STMICROELECTRONICS TSH81IDT

TSH80-TSH81-TSH82
WIDE BAND, RAIL to RAIL OPERATIONAL AMPLIFIER
WITH STANDBY FUNCTION
■ 4.5V, 12V OPERATING CONDITIONS
■ 3dB-BANDWIDTH: 100MHz
■ SLEW-RATE: 100V/µs
■ OUTPUT CURRENT: up to 55mA
L
SOT23-5
(Plastic Micro package)
■ INPUT SINGLE SUPPLY VOLTAGE
■ OUTPUT RAIL TO RAIL
■ SPECIFIED FOR 150Ω LOAD
■ LOW DISTORTION, THD: 0.1%
P
TSSOP8
(Plastic Micro package)
■ SOT23-5, TSSOP and SO PACKAGES
DESCRIPTION
The TSH8x serie offers Single and Dual operational amplifiers featuring high video performances with large bandwidth, low distortion and excellent supply voltage rejection. These amplifiers feature also large output voltage swing and high output current capability to drive standard 150Ω
loads.
Running at single or dual supply voltage from 4.5V
to 12V, these amplifiers are tested at 5V(±2.5V)
and 10V(±5V) supplies.
The TSH81 also features a Standby mode, which
allows the operational amplifier to be put into a
standby mode with low power consumption and
high output impedance.The function allows power
saving or signals switching/multiplexing for high
speed applications and video applications.
For board space and weight saving, TSH8x series
is proposed in SOT23-5, TSSOP8 and SO8 packages.
APPLICATION
D
SO8
(Plastic Micro package)
PIN CONNECTIONS (top view)
TSH80 : SOT23-5/SO8
Output 1
VCC - 2
Non-Inv. In. 3
Inv. In. 2
_
7 VCC +
Non-Inv. In. 3
+
6 Output
+4 Inv. In.
■ A/D Converters Driver
5 NC
VCC - 4
TSH81 : SO8/TSSOP8
NC 1
8 STANDBY
Inverting Input 2
_
7 VCC +
Non Inverting Input 3
+
6 Output
VCC - 4
5 NC
TSH82 : SO8/TSSOP8
Output1 1
■ Video Buffers
8 NC
NC 1
5 VCC +
8 VCC +
Inverting Input1 2
_
Non Inverting Input1 3
+
VCC - 4
7 Output2
_
6 Inverting Input2
+
5 Non Inverting Input2
■ Hi-Fi Applications
February 2003
1/18
TSH80-TSH81-TSH82
ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
1)
VCC
Supply Voltage
Vid
Differential Input Voltage 2)
Vi
Input Voltage
Operating Free Air Temperature Range
Tstg
Tj
Storage Temperature
Maximum Junction Temperature
Rthja
V
±2
V
V
°C
-65 to +150
150
°C
°C
80
28
37
SOT23-5
SO8
TSSOPO8
ESD
1.
2.
3.
4.
14
±6
Thermal resistance junction to case 4)
SOT23-5
SO8
TSSOPO8
Thermal resistance junction to ambient area
Rthjc
Unit
-40 to +85
3)
Toper
Value
Human Body Model
°C/W
250
157
130
°C/W
2
kV
All voltage values, except differential voltage are with respect to network ground terminal
Differential voltages are non-inverting input terminal with respect to the inverting terminal
The magnitude of input and output must never exceed VCC +0.3V
Short-circuits can cause excessive heating
OPERATING CONDITIONS
Symbol
VCC
VIC
Parameter
Supply Voltage
Value
Unit
4.5 to 12
V
-
Common Mode Input Voltage Range
+
VCC to (VCC -1.1)
-
Standby
+
V
(VCC ) to (VCC )
ORDER CODES
Type
TSH80ILT
TSH80ID
TSH80IDT
TSH81ID
TSH81IDT
TSH81IPT
TSH82ID
TSH82IDT
TSH82IPT
Temperature
Package
Marking
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
SOT23-5
SO8
SO8 Tape
SO8
SO8 Tape
TSSOP8
SO8
SO8 Tape
TSSOP8
K303
TSH80I
TSH80I
TSH81I
TSH81I
TSH81I
TSH82I
TSH82I
TSH82I
I = Temperature range
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape & Reel (PT)
L = Tiny Package (SOT23-5) - only available in Tape & Reel (LT)
2/18
V
TSH80-TSH81-TSH82
ELECTRICAL CHARACTERISTICS
VCC+ = +5V, VCC- = GND, Vic = 2.5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
|Vio|
Input Offset Voltage
∆Vio
Input Offset Voltage Drift vs Temperature
Iio
Input Offset Current
Iib
Input Bias Current
Cin
Input Capacitance
ICC
CMR
SVR
PSR
Avd
Io
Voh
Supply Current per Operator
Common Mode Rejection Ratio
(δVic/δVio)
Supply Voltage Rejection Ratio
(δVCC/δVio)
Power Supply Rejection Ratio
(δVCC/δVout)
Large Signal Voltage Gain
Output Short Circuit Current Source
High Level Output Voltage
Test Condition
Min.
Typ.
Max.
Unit
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
1.1
10
12
mV
Tamb = 25°C
Tmin. < Tamb < Tmax.
+0.1<Vic<3.9V & Vout=2.5V
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
8.2
µV/°C
3
0.1
3.5
5
µA
6
15
20
µA
0.3
72
70
97
68
65
75
Positive & Negative Rail
RL=150Ω to 1.5V
Vout=1V to 4V
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb=25°C
Vid =+1, Vout to 1.5V
Vid =-1, Vout to 1.5V
|Source|
Sink
Tmin. < Tamb < Tmax.
Vid =+1, Vout to 1.5V
Vid =-1, Vout to 1.5V
|Source|
Sink
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
RL
RL
RL
RL
= 150Ω to 2.5V
= 600Ω to 2.5V
= 2kΩ to 2.5V
= 10kΩ to 2.5V
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
75
75
70
84
35
33
55
55
pF
10.5
11.5
mA
dB
dB
dB
dB
mA
28
28
4.2
4.36
4.85
4.90
4.93
4.5
4.66
4.90
4.92
4.93
V
4.1
4.4
3/18
TSH80-TSH81-TSH82
Symbol
Parameter
Test Condition
Min.
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Vol
Low Level Output Voltage
RL
RL
RL
RL
= 150Ω to 2.5V
= 600Ω to 2.5V
= 2kΩ to 2.5V
= 10kΩ to 2.5V
Typ.
Max.
48
54
55
56
150
220
105
76
61
400
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
RL = 150Ω to 2.5V
GBP
Gain Bandwidth Product
Bw
Bandwidth @-3dB
SR
Slew Rate
φm
en
THD
Phase Margin
Equivalent Input Noise Voltage
Total Harmonic Distortion
IM2
Second order inter modulation product
IM3
Third order inter modulation product
∆G
Differential gain
Df
Differential phase
Gf
Gain Flatness
Vo1/Vo2 Channel Separation
4/18
F=10MHz
AVCL =+11
AVCL =-10
AVCL =+1
RL=150Ω to 2.5V
AVCL =+2
RL=150Ω // CL to 2.5V
CL = 5pF
CL = 30pF
RL=150Ω // 30pF to 2.5V
F=100kHz
AVCL =+2, F=4MHz
RL=150Ω // 30pF to 2.5V
Vout=1Vpp
Vout=2Vpp
AVCL =+2, Vout=2Vpp
RL=150Ω to 2.5V
Fin1=180kHz, Fin2=280kHz
spurious measurement
@100kHz
AVCL =+2, Vout=2Vpp
RL=150Ω to 2.5V
Fin1=180kHz, Fin2=280KHz
spurious measurement
@400kHz
AVCL =+2, RL=150Ω to 2.5V
F=4.5MHz, Vout=2Vpp
AVCL =+2, RL=150Ω to 2.5V
F=4.5MHz, Vout=2Vpp
F=DC to 6MHz, AVCL=+2
F=1MHz to 10MHz
Unit
mV
200
450
60
65
55
MHz
87
MHz
104
105
40
11
-61
-54
V/µs
°
nV/√Hz
dB
-76
dBc
-68
dBc
0.5
%
0.5
°
0.2
65
dB
dB
TSH80-TSH81-TSH82
ELECTRICAL CHARACTERISTICS
VCC+ = +5V, VCC- = -5V, Vic = GND, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
|Vio|
Input Offset Voltage
∆Vio
Input Offset Voltage Drift vs Temperature
Iio
Input Offset Current
Iib
Input Bias Current
Cin
Input Capacitance
ICC
CMR
SVR
PSR
Avd
Io
Voh
Vol
GBP
Bw
Supply Current per Operator
Common Mode Rejection Ratio
(δVic/δVio)
Supply Voltage Rejection Ratio
(δVCC/δVio)
Power Supply Rejection Ratio
(δVCC/δVout)
Large Signal Voltage Gain
Output Short Circuit Current Source
High Level Output Voltage
Low Level Output Voltage
Gain Bandwidth Product
Bandwidth @-3dB
Test Condition
Min.
Typ.
Max.
Unit
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
0.8
10
12
mV
Tamb = 25°C
Tmin. < Tamb < Tmax.
-4.9<Vic<3.9V & Vout=GND
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb = 25°C
Tmin. < Tamb < Tmax.
9.8
µV/°C
2
0.1
3.5
5
µA
6
15
20
µA
0.7
81
72
106
71
65
77
Positive & Negative Rail
RL=150Ω to GND
Vout=-4 to +4
Tamb = 25°C
Tmin. < Tamb < Tmax.
Tamb=25°C
Vid =+1, Vout to 1.5V
Vid =-1, Vout to 1.5V
|Source|
Sink
Tmin. < Tamb < Tmax.
Vid =+1, Vout to 1.5V
Vid =-1, Vout to 1.5V
|Source|
Sink
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
Tamb=25°C
RL = 150Ω to GND
RL = 600Ω to GND
RL = 2kΩ to GND
RL = 10kΩ to GND
Tmin. < Tamb < Tmax.
RL = 150Ω to GND
F=10MHz
AVCL =+11
AVCL =-10
AVCL =+1
RL=150Ω // 30pF to GND
pF
12.3
13.4
dB
dB
75
75
70
86
35
30
55
55
mA
dB
dB
mA
28
28
4.2
4.36
4.85
4.9
4.93
V
4.1
-4.63
-4.86
-4.9
-4.93
-4.4
mV
-4.3
65
55
MHz
100
MHz
5/18
TSH80-TSH81-TSH82
Symbol
SR
φm
en
THD
Parameter
Slew Rate
Phase Margin
Equivalent Input Noise Voltage
Total Harmonic Distortion
IM2
Second order inter modulation product
IM3
Third order inter modulation product
∆G
Differential gain
Df
Differential phase
Gf
Gain Flatness
Vo1/Vo2 Channel Separation
6/18
Test Condition
AVCL =+2
RL=150Ω // CL to GND
CL = 5pF
CL = 30pF
RL=150Ω to gnd
F=100kHz
AVCL =+2, F=4MHz
RL=150Ω // 30pF to gnd
Vout=1Vpp
Vout=2Vpp
AVCL =+2, Vout=2Vpp
RL=150Ω to gnd
Fin1=180kHz, Fin2=280KHz
spurious measurement
@100kHz
AVCL =+2, Vout=2Vpp
RL=150Ω to gnd
Fin1=180kHz, Fin2=280KHz
spurious measurement
@400kHz
AVCL =+2, RL=150Ω to gnd
F=4.5MHz, Vout=2Vpp
AVCL =+2, RL=150Ω to gnd
F=4.5MHz, Vout=2Vpp
F=DC to 6MHz, AVCL=+2
F=1MHz to 10MHz
Min.
Typ.
68
117
118
40
11
-61
-54
Max.
Unit
V/µs
°
nV/√Hz
dB
-76
dBc
-68
dBc
0.5
%
0.5
°
0.2
65
dB
dB
TSH80-TSH81-TSH82
STANDBY MODE
VCC+, VCC-, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Test Condition
Min.
Typ.
Max.
Unit
Vlow
Standby Low Level
VCC-
(VCC+0.8)
V
Vhigh
Standby High Level
(VCC- +2)
(VCC+)
V
55
µA
ICC SBY
Zout
Ton
Toff
Current Consumption per Operator
when STANDBY is Active
pin 8 (TSH81) to VCC-
20
Output Impedance (Rout//Cout)
Rout
Cout
10
17
MΩ
pF
2
µs
10
µs
Time from Standby Mode to Active
Mode
Time from Active Mode to Standby
Mode
Down to ICC SBY = 10µA
TSH81 STANDBY CONTROL pin 8 (SBY)
OPERATOR STATUS
Vlow
Standby
Vhigh
Active
7/18
TSH80-TSH81-TSH82
Closed Loop Gain and Phase vs. Frequency
Gain=+2, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C
Overshoot function of output capacitance
Gain=+2, Vcc= ±2.5V, Tamb = 25°C
10
200
10
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
Phase
150Ω//10pF
Gain (dB)
0
Phase (°)
Gain (dB)
5
150Ω
0
-100
-10
-200
-15
1E+4
1E+5
1E+6
1E+7
1E+8
-5
1E+6
1E+9
1E+7
Frequency (Hz)
1E+8
1E+9
Frequency (Hz)
Closed Loop Gain and Phase vs. Frequency
Gain=-10, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C
30
Closed Loop Gain and Phase vs. Frequency
Gain=+11, Vcc= ±2.5V, RL=150Ω, Tamb = 25°C
200
Phase
30
0
Phase
150
20
20
Gain
Phase (°)
50
Gain (dB)
10
-50
Phase (°)
Gain (dB)
100
Gain
10
0
-100
0
0
-50
-10
1E+4
1E+5
1E+6
1E+7
1E+8
-10
1E+4
-100
1E+9
1E+5
Large Signal Measurement - Positive Slew Rate
Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk
1E+8
-150
1E+9
Large Signal Measurement - Negative Slew Rate
Gain=2,Vcc=±2.5V,ZL=150Ω//5.6pF,Vin=400mVpk
3
3
2
2
1
1
Vout (V)
Vout (V)
1E+7
Frequency (Hz)
Frequency (Hz)
0
0
-1
-1
-2
-2
-3
-3
0
10
20
30
40
Time (ns)
8/18
1E+6
50
60
70
80
0
10
20
30
40
Time (ns)
50
60
70
TSH80-TSH81-TSH82
Small Signal Measurement - Fall Time
Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk
0.06
0.06
0.04
0.04
0.02
0.02
0
Vout
Vin Vout (V)
Vin, Vout (V)
Small Signal Measurement - Rise Time
Gain=2,Vcc=±2.5V,Zl=150Ω,Vin=400mVpk
Vout
Vin
-0.02
Vin
0
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
60
0
10
20
30
Time (ns)
40
50
60
Time (ns)
Channel separation (Xtalk) vs frequency
Measurement configuration: Xtalk=20log(V0/V1)
Channel separation (Xtalk) vs frequency
Gain=+11, Vcc=±2.5V, ZL=150Ω//27pF
VIN
-20
49.9Ω
++
--
-30
-40
V1
4/1output
-50
Xtalk (dB)
100Ω 1kΩ
150Ω
3/1output
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
-110
1E+4
150Ω
1E+5
1E+6
1E+7
Frequency (Hz)
Equivalent Noise Voltage
Gain=100, Vcc=±2.5V, No load
Maximum Output Swing
Gain=11, Vcc=±2.5V, RL=150Ω
3
30
+
_
25
2
Vout
10k
Vin, Vout (V)
en (nV/√Hz)
100
20
15
10
1
Vin
0
-1
-2
5
0.1
1
10
Frequency (kHz)
100
1000
-3
0.0E+0
5.0E-2
1.0E-1
1.5E-1
2.0E-1
Time (ms)
9/18
TSH80-TSH81-TSH82
Standby Mode - Ton, Toff
Vcc= ±2.5V, Open Loop
Group Delay
Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF, Tamb = 25°C
Vin
3
Vin, Vout (V)
2
Gain
1
0
Vout
-1
Group
Delay
-2
5.32ns
-3
Ton
0
2E-6
Standby
4E-6
Toff
6E-6
8E-6
1E-5
Time (s)
Third Order Inter modulation
Gain=2, Vcc= ±2.5V, ZL=150Ω//27pF , Tamb = 25°C
Inter modulation products
-10
-20
-30
IM3 (dBc)
The IFR2026 synthesizer generates a two
tones signal (F1=180kHz, F2=280kHz); each
tone having the same amplitude level.
The HP3585 spectrum analyzer measures the
inter modulation products function of the output
voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
0
-40
740kHz
-50
80kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
Vout peak(V)
10/18
3
4
TSH80-TSH81-TSH82
Closed Loop Gain and Phase vs. Frequency
Gain=+2, Vcc= ±5V, RL=150Ω, Tamb = 25°C
Overshoot function of output capacitance
Gain=+2, Vcc= ±5V, Tamb = 25°C
10
200
10
150Ω//33pF
5
Gain
100
150Ω//22pF
0
-5
150Ω//10pF
Gain (dB)
0
Phase (°)
Gain (dB)
5
150Ω
0
Phase
-100
-10
-15
1E+4
1E+5
1E+6
1E+7
-200
1E+9
1E+8
-5
1E+6
1E+7
Frequency (Hz)
1E+8
1E+9
Frequency (Hz)
Closed Loop Gain and Phase vs. Frequency
Gain=-10, Vcc= ±5V, RL=150Ω, Tamb = 25°C
Closed Loop Gain and Phase vs. Frequency
Gain=+11, Vcc= ±5V, RL=150Ω, Tamb = 25°C
30
200
30
0
Phase
Phase
150
20
50
Phase (°)
10
-50
Gain
Gain (dB)
100
Gain
Phase (°)
Gain (dB)
20
10
-100
0
0
0
-10
1E+4
1E+5
1E+6
1E+7
-50
1E+9
1E+8
-10
1E+4
1E+5
Frequency (Hz)
1E+7
-150
1E+9
1E+8
Frequency (Hz)
Large Signal Measurement - Positive Slew Rate
Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk
Large Signal Measurement - Negative Slew Rate
Gain=2,Vcc=±5V,ZL=150Ω//5.6pF,Vin=400mVpk
5
5
4
4
3
3
2
2
1
1
Vout (V)
Vout (V)
1E+6
0
-1
0
-1
-2
-2
-3
-3
-4
-4
-5
-5
0
20
40
60
Time (ns)
80
100
0
20
40
60
80
100
Time (ns)
11/18
TSH80-TSH81-TSH82
Small Signal Measurement - Fall Time
Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpk
0.06
0.06
0.04
0.04
0.02
0.02
Vin, Vout (V)
Vin, Vout (V)
Small Signal Measurement - Rise Time
Gain=2,Vcc=±5V,ZL=150Ω,Vin=400mVpk
0
Vout
Vin
-0.02
Vout
0
Vin
-0.02
-0.04
-0.04
-0.06
-0.06
0
10
20
30
40
50
0
60
10
20
Time (ns)
30
40
50
60
Time (ns)
Channel separation (Xtalk) vs frequency
Measurement configuration: Xtalk=20log(V0/V1)
Channel separation (Xtalk) vs frequency
Gain=+11, Vcc=±5V, ZL=150Ω//27pF
VIN
-20
49.9Ω
+
--
-30
-40
V1
4/1output
-50
150Ω
Xtalk (dB)
100Ω 1kΩ
3/1output
-60
-70
-80
+
49.9Ω
-
2/1output
-90
VO
100Ω 1kΩ
-100
-110
1E+4
150Ω
1E+5
1E+6
1E+7
Frequency (Hz)
Equivalent Noise Voltage
Gain=100, Vcc=±5V, No load
Maximum Output Swing
Gain=11, Vcc=±5V, RL=150Ω
5
30
4
25
3
+
_
2
10k
Vin, Vout (V)
100
en (nV/√Hz)
Vout
20
15
1
Vin
0
-1
-2
-3
10
-4
5
0.1
1
10
Frequency (kHz)
12/18
100
1000
-5
0.0E+0
5.0E-2
1.0E-1
Time (ms)
1.5E-1
2.0E-1
TSH80-TSH81-TSH82
Standby Mode - Ton, Toff
Vcc=±5V, Open Loop
Group Delay
Gain=2, Vcc=±5V, ZL=150Ω//27pF, Tamb = 25°C
Vin
Vin, Vout (V)
5
Gain
Vout
0
Group
Delay
5.1ns
-5
Standby
Ton
0
2E-6
4E-6
Toff
6E-6
8E-6
Time (s)
Third Order Inter modulation
Gain=2, Vcc=±5V, ZL=150Ω//27pF, Tamb = 25°C
Inter modulation products
-10
-20
-30
IM3 (dBc)
The IFR2026 synthesizer generates a two
tones signal (F1=180kHz, F2=280kHz); each
tone having the same amplitude level.
The HP3585 spectrum analyzer measures the
inter modulation products function of the output
voltage. The generator and the spectrum analyzer are phase locked for precision considerations.
0
-40
80kHz
-50
740kHz
-60
-70
-80
-90
380kHz
640kHz
-100
0
1
2
3
4
Vout peak(V)
13/18
TSH80-TSH81-TSH82
TESTING CONDITIONS:
Maximum input level:
Layout precautions:
The input level must not exceed the following values:
To use the TSH8X circuits in the best manner at
high frequencies, some precautions have to be
taken for power supplies:
- First of all, the implementation of a proper ground
plane in both sides of the PCB is mandatory for
high speed circuit applications to provide low inductance and low resistance common return.
- Power supply bypass capacitors (4.7uF and ceramic 100pF) should be placed as close as possible to the IC pins in order to improve high frequency bypassing and reduce harmonic distortion. The
power supply capacitors must be incorporated for
both the negative and the positive pins.
- Proper termination of all inputs and outputs must
be in accordance with output termination resistors;
then the amplifier load will be only resistive and
the stability of the amplifier will be improved.
All leads must be wide and as short as possible
especially for op amp inputs and outputs in order
to decrease parasitic capacitance and inductance.
❑ negative peak: must be greater than
-Vcc+400mV.
❑ positive peak value: must be lower than
+Vcc-400mV.
The electrical characteristics show the influence of
the load on this parameter.
Video capabilities:
To characterize the differential phase and differential gain a CCIR330 video line is used.
The video line contains 5 (flat) levels of luma on
which is superimposed chroma signal. (the first
level contains no luma). The luma gives various
amplitudes which define the saturation of the signal. The chrominance gives various phases which
define the colour of the signal.
- For lower gain application, attention should be
paid not to use large feedback resistance (>1kΩ)
to reduce time constant with parasitic capacitances.
Differential phase (respectively differential gain)
distortion is present if a signal chrominance phase
(gain) is affected by luminance level. They represent the ability to uniformly process the high frequency information at all luminance levels.
- Choose component sizes as small as possible
(SMD).
When differential gain is present, colour saturation
is not correctly reproduced.
- Finally, on output, the load capacitance must be
negligible to maintain good stability. You can put a
serial resistance the closest to the output pin to
minimize its influence.
The input generator is the Rohde & Schwarz
CCVS. The output measurement is done by the
Rohde and Schwarz VSA.
CCIR330 video line
Measurement on Rohde and Schwarz VSA.
14/18
TSH80-TSH81-TSH82
Video Results:
Parameter
Value (Vcc=±2.5V)
Value (Vcc=±5V)
Unit
Lum NL
Lum NL Step 1
Lum NL Step 2
Lum NL Step 3
Lum NL Step 4
Lum NL Step 5
Diff Gain pos
Diff Gain neg
Diff Gain pp
Diff Gain Step1
Diff Gain Step2
Diff Gain Step3
Diff Gain Step4
Diff Gain Step5
Diff Phase pos
Diff Phase neg
Diff Phase pp
Diff Phase Step1
Diff Phase Step2
Diff Phase Step3
Diff Phase Step4
Diff Phase Step5
0.1
100
100
99.9
99.9
99.9
0
-0.7
0.7
-0.5
-0.7
-0.3
-0.1
-0.4
0
-0.2
0.2
-0.2
-0.1
-0.1
0
-0.2
0.3
100
99.9
99.8
99.9
99.7
0
-0.6
0.6
-0.3
-0.6
-0.5
-0.3
-0.5
0.1
-0.4
0.5
-0.4
-0.4
-0.3
0.1
-0.1
%
%
%
%
%
%
%
%
%
%
%
%
%
%
deg
deg
deg
deg
deg
deg
deg
deg
Precautions on asymmetrical supply
operation:
The TSH8X can be used either with a dual or a
single supply. If a single supply is used, the inputs
are biased to the mid-supply voltage (+Vcc/2).
This bias network must be carefully designed, in
order to reject any noise present on the supply rail.
As the bias current is 15uA, you must carefully
choose the resistance R1 not to introduce an offset mismatch at the amplifier inputs.
R2, R3 are such that the current through them
must be superior to 100 times the bias current. So,
we take R2=R3=4.7kΩ.
Cin, as Cout are chosen to filter the DC signal by
the low pass filters (R1,Cin) and (Rout, Cout). By
taking R1=10kΩ, RL=150Ω, and Cin=2uF,
Cout=220uF we provide a cutoff frequency below
10Hz.
Use of the TSH8X in gain=-1 configuration:
Cf
1k
IN Cin
Cout OUT
+
Vcc+
R1
R2
R3 C1
IN Cin
1k
-
R5
C3
RL
Vcc+
R1
R2
R3 C1
+
Cout OUT
RL
C3
Cf
C2
-
C2
R4
R1=10kΩ will be convenient. C1, C2, C3 are bypass capacitors from perturbation on Vcc as well
as for the input and output signals. We choose
C1=100nF and C2=C3=100uF.
Some precautions have to be added, specially for
low power supply application.
A feedback capacitance Cf should be added for
better stability. The table summarizes the impact
of the capacitance Cf on the phase margin of the
circuit.
15/18
TSH80-TSH81-TSH82
Parameter
Cf (pF)
Phase Margin
f-3dB
Phase Margin
f-3dB
Phase Margin
f-3dB
Phase Margin
f-3dB
Vcc=±1.5V
Vcc=±2.5V
Vcc=±5V
Unit
28
40
30
40
37
37
48
33.7
43
39.3
43
39.3
52
34
65
30.7
56
38.3
56
38.3
67
32
78
27.6
deg
MHz
deg
MHz
deg
MHz
deg
MHz
0
5.6
22
33
Example of a video application:
Vcc/2
IN
Ce
Rb1
AOP1
+
R3 C3
V1
V2
Re
C4
Rb1
R4
LPF1
R2
R1
Vcc/2
V3
A1
-
Vcc/2
PAL
+
-
AOP2
R6
Cf
Vcc/2
R5
V4
Rout Cout OUT
Cf
Standby
Vcc/2
C8 Rb1
NTSC
R7 C7
A2
R8
LPF2
RL
+ AOP3
R10
Vcc/2 R9
Cf
Standby
This example shows a possible application of the TSH8X circuit. Here, you can multiplex the channels for
the different standard PAL, NTSC as you filter for the different bands; the video signal can be filtered with
two different cutoff frequencies, corresponding to a PAL encoded signal (LPF1) or a NTSC signal (LPF2).
You can multiplex input signals, as the outputs are in high impedance state in standby mode. This enables
you, to use a PAL filter as the Standby mode is active and to use the NTSC filter otherwise.
The video application requires 1Vpeak at input and output.
Calculation of components:
A decoupling capacitor is provided to cutoff the frequencies below 10Hz according I bias. Hence
Ce=10uF, with Rb1=10kΩ. At the output, Cout=220uF.
The AOP1 is in 6dB configuration for the adaptation bridge. R1=R2=1kΩ,V1=2Vpk, V2=1Vpk
For the PAL communication, we need a low pass filtering. The load resistance R4 is function of the output
resistance of the filter.V3=V2/A1 where A1 is the attenuation factor of the filter LPF1.
To compensate the filter insertion loss, we add an additional factor to the gain of the 2nd amplifier AOP2.
For example, for an attenuation of 3dB, we choose R5=300Ω and R6=1kΩ. We have V4=2Vpk and
Vout=1Vpk.
The calculation of the parameters R7, C7, R8, C8, R9, R10 will be exactly the same.
16/18
TSH80-TSH81-TSH82
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
PACKAGE MECHANICAL DATA
8 PINS - THIN SHRINK SMALL OUTLINE
PACKAGE (TSSOP)
k
c
0.25mm
.010 inch
GAGE PLANE
L1
L
L
L1
C
SEATING
PLANE
E1
A
E
A2
A1
5
4
4
5
D
b
e
8
1
8
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Millimeters
Dim.
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
Inches
Dim.
Typ.
Max.
Min.
1.75
0.25 0.004
1.65
0.85 0.026
0.48 0.014
0.25 0.007
0.5
0.010
45° (typ.)
5.0
0.189
6.2
0.228
0.1
0.65
0.35
0.19
0.25
4.8
5.8
1.27
3.81
3.8
0.4
Typ.
Max.
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.197
0.244
0.050
0.150
4.0
0.150
1.27 0.016
0.6
8° (max.)
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
0.05
0.80
0.19
0.09
2.90
4.30
0°
0.50
Typ.
1.00
3.00
6.40
4.40
0.65
0.60
Max.
Min.
1.20
0.15
1.05
0.30
0.20
3.10
0.01
0.031
0.007
0.003
0.114
4.50
0.169
8°
0.75
0°
0.09
Typ.
0.039
0.118
0.252
0.173
0.025
Max.
0.05
0.006
0.041
0.15
0.012
0.122
0.177
8°
0.0236 0.030
0.157
0.050
0.024
17/18
TSH80-TSH81-TSH82
PACKAGE MECHANICAL DATA
5 PINS - TINY PACKAGE (SOT23)
A
E
A2
E
D
D1
B
A1
L
C
F
Millimeters
Inches
Dim.
A
A1
A2
B
C
D
D1
e
E
F
L
K
Min.
Typ.
Max.
Min.
Typ.
Max.
0.90
0
0.90
0.35
0.09
2.80
1.20
1.45
0.15
1.30
0.50
0.20
3.00
0.035
0.047
0.035
0.014
0.004
0.110
3.00
1.75
0.60
10d
0.102
0.059
0.004
0d
0.041
0.016
0.006
0.114
0.075
0.037
0.110
0.063
0.014
0.057
0.006
0.051
0.020
0.008
0.118
2.60
1.50
0.10
0d
1.05
0.40
0.15
2.90
1.90
0.95
2.80
1.60
0.5
0.0118
0.069
0.024
10d
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com
18/18