TSH80-TSH81-TSH82 WIDE BAND, RAIL to RAIL OPERATIONAL AMPLIFIER WITH STANDBY FUNCTION ■ 4.5V, 12V OPERATING CONDITIONS ■ 3dB-BANDWIDTH: 100MHz ■ SLEW-RATE: 100V/µs ■ OUTPUT CURRENT: up to 55mA L SOT23-5 (Plastic Micro package) ■ INPUT SINGLE SUPPLY VOLTAGE ■ OUTPUT RAIL TO RAIL ■ SPECIFIED FOR 150Ω LOAD ■ LOW DISTORTION, THD: 0.1% P TSSOP8 (Plastic Micro package) ■ SOT23-5, TSSOP and SO PACKAGES DESCRIPTION The TSH8x serie offers Single and Dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150Ω loads. Running at single or dual supply voltage from 4.5V to 12V, these amplifiers are tested at 5V(±2.5V) and 10V(±5V) supplies. The TSH81 also features a Standby mode, which allows the operational amplifier to be put into a standby mode with low power consumption and high output impedance.The function allows power saving or signals switching/multiplexing for high speed applications and video applications. For board space and weight saving, TSH8x series is proposed in SOT23-5, TSSOP8 and SO8 packages. APPLICATION D SO8 (Plastic Micro package) PIN CONNECTIONS (top view) TSH80 : SOT23-5/SO8 Output 1 VCC - 2 Non-Inv. In. 3 Inv. In. 2 _ 7 VCC + Non-Inv. In. 3 + 6 Output +4 Inv. In. ■ A/D Converters Driver 5 NC VCC - 4 TSH81 : SO8/TSSOP8 NC 1 8 STANDBY Inverting Input 2 _ 7 VCC + Non Inverting Input 3 + 6 Output VCC - 4 5 NC TSH82 : SO8/TSSOP8 Output1 1 ■ Video Buffers 8 NC NC 1 5 VCC + 8 VCC + Inverting Input1 2 _ Non Inverting Input1 3 + VCC - 4 7 Output2 _ 6 Inverting Input2 + 5 Non Inverting Input2 ■ Hi-Fi Applications February 2003 1/18 TSH80-TSH81-TSH82 ABSOLUTE MAXIMUM RATINGS Symbol Parameter 1) VCC Supply Voltage Vid Differential Input Voltage 2) Vi Input Voltage Operating Free Air Temperature Range Tstg Tj Storage Temperature Maximum Junction Temperature Rthja V ±2 V V °C -65 to +150 150 °C °C 80 28 37 SOT23-5 SO8 TSSOPO8 ESD 1. 2. 3. 4. 14 ±6 Thermal resistance junction to case 4) SOT23-5 SO8 TSSOPO8 Thermal resistance junction to ambient area Rthjc Unit -40 to +85 3) Toper Value Human Body Model °C/W 250 157 130 °C/W 2 kV All voltage values, except differential voltage are with respect to network ground terminal Differential voltages are non-inverting input terminal with respect to the inverting terminal The magnitude of input and output must never exceed VCC +0.3V Short-circuits can cause excessive heating OPERATING CONDITIONS Symbol VCC VIC Parameter Supply Voltage Value Unit 4.5 to 12 V - Common Mode Input Voltage Range + VCC to (VCC -1.1) - Standby + V (VCC ) to (VCC ) ORDER CODES Type TSH80ILT TSH80ID TSH80IDT TSH81ID TSH81IDT TSH81IPT TSH82ID TSH82IDT TSH82IPT Temperature Package Marking -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C SOT23-5 SO8 SO8 Tape SO8 SO8 Tape TSSOP8 SO8 SO8 Tape TSSOP8 K303 TSH80I TSH80I TSH81I TSH81I TSH81I TSH82I TSH82I TSH82I I = Temperature range D = Small Outline Package (SO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT) L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT) 2/18 V TSH80-TSH81-TSH82 ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter |Vio| Input Offset Voltage ∆Vio Input Offset Voltage Drift vs Temperature Iio Input Offset Current Iib Input Bias Current Cin Input Capacitance ICC CMR SVR PSR Avd Io Voh Supply Current per Operator Common Mode Rejection Ratio (δVic/δVio) Supply Voltage Rejection Ratio (δVCC/δVio) Power Supply Rejection Ratio (δVCC/δVout) Large Signal Voltage Gain Output Short Circuit Current Source High Level Output Voltage Test Condition Min. Typ. Max. Unit Tamb = 25°C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. 1.1 10 12 mV Tamb = 25°C Tmin. < Tamb < Tmax. +0.1<Vic<3.9V & Vout=2.5V Tamb = 25°C Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. 8.2 µV/°C 3 0.1 3.5 5 µA 6 15 20 µA 0.3 72 70 97 68 65 75 Positive & Negative Rail RL=150Ω to 1.5V Vout=1V to 4V Tamb = 25°C Tmin. < Tamb < Tmax. Tamb=25°C Vid =+1, Vout to 1.5V Vid =-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < Tmax. Vid =+1, Vout to 1.5V Vid =-1, Vout to 1.5V |Source| Sink Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND RL RL RL RL = 150Ω to 2.5V = 600Ω to 2.5V = 2kΩ to 2.5V = 10kΩ to 2.5V Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V 75 75 70 84 35 33 55 55 pF 10.5 11.5 mA dB dB dB dB mA 28 28 4.2 4.36 4.85 4.90 4.93 4.5 4.66 4.90 4.92 4.93 V 4.1 4.4 3/18 TSH80-TSH81-TSH82 Symbol Parameter Test Condition Min. Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Vol Low Level Output Voltage RL RL RL RL = 150Ω to 2.5V = 600Ω to 2.5V = 2kΩ to 2.5V = 10kΩ to 2.5V Typ. Max. 48 54 55 56 150 220 105 76 61 400 Tmin. < Tamb < Tmax. RL = 150Ω to GND RL = 150Ω to 2.5V GBP Gain Bandwidth Product Bw Bandwidth @-3dB SR Slew Rate φm en THD Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion IM2 Second order inter modulation product IM3 Third order inter modulation product ∆G Differential gain Df Differential phase Gf Gain Flatness Vo1/Vo2 Channel Separation 4/18 F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150Ω to 2.5V AVCL =+2 RL=150Ω // CL to 2.5V CL = 5pF CL = 30pF RL=150Ω // 30pF to 2.5V F=100kHz AVCL =+2, F=4MHz RL=150Ω // 30pF to 2.5V Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150Ω to 2.5V Fin1=180kHz, Fin2=280kHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150Ω to 2.5V Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150Ω to 2.5V F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150Ω to 2.5V F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz Unit mV 200 450 60 65 55 MHz 87 MHz 104 105 40 11 -61 -54 V/µs ° nV/√Hz dB -76 dBc -68 dBc 0.5 % 0.5 ° 0.2 65 dB dB TSH80-TSH81-TSH82 ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified) Symbol Parameter |Vio| Input Offset Voltage ∆Vio Input Offset Voltage Drift vs Temperature Iio Input Offset Current Iib Input Bias Current Cin Input Capacitance ICC CMR SVR PSR Avd Io Voh Vol GBP Bw Supply Current per Operator Common Mode Rejection Ratio (δVic/δVio) Supply Voltage Rejection Ratio (δVCC/δVio) Power Supply Rejection Ratio (δVCC/δVout) Large Signal Voltage Gain Output Short Circuit Current Source High Level Output Voltage Low Level Output Voltage Gain Bandwidth Product Bandwidth @-3dB Test Condition Min. Typ. Max. Unit Tamb = 25°C Tmin. < Tamb < Tmax. Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. 0.8 10 12 mV Tamb = 25°C Tmin. < Tamb < Tmax. -4.9<Vic<3.9V & Vout=GND Tamb = 25°C Tmin. < Tamb < Tmax. Tamb = 25°C Tmin. < Tamb < Tmax. 9.8 µV/°C 2 0.1 3.5 5 µA 6 15 20 µA 0.7 81 72 106 71 65 77 Positive & Negative Rail RL=150Ω to GND Vout=-4 to +4 Tamb = 25°C Tmin. < Tamb < Tmax. Tamb=25°C Vid =+1, Vout to 1.5V Vid =-1, Vout to 1.5V |Source| Sink Tmin. < Tamb < Tmax. Vid =+1, Vout to 1.5V Vid =-1, Vout to 1.5V |Source| Sink Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Tmin. < Tamb < Tmax. RL = 150Ω to GND Tamb=25°C RL = 150Ω to GND RL = 600Ω to GND RL = 2kΩ to GND RL = 10kΩ to GND Tmin. < Tamb < Tmax. RL = 150Ω to GND F=10MHz AVCL =+11 AVCL =-10 AVCL =+1 RL=150Ω // 30pF to GND pF 12.3 13.4 dB dB 75 75 70 86 35 30 55 55 mA dB dB mA 28 28 4.2 4.36 4.85 4.9 4.93 V 4.1 -4.63 -4.86 -4.9 -4.93 -4.4 mV -4.3 65 55 MHz 100 MHz 5/18 TSH80-TSH81-TSH82 Symbol SR φm en THD Parameter Slew Rate Phase Margin Equivalent Input Noise Voltage Total Harmonic Distortion IM2 Second order inter modulation product IM3 Third order inter modulation product ∆G Differential gain Df Differential phase Gf Gain Flatness Vo1/Vo2 Channel Separation 6/18 Test Condition AVCL =+2 RL=150Ω // CL to GND CL = 5pF CL = 30pF RL=150Ω to gnd F=100kHz AVCL =+2, F=4MHz RL=150Ω // 30pF to gnd Vout=1Vpp Vout=2Vpp AVCL =+2, Vout=2Vpp RL=150Ω to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @100kHz AVCL =+2, Vout=2Vpp RL=150Ω to gnd Fin1=180kHz, Fin2=280KHz spurious measurement @400kHz AVCL =+2, RL=150Ω to gnd F=4.5MHz, Vout=2Vpp AVCL =+2, RL=150Ω to gnd F=4.5MHz, Vout=2Vpp F=DC to 6MHz, AVCL=+2 F=1MHz to 10MHz Min. Typ. 68 117 118 40 11 -61 -54 Max. Unit V/µs ° nV/√Hz dB -76 dBc -68 dBc 0.5 % 0.5 ° 0.2 65 dB dB TSH80-TSH81-TSH82 STANDBY MODE VCC+, VCC-, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Vlow Standby Low Level VCC- (VCC+0.8) V Vhigh Standby High Level (VCC- +2) (VCC+) V 55 µA ICC SBY Zout Ton Toff Current Consumption per Operator when STANDBY is Active pin 8 (TSH81) to VCC- 20 Output Impedance (Rout//Cout) Rout Cout 10 17 MΩ pF 2 µs 10 µs Time from Standby Mode to Active Mode Time from Active Mode to Standby Mode Down to ICC SBY = 10µA TSH81 STANDBY CONTROL pin 8 (SBY) OPERATOR STATUS Vlow Standby Vhigh Active 7/18 TSH80-TSH81-TSH82 Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C Overshoot function of output capacitance Gain=+2, Vcc= ±2.5V, Tamb = 25°C 10 200 10 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 Phase 150Ω//10pF Gain (dB) 0 Phase (°) Gain (dB) 5 150Ω 0 -100 -10 -200 -15 1E+4 1E+5 1E+6 1E+7 1E+8 -5 1E+6 1E+9 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C 30 Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C 200 Phase 30 0 Phase 150 20 20 Gain Phase (°) 50 Gain (dB) 10 -50 Phase (°) Gain (dB) 100 Gain 10 0 -100 0 0 -50 -10 1E+4 1E+5 1E+6 1E+7 1E+8 -10 1E+4 -100 1E+9 1E+5 Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk 1E+8 -150 1E+9 Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk 3 3 2 2 1 1 Vout (V) Vout (V) 1E+7 Frequency (Hz) Frequency (Hz) 0 0 -1 -1 -2 -2 -3 -3 0 10 20 30 40 Time (ns) 8/18 1E+6 50 60 70 80 0 10 20 30 40 Time (ns) 50 60 70 TSH80-TSH81-TSH82 Small Signal Measurement - Fall Time Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk 0.06 0.06 0.04 0.04 0.02 0.02 0 Vout Vin Vout (V) Vin, Vout (V) Small Signal Measurement - Rise Time Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk Vout Vin -0.02 Vin 0 -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 60 0 10 20 30 Time (ns) 40 50 60 Time (ns) Channel separation (Xtalk) vs frequency Measurement configuration: Xtalk=20log(V0/V1) Channel separation (Xtalk) vs frequency Gain=+11, Vcc=±2.5V, ZL=150Ω//27pF VIN -20 49.9Ω ++ -- -30 -40 V1 4/1output -50 Xtalk (dB) 100Ω 1kΩ 150Ω 3/1output -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 -110 1E+4 150Ω 1E+5 1E+6 1E+7 Frequency (Hz) Equivalent Noise Voltage Gain=100, Vcc=±2.5V, No load Maximum Output Swing Gain=11, Vcc=±2.5V, RL=150Ω 3 30 + _ 25 2 Vout 10k Vin, Vout (V) en (nV/√Hz) 100 20 15 10 1 Vin 0 -1 -2 5 0.1 1 10 Frequency (kHz) 100 1000 -3 0.0E+0 5.0E-2 1.0E-1 1.5E-1 2.0E-1 Time (ms) 9/18 TSH80-TSH81-TSH82 Standby Mode - Ton, Toff Vcc= ±2.5V, Open Loop Group Delay Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C Vin 3 Vin, Vout (V) 2 Gain 1 0 Vout -1 Group Delay -2 5.32ns -3 Ton 0 2E-6 Standby 4E-6 Toff 6E-6 8E-6 1E-5 Time (s) Third Order Inter modulation Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF , Tamb = 25°C Inter modulation products -10 -20 -30 IM3 (dBc) The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 0 -40 740kHz -50 80kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 Vout peak(V) 10/18 3 4 TSH80-TSH81-TSH82 Closed Loop Gain and Phase vs. Frequency Gain=+2, Vcc= ±5V, RL=150Ω, Tamb = 25°C Overshoot function of output capacitance Gain=+2, Vcc= ±5V, Tamb = 25°C 10 200 10 150Ω//33pF 5 Gain 100 150Ω//22pF 0 -5 150Ω//10pF Gain (dB) 0 Phase (°) Gain (dB) 5 150Ω 0 Phase -100 -10 -15 1E+4 1E+5 1E+6 1E+7 -200 1E+9 1E+8 -5 1E+6 1E+7 Frequency (Hz) 1E+8 1E+9 Frequency (Hz) Closed Loop Gain and Phase vs. Frequency Gain=-10, Vcc= ±5V, RL=150Ω, Tamb = 25°C Closed Loop Gain and Phase vs. Frequency Gain=+11, Vcc= ±5V, RL=150Ω, Tamb = 25°C 30 200 30 0 Phase Phase 150 20 50 Phase (°) 10 -50 Gain Gain (dB) 100 Gain Phase (°) Gain (dB) 20 10 -100 0 0 0 -10 1E+4 1E+5 1E+6 1E+7 -50 1E+9 1E+8 -10 1E+4 1E+5 Frequency (Hz) 1E+7 -150 1E+9 1E+8 Frequency (Hz) Large Signal Measurement - Positive Slew Rate Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk Large Signal Measurement - Negative Slew Rate Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk 5 5 4 4 3 3 2 2 1 1 Vout (V) Vout (V) 1E+6 0 -1 0 -1 -2 -2 -3 -3 -4 -4 -5 -5 0 20 40 60 Time (ns) 80 100 0 20 40 60 80 100 Time (ns) 11/18 TSH80-TSH81-TSH82 Small Signal Measurement - Fall Time Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpk 0.06 0.06 0.04 0.04 0.02 0.02 Vin, Vout (V) Vin, Vout (V) Small Signal Measurement - Rise Time Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpk 0 Vout Vin -0.02 Vout 0 Vin -0.02 -0.04 -0.04 -0.06 -0.06 0 10 20 30 40 50 0 60 10 20 Time (ns) 30 40 50 60 Time (ns) Channel separation (Xtalk) vs frequency Measurement configuration: Xtalk=20log(V0/V1) Channel separation (Xtalk) vs frequency Gain=+11, Vcc=±5V, ZL=150Ω//27pF VIN -20 49.9Ω + -- -30 -40 V1 4/1output -50 150Ω Xtalk (dB) 100Ω 1kΩ 3/1output -60 -70 -80 + 49.9Ω - 2/1output -90 VO 100Ω 1kΩ -100 -110 1E+4 150Ω 1E+5 1E+6 1E+7 Frequency (Hz) Equivalent Noise Voltage Gain=100, Vcc=±5V, No load Maximum Output Swing Gain=11, Vcc=±5V, RL=150Ω 5 30 4 25 3 + _ 2 10k Vin, Vout (V) 100 en (nV/√Hz) Vout 20 15 1 Vin 0 -1 -2 -3 10 -4 5 0.1 1 10 Frequency (kHz) 12/18 100 1000 -5 0.0E+0 5.0E-2 1.0E-1 Time (ms) 1.5E-1 2.0E-1 TSH80-TSH81-TSH82 Standby Mode - Ton, Toff Vcc=±5V, Open Loop Group Delay Gain=2, Vcc=±5V, ZL=150Ω//27pF, Tamb = 25°C Vin Vin, Vout (V) 5 Gain Vout 0 Group Delay 5.1ns -5 Standby Ton 0 2E-6 4E-6 Toff 6E-6 8E-6 Time (s) Third Order Inter modulation Gain=2, Vcc=±5V, ZL=150Ω//27pF, Tamb = 25°C Inter modulation products -10 -20 -30 IM3 (dBc) The IFR2026 synthesizer generates a two tones signal (F1=180kHz, F2=280kHz); each tone having the same amplitude level. The HP3585 spectrum analyzer measures the inter modulation products function of the output voltage. The generator and the spectrum analyzer are phase locked for precision considerations. 0 -40 80kHz -50 740kHz -60 -70 -80 -90 380kHz 640kHz -100 0 1 2 3 4 Vout peak(V) 13/18 TSH80-TSH81-TSH82 TESTING CONDITIONS: Maximum input level: Layout precautions: The input level must not exceed the following values: To use the TSH8X circuits in the best manner at high frequencies, some precautions have to be taken for power supplies: - First of all, the implementation of a proper ground plane in both sides of the PCB is mandatory for high speed circuit applications to provide low inductance and low resistance common return. - Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The power supply capacitors must be incorporated for both the negative and the positive pins. - Proper termination of all inputs and outputs must be in accordance with output termination resistors; then the amplifier load will be only resistive and the stability of the amplifier will be improved. All leads must be wide and as short as possible especially for op amp inputs and outputs in order to decrease parasitic capacitance and inductance. ❑ negative peak: must be greater than -Vcc+400mV. ❑ positive peak value: must be lower than +Vcc-400mV. The electrical characteristics show the influence of the load on this parameter. Video capabilities: To characterize the differential phase and differential gain a CCIR330 video line is used. The video line contains 5 (flat) levels of luma on which is superimposed chroma signal. (the first level contains no luma). The luma gives various amplitudes which define the saturation of the signal. The chrominance gives various phases which define the colour of the signal. - For lower gain application, attention should be paid not to use large feedback resistance (>1kΩ) to reduce time constant with parasitic capacitances. Differential phase (respectively differential gain) distortion is present if a signal chrominance phase (gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels. - Choose component sizes as small as possible (SMD). When differential gain is present, colour saturation is not correctly reproduced. - Finally, on output, the load capacitance must be negligible to maintain good stability. You can put a serial resistance the closest to the output pin to minimize its influence. The input generator is the Rohde & Schwarz CCVS. The output measurement is done by the Rohde and Schwarz VSA. CCIR330 video line Measurement on Rohde and Schwarz VSA. 14/18 TSH80-TSH81-TSH82 Video Results: Parameter Value (Vcc=±2.5V) Value (Vcc=±5V) Unit Lum NL Lum NL Step 1 Lum NL Step 2 Lum NL Step 3 Lum NL Step 4 Lum NL Step 5 Diff Gain pos Diff Gain neg Diff Gain pp Diff Gain Step1 Diff Gain Step2 Diff Gain Step3 Diff Gain Step4 Diff Gain Step5 Diff Phase pos Diff Phase neg Diff Phase pp Diff Phase Step1 Diff Phase Step2 Diff Phase Step3 Diff Phase Step4 Diff Phase Step5 0.1 100 100 99.9 99.9 99.9 0 -0.7 0.7 -0.5 -0.7 -0.3 -0.1 -0.4 0 -0.2 0.2 -0.2 -0.1 -0.1 0 -0.2 0.3 100 99.9 99.8 99.9 99.7 0 -0.6 0.6 -0.3 -0.6 -0.5 -0.3 -0.5 0.1 -0.4 0.5 -0.4 -0.4 -0.3 0.1 -0.1 % % % % % % % % % % % % % % deg deg deg deg deg deg deg deg Precautions on asymmetrical supply operation: The TSH8X can be used either with a dual or a single supply. If a single supply is used, the inputs are biased to the mid-supply voltage (+Vcc/2). This bias network must be carefully designed, in order to reject any noise present on the supply rail. As the bias current is 15uA, you must carefully choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs. R2, R3 are such that the current through them must be superior to 100 times the bias current. So, we take R2=R3=4.7kΩ. Cin, as Cout are chosen to filter the DC signal by the low pass filters (R1,Cin) and (Rout, Cout). By taking R1=10kΩ, RL=150Ω, and Cin=2uF, Cout=220uF we provide a cutoff frequency below 10Hz. Use of the TSH8X in gain=-1 configuration: Cf 1k IN Cin Cout OUT + Vcc+ R1 R2 R3 C1 IN Cin 1k - R5 C3 RL Vcc+ R1 R2 R3 C1 + Cout OUT RL C3 Cf C2 - C2 R4 R1=10kΩ will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well as for the input and output signals. We choose C1=100nF and C2=C3=100uF. Some precautions have to be added, specially for low power supply application. A feedback capacitance Cf should be added for better stability. The table summarizes the impact of the capacitance Cf on the phase margin of the circuit. 15/18 TSH80-TSH81-TSH82 Parameter Cf (pF) Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Phase Margin f-3dB Vcc=±1.5V Vcc=±2.5V Vcc=±5V Unit 28 40 30 40 37 37 48 33.7 43 39.3 43 39.3 52 34 65 30.7 56 38.3 56 38.3 67 32 78 27.6 deg MHz deg MHz deg MHz deg MHz 0 5.6 22 33 Example of a video application: Vcc/2 IN Ce Rb1 AOP1 + R3 C3 V1 V2 Re C4 Rb1 R4 LPF1 R2 R1 Vcc/2 V3 A1 - Vcc/2 PAL + - AOP2 R6 Cf Vcc/2 R5 V4 Rout Cout OUT Cf Standby Vcc/2 C8 Rb1 NTSC R7 C7 A2 R8 LPF2 RL + AOP3 R10 Vcc/2 R9 Cf Standby This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2). You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise. The video application requires 1Vpeak at input and output. Calculation of components: A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence Ce=10uF, with Rb1=10kΩ. At the output, Cout=220uF. The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1kΩ,V1=2Vpk, V2=1Vpk For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1. To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2. For example, for an attenuation of 3dB, we choose R5=300Ω and R6=1kΩ. We have V4=2Vpk and Vout=1Vpk. The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same. 16/18 TSH80-TSH81-TSH82 PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c 0.25mm .010 inch GAGE PLANE L1 L L L1 C SEATING PLANE E1 A E A2 A1 5 4 4 5 D b e 8 1 8 1 PIN 1 IDENTIFICATION Millimeters Inches Millimeters Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Inches Dim. Typ. Max. Min. 1.75 0.25 0.004 1.65 0.85 0.026 0.48 0.014 0.25 0.007 0.5 0.010 45° (typ.) 5.0 0.189 6.2 0.228 0.1 0.65 0.35 0.19 0.25 4.8 5.8 1.27 3.81 3.8 0.4 Typ. Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.197 0.244 0.050 0.150 4.0 0.150 1.27 0.016 0.6 8° (max.) Min. A A1 A2 b c D E E1 e k l 0.05 0.80 0.19 0.09 2.90 4.30 0° 0.50 Typ. 1.00 3.00 6.40 4.40 0.65 0.60 Max. Min. 1.20 0.15 1.05 0.30 0.20 3.10 0.01 0.031 0.007 0.003 0.114 4.50 0.169 8° 0.75 0° 0.09 Typ. 0.039 0.118 0.252 0.173 0.025 Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 8° 0.0236 0.030 0.157 0.050 0.024 17/18 TSH80-TSH81-TSH82 PACKAGE MECHANICAL DATA 5 PINS - TINY PACKAGE (SOT23) A E A2 E D D1 B A1 L C F Millimeters Inches Dim. A A1 A2 B C D D1 e E F L K Min. Typ. Max. Min. Typ. Max. 0.90 0 0.90 0.35 0.09 2.80 1.20 1.45 0.15 1.30 0.50 0.20 3.00 0.035 0.047 0.035 0.014 0.004 0.110 3.00 1.75 0.60 10d 0.102 0.059 0.004 0d 0.041 0.016 0.006 0.114 0.075 0.037 0.110 0.063 0.014 0.057 0.006 0.051 0.020 0.008 0.118 2.60 1.50 0.10 0d 1.05 0.40 0.15 2.90 1.90 0.95 2.80 1.60 0.5 0.0118 0.069 0.024 10d Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com 18/18