure 44: Safe Operating Area 100 Av=4 Vcc=±6V, Rfb=620Ω, Load=25Ω Vcc=±2.5V, Rfb=910Ω, Load=10Ω IF Bw = 10Hz Smoothing=19.247MHz on 10ns/div scale 90 70 700 90 600 80 Delay VINPUT (mV(ns) ) RMS Delay (ns) 80 100 60 50 40 30 Av=4 Vcc=±6V, Rfb=620Ω, Load=25Ω Vcc=±2.5V, Rfb=910Ω, Load=10Ω IF Bw = 10Hz Smoothing=19.247MHz on 10ns/div scale 60 400 50 SAFE OPERATING AREA 300 40 200 30 20 10 70 500 Vcc=+/-6V Ta=25°C G=12dB RL=100Ω 100 20 300k 1M 10M Frequency (Hz) 50M 100 300k 1M 1M 10M 10M 50M 100M Frequency Frequency (Hz) (Hz) Figure 44 shows the safe operating condition. This curve shows the input level vs. the input frequency. It’s necessary to consider this characteristic to guarantee the design. In the dash-lined zone, the consumption increases. Moreover, this increased consumption could do damage to the chip if the temperature increases. 14/27 TS616 INTERMODULATION DISTORTION PRODUCT Non-ideal output of the amplifier can be described by the following series: 2 n Vout = C 0 + C 1 V in + C 2 V in + …C n V in due to non-linearity in the input-output amplitude transfer, where the input is Vin=Asinωt, C0 is the DC component, C1(Vin) is the fundamental and Cn is the amplitude of the harmonics of the output signal Vout. A one-frequency (one-tone) input signal contributes to harmonic distortion. A two-tone input signal contributes to harmonic distortion and intermodulation product. The study of the intermodulation/distortionfor a two-tone input signal is the first step in characterizing the driving capability of multi-tone input signals. In this case : + C ( A sin ω t + B sin ω t ) 2 1 2 2 … + C ( A sin ω t + B sin ω t ) n 1 2 V In this expression, we recognize the second order intermodulation IM2 by the frequencies (ω1-ω2) and (ω1+ω2) and the third order intermodulation IM3 by the frequencies (2ω1-ω2), (2ω1+ω2), (−ω1+2ω2) and (ω1+2ω2). The measurement of the intermodulation product of the driver is achieved by using the driver as a mixer by a summing amplifier configuration. In this way, the non-linearity problem of an external mixing device is avoided. Figure 45: Non-inverting Summing Amplifier for Intermodulation measurements 1kΩ 1kΩ 49.9Ω + Vin1 50Ω +Vcc 49.9Ω _ 100Ω 910Ω Rout1 300Ω Vin1 Vout diff. 1:√2 n 50Ω 100Ω 300Ω 49.9Ω 1kΩ = A sin ω t + B sin ω t in 1 2 V o ut = C 0 + C 1 ( A sin ω 1 t + B sin ω 2 t ) 49.9Ω 1/2TS616 1:√2 √2:1 100Ω 50Ω Rout2 910Ω _ 49.9Ω 1/2TS616 + -Vcc 1kΩ 49.9Ω and : + C1 ( A sin ω 1 t + B sin ω 2 t ) C2 2 2 – ------- A cos 2ω t + B cos 2ω t 2 1 2 + 2 C2 AB ( cos ( ω 1 – ω 2 )t – cos ( ω 1 – ω 2 ) t ) C3 + 3 ------- 4 The following graphs show the IM2 and the IM3 of the amplifier in different configurations. The two-tone input signal was generated by the multisource generator Marconi 2026. Each tone has the same amplitude. The measurement was performed using a HP3585A spectrum analyzer. 3 3 + C3 A sin 3ω 1 t + B sin 3ω 2 t 2 3C A B 1 3 + ------------------------ sin ( 2ω 1 – ω 2 )t – --- sin ( 2ω 1 + ω )t 2 2 2 2 3C A B 3 1 + ------------------------ sin ( – ω + 2ω ) t – --- sin ( ω + 2ω )t 1 1 2 2 2 2 … + C n ( V in ) n A 2 + B2 V out = C 0 + C 2 --------------------- 2 A3 sin ω t + B 3 sin ω t + 2A 2 B sin ω t + 2AB 2 sin ω t 2 1 2 1 15/27 TS616 Figure 49: Intermodulation vs. Load 370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, RL=14Ω diff.,VCC=±2.5V 370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, Vout=6.5Vpp,V CC=±2.5V -30 -30 -40 -40 IM3 340kHz, 430kHz, 1140kHz, 1170kHz -50 -50 IM2 30kHz IM2 770kHz -60 IM2 and IM3 (dBc) IM2 and IM3 (dBc) Figure 46: Intermodulation vs. Output Amplitude IM3 340kHz, 430kHz -70 -80 -60 IM2 30kHz IM2 770kHz -70 -80 -90 -90 IM3 1140kHz, 1170kHz -100 -100 0 1 2 3 4 5 6 7 -110 8 0 20 40 60 80 100 120 140 160 180 200 Differential Load (Ω) Differential Output Voltage (Vp-p) Figure 50: Intermodulation vs. Output Amplitude 370kHz & 400kHz, AV=+1.5, Rfb=1kΩ, RL=28Ω diff.,VCC=±2.5V 100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=200Ω diff.,VCC=±6V -30 -30 -40 -40 -50 -50 -60 IM3 340kHz, 430kHz -70 IM2 and IM3 (dBc) IM2 and IM3 (dBc) Figure 47: Intermodulation vs. Output Amplitude IM2 770kHz IM2 30kHz -80 IM3 90kHz, 120kHz -60 IM2 210kHz IM3 310kHz -70 IM3 320kHz -80 -90 -90 -100 IM3 1140kHz, 1170kHz -100 -110 0 1 2 3 4 5 6 7 8 2 4 Differential Output Voltage (Vp-p) 6 8 10 12 14 16 18 20 22 Differential Output Voltage (Vp-p) Figure 48: Intermodulation vs. Gain Figure 51: Intermodulation vs. Output Amplitude 370kHz & 400kHz, RL=20Ω diff., Vout=6Vpp, VCC=±2.5V 100kHz & 110kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V -30 -30 -40 -40 -60 IM2 30kHz IM2 770kHz -70 -80 -70 -80 -90 -100 -100 -110 1.5 2.0 2.5 3.0 Closed Loop Gain (Linear) 16/27 IM2 210kHz -60 -90 -110 1.0 IM3 90kHz, 120kHz, 310kHz, 320kHz -50 IM2 and IM3 (dBc) IM2 and IM3 (dBc) -50 IM3 340kHz, 430kHz, 1140kHz, 1170kHz 3.5 4.0 2 4 6 8 10 12 14 16 18 Differential Output Voltage (Vp-p) 20 22 TS616 Figure 52: Intermodulation vs. Frequency Range Figure 54: Intermodulation vs. Output Amplitude AV=+4, Rfb=620Ω, RL=50Ω diff., Vout=16Vpp, VCC=±6V 370kHz & 400kHz, AV=+4, Rfb=620Ω, RL=50Ω diff., VCC=±6V -30 -60 Quadratic Summation of all IM2 and IM3 components generated by each two-tones signal -65 IM3 1140kHz, 1170kHz -50 f1=100kHz f2=110kHz -75 f1=1MHz f2=1.1MHz f1=400kHz f2=430kHz f1=200kHz f2=230kHz -80 IM2 and IM3 (dBc) -70 (dB) IM2 30kHz -40 -85 -60 IM3 340kHz, 430kHz -70 -80 -90 -90 -95 -100 -100 100k IM2 770kHz -110 200k 300k 400k 500k 600k 700k 800k 900k 1M 1.1M 1M 0 2 4 6 8 10 12 14 16 18 20 22 Differential Output Voltage (Vp-p) Frequency (Hz) Figure 53: Intermodulation vs. Output Amplitude 370kHz & 400kHz, AV=+4, Rfb=620Ω, RL=200Ω diff.,VCC=±6V -30 -40 IM2 and IM3 (dBc) -50 IM2 770kHz IM2 30kHz -60 IM3 1140kHz, 1170kHz -70 IM3 340kHz, 430kHz -80 -90 -100 -110 0 2 4 6 8 10 12 14 16 18 20 22 Differential Output Voltage (Vp-p) 17/27 TS616 PRINTED CIRCUIT BOARD LAYOUT CONSIDERATIONS Figure 55: Exposed-Pad Package In the ADSL frequency range, printed circuit board parasites can affect the closed-loop performance. THERMAL INFORMATION The TS616 is housed in an Exposed-Pad plastic package. As depicted in figure 55, this package uses a lead frame upon which the die is mounted. This lead frame is exposed as a thermal pad on the underside of the package. The thermal contact is direct with the dice. This thermal path provides excellent colling. The thermal pad is electrically isolated from all pins in the package. It should be soldered to a copper area of the PCB underneath the package. Through these thermal paths within this copper area, heat can be conducted away from the package. In this case, the copper area should be connected to (-VCC). 18/27 DICE The implementation of a proper ground plane on both sides of the PCB is mandatory to provide low inductance and low resistance common return. The most important factors affecting gain flatness and bandwidth are stray capacitances at the output and inverting input. To minimize these capacitances, the space between signal lines and ground plane should be increased. Feedback components connections must be as short as possible in order to decrease the associated inductance which affects high frequency gain errors. It is very important to choose the smallest possible external components, for example, surface mounted devices (SMD) in order to minimize the size of all DC and AC connections. 1 Side View Bottom View DICE Cross Section View Figure 56: Evaluation Board TS616 R201 Figure 57: Schematic Diagram Non-Inverting R218 1 _ R216 3 + 1/2 TS616 2 R214 R211 R208 R209 R212 R203 J207 J208 Inverting R215 R215 J211 R219 7 R217 + _ 1/2 TS616 R204 1/2TS616 5 6 R209 J208 5 R219 7 + R217 _ R221 6 R204 J210 R218 1 _ R211 R214 J210 J211 R221 R202 1/2TS616 2 R207 J206 + R220 3 R216 R207 R202 R206 R220 J205 J206 R205 R213 R213 R210 J209 R201 Summing Amplifier R206 J206 R207 3 + 1/2TS616 2 R218 1 _ R216 R202 Differential Amplifier 3 R207 + 1/2TS616 R218 1 _ J210 R211 R214 R220 2 R216 R202 J206 J210 R211 R214 R220 J205 R212 Power Supply C201 100uF C202 +Vcc 100nF 8 J201 +Vcc 3 2 1 _ 4 -Vcc -Vcc -Vcc 100nF Exposed-Pad C204 100uF C206 C203 R213 + 1/2TS616 J202 GND J303 -Vcc R210 R205 J211 R219 7 100nF J209 + R221 1/2TS616 5 100nF _ R217 6 +Vcc C205 R215 +Vcc 6 1 J204 2 _ 1/2TS616 3 5 7 + -Vcc 19/27 TS616 Figure 58: Component Locations - Top Side Figure 60: Top Side Board Layout Figure 59: Component Locations - Bottom Side Figure 61: Bottom Side Board Layout 20/27 TS616 k is the Boltzmann’s constant, equal 1,374.10-23J/°K. T is the temperature (°K). NOISE MEASUREMENT to Figure 62: Noise Model The output noise eNo is calculated using the Superposition Theorem. However it is not the simple sum of all noise sources. The square root of the sum of the square of each noise source. + iN+ R3 TS616 eN iN- eNo = HP3577 Input noise: 8nV/√Hz _ N3 output 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g R2 2 R2 2 … + ------- × 4kTR1 + 4kTR2 + 1 + ------- × 4kTR3, ( eq2 ) R1 R1 eNo R2 N2 R1 2 2 2 2 2 2 V1 + V2 + V3 + V4 + V5 + V6 ,( eq1 ) 2 The input noise of the instrumentation must be extracted from the measured noise value. The real output noise value of the driver is: N1 2 2 ( Measured ) – ( instrumentation ) , ( eq3 ) eNo = eN : input voltage noise of the amplifier iNn : negative input current noise of the amplifier iNp : positive input current noise of the amplifier The closed loop gain is : R fb A V = g = 1 + ---------R g The six noise sources are : R2 V1 = eN × 1 + ------- R1 V2 = iNn × R 2 R2 V3 = iNp × R3 × 1 + ------- R1 R2 V4 = – ------- × 4kTR1 R1 V5 = 4 kTR2 R2 V6 = 1 + ------- 4kTR3 R1 We assume that the thermal noise of a resistance R is: 4kTR ∆ F wher ∆F is the specified bandwidth. On 1Hz bandwidth the thermal noise is reduced to 4kTR The input noise is called the Equivalent Input Noise as it is not directly measured but it is evaluated from the measurement of the output divided by the closed loop gain (eNo/g). After simplification of the fourth and the fifth term of (eq2) we obtain: eNo 2 2 2 2 2 2 2 2 = eN × g + iNn × R2 + iNp × R3 × g R2 2 … + g × 4kTR2 + 1 + ------- × 4kTR3, ( eq4 ) R1 Measurement of eN: We assume a short-circuit on the non-inverting input (R3=0). (eq4) comes: eNo = 2 2 2 2 eN × g + iNn × R2 + g × 4kTR2, ( eq5 ) In order to easily extract the value of eN, the resistance R2 will be chosen as low as possible. In the other hand, the gain must be large enough. R1=10Ω, R2=910Ω, R3=0, Gain=92 Equivalent Input Noise: 2.57nV/√Hz Input Voltage Noise: eN=2.5nV/√Hz Measurement of iNn: R3=0 and the output noise equation is still the (eq5). This time the gain must be decreased to decrease the thermal noise contribution. R1=100Ω, R2=910Ω, R3=0, Gain=10.1 Equivalent Input Noise: 3.40nV/√Hz Negative Input Current Noise: iNn =21pA/√Hz Measurement of iNp: To extract iNp from (eq3), a resistance R3 is connected to the non-inverting input. The value of R3 must be chosen in order to keep its thermal noise 21/27 TS616 contribution as low as possible against the iNp contribution. R1=100Ω, R2=910Ω, R3=100Ω, Gain=10.1 Equivalent Input Noise: 3.93nV/√Hz Positive Input Current Noise: iNp=15pA/√Hz Conditions: frequency=100kHz, VCC =±2.5V Instrumentation: Spectrum Analyzer HP3585A (input noise of the HP3585A: 8nV/√Hz) The following figure shows the case of a 5V single power supply configuration Figure 64: Circuit for +5V single supply +5V 10µF +5V POWER SUPPLY BYPASSING Correct power supply bypassing is very important for optimizing the performance in high frequency ranges. Bypass capacitors should be placed as close as possible to the IC pins to improve high frequency bypassing. A capacitor greater than 1µF is necessary to minimize the distortion. For a better quality bypassing a capacitor of 10nF can be added using the same implementation conditions. Bypass capacitors must be incorporated for both the negative and the positive supply. Figure 63: Circuit for Power Supply Bypassing +VCC 10µF + 10nF + IN Rin 1kΩ 100µF ½ TS616 _ OUT 10Ω R1 820Ω Rfb R2 820Ω + 1µF RG 10nF + CG The TS616 operates with power supplies from 12V down to 5V. This can be achieved by either a dual power supplies of ±6V or ±2.5V or a single power supply of 12V or 5V referenced to the ground. In the case of asymmetrical supply, a new biasing is necessary to assume a positive output dynamic range between 0V and +VCC supply rails. Considering the values of VOH and VOL, the amplifier will provide an output dynamic from +0.5V to 10.6V on 25Ω load for a 12V supply and from 0.45V to 3.8V on 10Ω load for a 5V supply. + TS616 - 10nF 10µF + -VCC SINGLE POWER SUPPLY 22/27 The amplifier must be biased with a mid-supply (nominally +VCC/2), in order to maintain the DC component of the signal at this value. Several options are possible to provide this bias supply, such as a virtual ground using an operational amplifier or a two-resistance divider (which is the cheapest solution). A high resistance value is required to limit the current consumption. On the other hand, the current must be high enough to bias the non-inverting input of the amplifier. If we consider TS616 this bias current (30µA max.) as the 1% of the current through the resistance divider to keep a stable mid-supply, two resistances of 2.2kΩ can be used in the case of a 12V power supply and two resistances of 820Ω can be used in the case of a 5V power supply. The input provides a high pass filter with a break frequency below 10Hz which is necessary to remove the original 0 volt DC component of the input signal, and to fix it at +VCC/2. CHANNEL SEPARATION - CROSSTALK The following figure shows the crosstalk from an amplifier to a second amplifier. This phenomenon, accentuated at high frequencies, is unavoidable and intrinsic to the circuit. Nevertheless, the PCB layout also has an effect on the crosstalk level. Capacitive coupling between signal wires, distance between critical signal nodes and power supply bypassing are the most significant factors. Table 1: Closed-Loop Gain - Feedback Components VCC (V) ±6 ±2.5 Gain Rfb (Ω) +1 +2 +4 +8 -1 -2 -4 -8 +1 +2 +4 +8 -1 -2 -4 -8 750 680 620 510 680 680 620 510 1.1k 1k 910 680 1k 1k 910 680 INVERTING AMPLIFIER BIASING In this case a resistance R is necessary to achieve good input biasing, see Figure 66. This resistance is calculated by assuming the negative and positive input bias current. The aim is to compensate for the offset bias current which could affect the input offset voltage and the output DC component. Assuming Ib-, Ib+, Rin, Rfb and a zero volt output, the resistance R comes: R = Rin // Rfb . Figure 65: Crosstalk vs. Frequency AV=+4, Rfb=620Ω, VCC=±6V, Vout=2Vp -50 -60 CrossTalk (dB) CHOICE OF THE FEEDBACK CIRCUIT -70 -80 Figure 66: Compensation of the Input Bias Current -90 -100 -110 Rfb -120 -130 10k Ib100k 1M 10M Rin _ Vcc+ Output Frequency (Hz) TS616 + Vcc- Ib+ Load R 23/27 TS616 ACTIVE FILTERING Figure 67: Low-Pass Active Filtering. Sallen-Key preferable to use very stable resistors and capacitances values. In the case of R1=R2: R fb 2C – C ---------2 1R g ζ = -----------------------------------2 C C 1 2 C1 R1 R2 + IN OUT C2 TS616 _ 25Ω RG Rfb 910Ω The resistors Rfb and RG give the gain of the filter as a classical non-inverting amplification configuration : A V R fb = g = 1 + ---------Rg Assume the following expression is the response of the system: Vout jω g T jω = ------------------- = --------------------------------------------Vinjω 2 jω ( jω ) 1 + 2ζ ------- + -------------2 ωc ωc INCREASING THE LINE LEVEL BY USING AN ACTIVE IMPEDANCE MATCHING With passive matching, the output signal amplitude of the driver must be twice the amplitude on the load. To go beyond this limitation, active matching impedance can be used. With this technique, it is possible to keep good impedance matching with an amplitude on the load higher than half of the output driver amplitude. This concept is shown in Figure 68 for a differential line. Figure 68: TS616 as a differential line driver with an active impedance matching 1µ 100n Vcc+ + _ Vcc+ R2 1k Rs1 10n GND Vo° Vi 1:n Vo 1/2 R1 R3 RL Vcc/2 the cut-off frequency is not gain-dependent and it becomes: 1 ω c = -------------------------------------R1R2C 1C2 The damping factor becomes: 1 ζ = --- ω c ( C1 R 1 + C1 R 2 + C2 R 1 – C1 R 1 g ) 2 The higher the gain, the more sensitive the damping factor is. When the gain is higher than 1 it is 24/27 1/2 R1 10µ Vi R5 100n Vo° 1k GND + _ 100n R4 Vcc+ GND Rs2 Vo Hybrid & Transformer 100Ω TS616 Component Calculation Let us consider the equivalent circuit for a single-ended configuration as shown in Figure 69. Figure 69: Single ended equivalent circuit By identification of both equations (eq2) and (eq3), the synthesized impedance is, with Rs1=Rs2=Rs: + Rs1 _ Vi 2R2 R2 Vi 1 + ----------- + -------- R1 R3 Rs1Iout Vo = ------------------------------------------------ – ----------------------- ,( eq3 ) R2 R2 1 – -------1 – -------R3 R3 Rs Ro = ----------------- ,( eq4 ) R2 1 – -------R3 Vo° Vo R2 Figure 70: Equivalent schematic. Ro is the synthesized impedance. -1 R3 ½ R1 ½ RL Ro Let us consider the unloaded system. Assuming the currents through R1, R2 and R3 are respectively: 2Vi ( Vi – Vo° ) ( Vi + Vo ) ---------, --------------------------- and -----------------------R1 R2 R3 as Vo° equals Vo without load, the gain in this case becomes : 2R2 R2 1 + ----------- + -------Vo ( noload ) R1 R3 G = --------------------------------- = -----------------------------------Vi R2 1 – -------R3 The gain, for the loaded system will be (eq1): 2 R2 R2 1 + ----------- + -------Vo ( with load ) 1 R1 R3 GL = -------------------------------------- = --- ------------------------------------ ,( eq1 ) Vi 2 R2 1 – -------R3 As shown in Figure70, this system is an ideal generator with a synthesized impedance as the internal impedance of the system. From this, the output voltage becomes: Iout Vi.Gi 1/2RL Unlike the level Vo° required for a passive impedance, Vo° will be smaller than 2Vo in our case. Let us write Vo°=kVo with k the matching factor varying between 1 and 2. Assuming that the current through R3 is negligible, (eq4) becomes the following : kV oRL Ro = -----------------------------RL + 2R s1 After choosing the k factor, Rs will equal to 1/2RL(k-1). A good impedance matching assumes: 1 R o = --- RL ,( eq5 ) 2 (eq4) and (eq5) give : R2 2Rs -------- = 1 – ----------- ,( eq6 ) R3 RL By fixing an arbitrary value of R2, (eq6) becomes : Vo = ( ViG ) – ( RoIout ) ,( eq2 ) with Ro the synthesized impedance and Iout the output current. On the other hand Vo can be expressed as: R2 R3 = --------------------2Rs 1 – ----------RL Finally, the values of R2 and R3 allow us to extract R1 from (eq1), and it becomes: 25/27 TS616 2R2 R1 = ----------------------------------------------------------- ,( eq7 ) R2 R2 2 1 – -------- GL – 1 – ------- R3 R3 with GL the required gain. Table 2 : Components Calculation for Impedance Matching Implementation GL (gain for the loaded system) R1 R2 (=R4) R3 (=R5) Rs Load viewed by each driver 26/27 GL is fixed for the application requirements GL=Vo/Vi=0.5(1+2R2/R1+R2/R3)/(1-R2/R3) 2R2/[2(1-R2/R3)GL-1-R2/R3] Abritrary fixed R2/(1-Rs/0.5RL) 0.5RL(k-1) kRL/2 TS616 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO Exposed-Pad) Millimeters Inches Dim. Min. A A1 A2 B C D D1 E E1 e H h L k ddd Typ. 1.350 0.000 1.100 0.330 0.190 4.800 Max. Min. 1.750 0.250 1.650 0.510 0.250 5.000 0.053 0.001 0.043 0.013 0.007 0.189 4.000 0.150 3.10 3.800 Max. 0.069 0.010 0.065 0.020 0.010 0.197 0.122 2.41 1.270 5.800 0.250 0.400 0d Typ. 0.157 0.095 0.050 6.200 0.500 1.270 8d 0.100 0.228 0.010 0.016 0d 0.244 0.020 0.050 8d 0.004 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 27/27