Freescale Semiconductor Technical Data Document Number: MD7IC2755N Rev. 3, 9/2010 RF LDMOS Wideband Integrated Power Amplifiers The MD7IC2755N wideband integrated circuit is designed with on--chip matching that makes it usable from 2500 -- 2700 MHz. This multi -- stage structure is rated for 26 to 32 Volt operation and covers all typical cellular base station modulations. • Typical Doherty WiMAX Performance: VDD = 28 Volts, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, Pout = 10 Watts Avg., f = 2700 MHz, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 25 dB Power Added Efficiency — 25% Device Output Signal PAR — 8.5 dB @ 0.01% Probability on CCDF ACPR @ 8.5 MHz Offset — --37 dBc in 1 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 90 Watts CW Output Power (3 dB Input Overdrive from Rated Pout) • Stable into a 10:1 VSWR. All Spurs Below --60 dBc @ 100 mW to 10 Watts CW Pout • Typical Pout @ 1 dB Compression Point ≃ 30 Watts CW Features • Production Tested in a Symmetrical Doherty Configuration • 100% PAR Tested for Guaranteed Output Power Capability • Characterized with Series Equivalent Large--Signal Impedance Parameters and Common Source S--Parameters • On--Chip Matching (50 Ohm Input, DC Blocked) • Integrated Quiescent Current Temperature Compensation with Enable/Disable Function (1) • Integrated ESD Protection • 225°C Capable Plastic Package • RoHS Compliant • In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. VDS1A PEAKING (2) RFinA RFout1/VDS2A VGS1A Quiescent Current Temperature Compensation (1) VGS2A VGS1B Quiescent Current Temperature Compensation (1) VGS2B CARRIER (2) RFinB RFout2/VDS2B VDS1B Figure 1. Functional Block Diagram MD7IC2755NR1 MD7IC2755GNR1 2500--2700 MHz, 10 W AVG., 28 V WiMAX RF LDMOS WIDEBAND INTEGRATED POWER AMPLIFIERS CASE 1618--02 TO--270 WB--14 PLASTIC MD7IC2755NR1 CASE 1621--02 TO--270 WB--14 GULL PLASTIC MD7IC2755GNR1 VDS1A VGS2A VGS1A RFinA NC NC NC NC RFinB VGS1B VGS2B VDS1B 1 2 3 4 5 6 7 8 9 10 11 12 14 13 RFout1/VDS2A RFout2/VDS2B (Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 2. Pin Connections 1. Refer to AN1977, Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family and to AN1987, Quiescent Current Control for the RF Integrated Circuit Device Family. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1977 or AN1987. 2. Peaking and Carrier orientation is determined by the test fixture design. © Freescale Semiconductor, Inc., 2009--2010. All rights reserved. RF Device Data Freescale Semiconductor MD7IC2755NR1 MD7IC2755GNR1 1 Table 1. Maximum Ratings Symbol Value Unit Drain--Source Voltage Rating VDS --0.5, +65 Vdc Gate--Source Voltage VGS --0.5, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg --65 to +150 °C TC 150 °C Case Operating Temperature Operating Junction Temperature (1,2) Input Power TJ 225 °C Pin 30 dBm Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Final Doherty Application RθJC Thermal Resistance, Junction to Case Case Temperature 72°C, Pout = 10 W CW, 2600 MHz Stage 1A, 1B, 28 Vdc, IDQ1A = IDQ1B = 80 mA Stage 2A, 2B, 28 Vdc, IDQ2B = 275 mA, VG2A = 1.7 Vdc Case Temperature 90°C, Pout = 55 W CW, 2600 MHz Stage 1A, 1B, 28 Vdc, IDQ1A = IDQ1B = 80 mA Stage 2A, 2B, 28 Vdc, IDQ2B = 275 mA, VG2A = 1.7 Vdc °C/W 2.6 1.8 2.3 1.1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 1C (Minimum) Machine Model (per EIA/JESD22--A115) A (Minimum) Charge Device Model (per JESD22--C101) III (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD22--A113, IPC/JEDEC J--STD--020 Rating Package Peak Temperature Unit 3 260 °C 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. MD7IC2755NR1 MD7IC2755GNR1 2 RF Device Data Freescale Semiconductor Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (1) (VDS = 10 Vdc, ID = 46 μAdc) VGS(th) 1.2 1.9 2.7 Vdc Gate Quiescent Voltage (1) (VDS = 28 Vdc, IDQ1A = IDQ1B = 80 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (2) (VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mAdc, Measured in Functional Test) VGG(Q) 12 15 18 Vdc Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate--Source Leakage Current (VGS = 1.5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (1) (VDS = 10 Vdc, ID = 185 μAdc) VGS(th) 1.2 1.9 2.7 Vdc Gate Quiescent Voltage (1) (VDS = 28 Vdc, IDQ2B = 275 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (2) (VDD = 28 Vdc, IDQ2B = 275 mAdc, Measured in Functional Test) VGG(Q) 12 15 18 Vdc Drain--Source On--Voltage (1) (VGS = 10 Vdc, ID = 1 A) VDS(on) 0.2 0.47 1.2 Vdc Coss — 111 — pF Characteristic Stage 1 — Off Characteristics (1) Stage 1 — On Characteristics Stage 2 — Off Characteristics (1) Stage 2 — On Characteristics Stage 2 -- Dynamic Characteristics (2,3) Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, Vin = 0 Vdc) Functional Tests (4,5) (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, Pout = 10 W Avg., f = 2700 MHz, WiMAX, OFDM 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 1 MHz Channel Bandwidth @ ±8.5 MHz Offset. Power Gain Gps 23 25 31 dB Power Added Efficiency PAE 23 25 — % Output Peak--to--Average Ratio @ 0.01% Probability on CCDF PAR 8 8.5 — dB ACPR — --37 --35 dBc Adjacent Channel Power Ratio 1. 2. 3. 4. 5. Side A and Side B are tied together for this measurement. Each side of device measured separately. Part internally matched both on input and output. Measurement made with device in a Symmetrical Doherty configuration. Measurement made with device in straight lead configuration before any lead forming operation is applied. (continued) MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 3 Table 5. Electrical Characteristics (TA = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances (In Freescale Doherty Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, 2500--2700 MHz Bandwidth Pout @ 1 dB Compression Point, CW P1dB IMD Symmetry @ 12 W PEP, Pout where IMD Third Order Intermodulation 30 dBc (Delta IMD Third Order Intermodulation between Upper and Lower Sidebands > 2 dB) IMDsym VBW Resonance Point (IMD Third Order Intermodulation Inflection Point) — 30 — W MHz — 70 — VBWres — 85 — MHz Gain Flatness in 200 MHz Bandwidth @ Pout = 10 W Avg. GF — 1.6 — dB Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 30 W CW Φ — 2 — ° Average Group Delay @ Pout = 30 W CW, f = 2600 MHz Delay — 2.7 — ns Part--to--Part Insertion Phase Variation @ Pout = 30 W CW, f = 2600 MHz, Six Sigma Window ∆Φ — 3.6 — ° Gain Variation over Temperature (--30°C to +85°C) ∆G — 0.039 — dB/°C ∆P1dB — 0.03 — dBm/°C Output Power Variation over Temperature (--30°C to +85°C) MD7IC2755NR1 MD7IC2755GNR1 4 RF Device Data Freescale Semiconductor VD1A VD2A VDD L2 C17 VG2A VG1A R1 R2 R3 R4 R5 R6 C7 C15 C3 C1 C13 DUT 1 3 Z1 Z7 Quiescent Current Temperature Compensation 2 R13 SIDE A C5 4 C9 14 5 C11 Z3 C21 Z5 Z9 C19 7 RF INPUT 8 Z2 13 9 10 Zin Z14 Zout Z11 6 COUPLER 1 C23 Z4 Z12 Z10 RF OUTPUT C20 Quiescent Current Temperature Compensation 11 Z6 Z13 C10 C12 C22 12 C24 Z8 C2 C6 R7 R8 R9 R10 R11 R12 VG1B VG2B SIDE B C14 C4 C16 C8 C18 L1 VD1B Z1, Z2 Z3, Z4 Z5, Z6 Z7, Z8 Z9, Z10 Z11, Z12 VD2B 0.0419″ x 0.480″ Microstrip 0.247″ x 0.1504″ Microstrip 0.247″ x 0.1704″ Microstrip 0.030″ x 0.4400″ Microstrip 0.0907″ x 0.075″ Microstrip 0.0419″ x 0.4200″ Microstrip Z13 Z14 Zin Zout PCB 0.0419″ x 0.7690’″ Microstrip 0.0717″ x 0.6750″ Microstrip 0.0419″ x 1.7230″ Microstrip 0.0419″ x 1.1400″ Microstrip Rogers RO4350B, 0.020″, εr = 3.5 Figure 3. MD7IC2755NR1(GNR1) Test Circuit Schematic Table 6. MD7IC2755NR1(GNR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1, C2, C3, C4, C5, C6, C13, C14, C19, C20 6.8 pF Chip Capacitors ATC600S6R8BT250XT ATC C7, C8, C17, C18 10 μF Chip Capacitors GRM55DR61H106KA88 Murata C15, C16 1500 pF Chip Capacitors GRM1885C2A152JA01 Murata C9, C10, C11, C12, C21, C22, C23, C24 0.5 pF Chip Capacitors ATC600S0R5BT250XT ATC Coupler 1 2500--2700 Hybrid 3 dB Coupler GSC356 Soshin L1, L2 Jumper Wires R4, R5, R7, R8 75 Ω, 1/8 W Chip Resistors RK73B2ATTD750G KOA Speer R1, R10 300 Ω, 1/8 W Chip Resistors RK73B2ATTD301G KOA Speer R2, R11 2 k Ω, 1/8 W Chip Resistors RK73B2ATTD202G KOA Speer R3, R6, R9, R12 12 kΩ, 1/8 W Chip Resistors RK73B2ATTD123G KOA Speer R13 51 Ω, 1/8 W Chip Resistor RK73B2ATTD510G KOA Speer MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 5 VD1A R1 R2 VG2A MD7IC2755N Rev. 2 L2 R3 C9 C11 C7 VG1A R6 R4 R5 C3 C2 R7 R8 C4 R9 P C21 C23 C C24 C22 C19 C20 C18 C6 C8 VG2B C15 C17 C1 R13 C13 C5 COUPLER 1 VG1B VD2A C10 C12 C14 C16 R10 R11 R12 L1 VD1B VD2B Figure 4. MD7IC2755NR1(GNR1) Test Circuit Component Layout Single--ended λ 4 λ Quadrature combined 4 λ 4 λ λ 2 2 Doherty Push--pull Figure 5. Possible Circuit Topologies MD7IC2755NR1 MD7IC2755GNR1 6 RF Device Data Freescale Semiconductor 28.6 28.2 28 27.8 28 26 24 Gps 22 IRL --36 --14 --38 27.6 27.4 --40 ACPR 27.2 --42 PARC 27 26.8 2500 2525 2550 2575 2600 --44 2625 2650 ACPR (dBc) Gps, POWER GAIN (dB) PAE VDD = 28 Vdc Pout = 10 W (Avg.) IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA VG2A = 1.7 Vdc, OFDM 802.16d, 64 QAM 3/4 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 28.4 PAE, POWER ADDED EFFICIENCY (%) 30 --46 2700 2675 --16 --18 --20 --22 --24 --0.4 --0.6 --0.8 --1 --1.2 PARC (dB) 28.8 IRL, INPUT RETURN LOSS (dB) TYPICAL CHARACTERISTICS --1.4 f, FREQUENCY (MHz) Figure 6. WiMAX Broadband Performance @ Pout = 10 Watts Avg. 32 30 IDQ2B = 413 mA 30 100 mA Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 32 IDQ1A = IDQ1B = 120 mA 80 mA 28 60 mA 26 40 mA VDD = 28 Vdc IDQ2B = 275 mA VG2A = 1.7 Vdc f = 2600 MHz 24 22 0.1 275 mA 143 mA 26 95 mA VDD = 28 Vdc IDQ1A = IDQ1B = 80 mA VG2A = 1.7 Vdc f = 2600 MHz 24 10 1 28 344 mA 100 22 0.1 1 10 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 7. Power Gain versus Output Power — Stage 1, Class AB Figure 8. Power Gain versus Output Power — Stage 2, Class AB 100 32 1.9 V Gps, POWER GAIN (dB) 30 28 1.8 V VG2A = 1.7 Vdc 1.5 V 1.6 V 26 VDD = 28 Vdc IDQ1A = IDQ1B = 80 mA IDQ2B = 275 mA f = 2600 MHz 24 22 0.1 1 10 100 Pout, OUTPUT POWER (WATTS) CW Figure 9. Power Gain versus Output Power — Stage 2, Class C MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 7 IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS --10 VDD = 28 Vdc, Pout = 12 W (PEP), IDQ1A = IDQ1B = 80 mA IDQ2B = 275 mA, VG2A = 1.7 Vdc, Two--Tone Measurements (f1 + f2)/2 = Center Frequency of 2600 MHz --20 IM3--U --30 IM3--L --40 IM5--L IM5--U --50 IM7--L --60 IM7--U 10 1 100 TWO--TONE SPACING (MHz) Figure 10. Intermodulation Distortion Products versus Two--Tone Spacing 28 27.5 27 26.5 OUTPUT COMPRESSION AT 0.01% PROBABILITY ON CCDF (dB) Gps, POWER GAIN (dB) 28.5 26 0 PARC 40 PAE --1 dB = 5.65 W ACPR --1 34 --2 dB = 11.92 W --2 28 --3 dB = 18.67 W 22 --3 f = 2600 MHz, OFDM 802.16d 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF --4 --5 2 9 16 --33 --36 --39 --42 --45 --48 10 23 16 --30 46 VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA IDQ2B = 275 mA, VG2A = 1.7 Vdc Gps ACPR (dBc) 1 PAE, POWER ADDED EFFICIENCY (%) 29 30 Pout, OUTPUT POWER (WATTS) Figure 11. Output Peak--to--Average Ratio Compression (PARC) versus Output Power 45 40 35 30 25 VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA IDQ2B = 275 mA, VG2A = 1.7 Vdc, f = 2600 MHz OFDM 802.16d, 64 QAM 3/4, 4 Bursts --30_C TC = --30_C 85_C Gps 20 25_C 15 PAE 10 ACPR 5 0 1 25_C --10 --15 --20 25_C --25 --30 --35 85_C --30_C --40 --45 10 MHz Channel Bandwidth Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 10 ACPR (dBc) PAE, POWER ADDED EFFICIENCY (%), Gps, POWER GAIN (dB) 50 --50 --55 60 --60 Pout, OUTPUT POWER (WATTS) AVG. WiMAX Figure 12. WiMAX, ACPR, Power Gain and Power Added Efficiency versus Output Power MD7IC2755NR1 MD7IC2755GNR1 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 30 --10 Gain 20 --13 --16 IRL --19 15 VDD = 28 Vdc Pout = 19 dBm IDQ1A = IDQ1B = 80 mA IDQ2B = 275 mA VG2A = 1.7 Vdc 10 5 2050 2150 2250 2350 2450 2550 2650 2750 IRL (dB) GAIN (dB) 25 --22 --25 2850 2950 f, FREQUENCY (MHz) Figure 13. Broadband Frequency Response 1010 MTTF (HOURS) 109 Stage 2A Stage 1A 108 107 Stage 2B Stage 1B 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 10 W Avg., and PAE = 25%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 14. MTTF versus Junction Temperature MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 9 WIMAX TEST SIGNAL 100 --10 --30 --40 0.1 (dB) PROBABILITY (%) Input Signal 1 0.01 OFDM 802.16d, 64 QAM 3/4, 4 Bursts 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 10 MHz Channel BW --20 10 0 2 4 6 --50 --60 --70 8 PEAK--TO--AVERAGE (dB) Figure 15. OFDM 802.16d Test Signal 10 --80 --90 --20 ACPR in 1 MHz Integrated BW --15 --10 ACPR in 1 MHz Integrated BW --5 0 5 10 15 20 f, FREQUENCY (MHz) Figure 16. WiMAX Spectrum Mask Specifications MD7IC2755NR1 MD7IC2755GNR1 10 RF Device Data Freescale Semiconductor Zo = 50 Ω Zo = 10 Ω f = 2700 MHz Zin -- 1B f = 2700 MHz f = 2500 MHz Zload -- 2B f = 2500 MHz SIDE 1B — Measured Data SIDE 2B — Simulated Data VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, Pout = 10 W Avg. VDD = 28 Vdc, IDQ1A = IDQ1B = 80 mA, IDQ2B = 275 mA, VG2A = 1.7 Vdc, Pout = 10 W Avg. f MHz Zin Zin Ω f MHz Zload Ω 2500 51.13 -- j3.65 2500 4.48 -- j1.14 2525 53.63 + j10.52 2525 4.44 -- j0.93 2550 65.26 + j9.11 2550 4.40 -- j0.70 2575 55.46 + j8.51 2575 4.38 -- j0.46 2600 56.42 + j7.21 2600 4.36 -- j0.25 2625 64.56 + j9.19 2625 4.34 -- j0.14 2650 62.22 + j8.40 2650 4.32 + j0.17 2675 63.11 + j15.82 2675 4.31 + j0.33 2700 63.82 + j23.55 2700 4.30 + j0.57 = Zload = Device input impedance as measured from gate to ground. Zin Test circuit impedance as measured from drain to ground. Zload = Device Under Test Z Output Matching Network = Device input impedance as measured rom gate to ground. Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Z in load Figure 17. Series Equivalent Input and Load Impedance MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 11 ALTERNATIVE PEAK TUNE LOAD PULL CHARACTERISTICS — CLASS AB 49 Ideal P3dB = 45.61 dBm (36 W) 47 P1dB = 44.75 dBm (30 W) 45 Actual 44 43 42 VDD = 28 Vdc, IDQ1B = 80 mA IDQ2B = 275 mA, Pulsed CW, 10 μsec(on) 10% Duty Cycle, f = 2500 MHz 41 40 39 8 9 10 11 12 13 Ideal 47 48 46 P3dB = 45.38 dBm (34 W) 48 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (dBm) 50 49 14 15 16 17 46 P1dB = 44.31 dBm (27 W) 45 Actual 44 43 42 41 VDD = 28 Vdc, IDQ1B = 80 mA IDQ2B = 275 mA, Pulsed CW, 10 μsec(on) 10% Duty Cycle, f = 2700 MHz 40 39 18 38 8 9 10 11 12 13 14 15 16 17 18 19 20 Pin, INPUT POWER (dBm) Pin, INPUT POWER (dBm) NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V NOTE: Load Pull Test Fixture Tuned for Peak P1dB Output Power @ 28 V Test Impedances per Compression Level Test Impedances per Compression Level P1dB Zsource Ω Zload Ω 55.22 + j20.17 4.19 -- j3.44 Figure 18. Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz P1dB Zsource Ω Zload Ω 48.60 + j5.11 2.47 -- j3.66 Figure 19. Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz NOTE: Measurement made on the Class AB, carrier side of the device. MD7IC2755NR1 MD7IC2755GNR1 12 RF Device Data Freescale Semiconductor Table 7. Class AB Common Source S--Parameters (VDD = 28 V, IDQ1B = 80 mA, IDQ2B = 275 mA, TA = 25°C, 50 Ohm System) Measurement made on the Class AB, carrier side of the device. S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 1500 0.569 74.4 0.002 --64.1 0.00228 135.2 0.997 --176.0 1550 0.575 51.5 0.004 --51.1 0.00100 --30.0 0.997 --179.0 1600 0.593 34.0 0.009 --87.0 0.000590 --107.6 0.995 177.4 1650 0.618 21.8 0.032 --84.4 0.00101 --103.4 0.988 172.7 1700 0.623 14.3 0.092 --94.6 0.00168 --49.5 0.974 166.7 1750 0.601 7.6 0.209 --111.8 0.00326 --146.0 0.979 164.9 1800 0.540 1.5 0.452 --140.8 0.00369 --102.1 0.975 162.2 1850 0.426 --6.8 0.885 --175.9 0.00183 --37.4 0.962 159.2 1900 0.275 --12.9 1.539 151.6 0.00427 --46.1 0.954 156.7 1950 0.058 --69.7 2.773 120.2 0.00351 143.7 0.960 153.0 2000 0.154 121.2 4.188 93.2 0.00632 --82.3 0.946 150.8 2050 0.150 79.4 7.347 72.7 0.00857 --34.1 0.935 146.9 2100 0.064 64.0 9.595 43.3 0.0155 --51.9 0.960 144.0 2150 0.607 --131.3 24.560 26.9 0.0482 --102.7 1.296 110.3 2200 0.406 81.7 28.776 --77.6 0.0257 154.9 0.196 --103.8 2250 0.166 --68.2 22.037 --116.7 0.00750 131.6 0.497 --162.5 2300 0.184 --76.9 19.823 --156.5 0.00936 156.1 0.659 --164.7 2350 0.232 --154.0 16.761 --179.7 0.00172 --139.6 0.743 --173.5 2400 0.182 --94.9 16.827 153.2 0.00578 149.5 0.778 --173.7 2450 0.114 --38.6 15.801 128.7 0.00490 163.9 0.814 --173.9 2500 0.277 --52.4 19.305 89.9 0.00825 142.6 0.853 --169.7 2550 0.261 --3.1 11.891 58.7 0.00185 153.7 0.942 --173.7 2600 0.208 10.3 8.941 47.6 0.00411 166.2 0.961 --177.1 2650 0.568 28.8 8.433 40.6 0.00264 --155.7 0.977 --179.4 2700 0.797 25.0 7.430 15.9 0.00536 128.0 0.976 178.8 2750 0.358 26.5 5.138 --5.8 0.00527 168.2 0.973 177.1 2800 0.384 33.8 4.654 --18.4 0.00311 --178.0 0.976 175.3 2850 0.420 40.4 4.257 --28.4 0.000761 173.9 0.977 173.9 2900 0.337 25.5 3.973 --41.8 0.00233 --134.7 0.977 172.6 2950 0.166 27.4 3.240 --53.3 0.00414 --133.7 0.969 171.4 3000 0.194 23.2 2.641 --52.2 0.00578 --153.5 0.980 170.4 3050 0.186 --9.6 2.337 --61.6 0.00456 158.2 0.979 169.1 3100 0.241 --59.0 2.189 --74.9 0.00204 --78.5 0.982 168.5 3150 0.344 --81.9 2.394 --90.8 0.00281 --98.4 0.974 162.9 3200 0.392 --95.8 2.636 --105.7 0.00468 --122.1 0.966 154.9 3250 0.363 --95.2 3.397 --117.6 0.00661 --106.5 0.949 139.2 3300 0.312 --84.4 5.196 --146.4 0.0170 --126.5 0.819 93.6 3350 0.430 --65.7 5.347 144.0 0.0291 119.3 0.707 --65.7 (continued) MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 13 Table 7. Class AB Common Source S--Parameters (VDD = 28 V, IDQ1B = 80 mA, IDQ2B = 275 mA, TA = 25°C, 50 Ohm System) Measurement made on the Class AB, carrier side of the device. (continued) S11 S21 S12 S22 f MHz |S11| ∠φ |S21| ∠φ |S12| ∠φ |S22| ∠φ 3400 0.434 --56.5 2.527 100.7 0.00568 100.1 0.930 --139.3 3450 0.499 --50.1 1.448 92.0 0.00828 25.3 0.865 --161.1 3500 0.546 --52.3 1.394 68.4 0.000298 --87.1 0.944 --163.3 3550 0.518 --56.8 1.073 52.6 0.00543 7.1 0.965 --171.1 3600 0.492 --68.4 0.834 39.8 0.00150 --30.4 0.958 --177.1 MD7IC2755NR1 MD7IC2755GNR1 14 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 15 MD7IC2755NR1 MD7IC2755GNR1 16 RF Device Data Freescale Semiconductor MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 17 MD7IC2755NR1 MD7IC2755GNR1 18 RF Device Data Freescale Semiconductor MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 19 MD7IC2755NR1 MD7IC2755GNR1 20 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION, TOOLS AND SOFTWARE Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN1977: Quiescent Current Thermal Tracking Circuit in the RF Integrated Circuit Family • AN1987: Quiescent Current Control for the RF Integrated Circuit Device Family • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over--Molded Plastic Packages • AN3789: Clamping of High Power RF Transistors and RFICs in Over--Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Jan. 2009 • Initial Release of Data Sheet 1 July 2009 • Test Conditions clarified for Fig. 18, Pulsed CW Output Power versus Input Power @ 28 V @ 2500 MHz, and Fig. 19, Pulsed CW Output Power versus Input Power @ 28 V @ 2700 MHz, p. 12 • Added Electromigration MTTF Calculator availability to Product Software, p. 21 2 Sept. 2010 • For Pout = 10 W CW, changed Stage 1A, Stage 1B thermal resistance values from 4.0 (Stage 1A), 5.0 (Stage 1B) to 2.6°C/W and Stage 2A, Stage 2B thermal resistance values from 0.9 (Stage 2A), 2.1 (Stage 2B) to 1.8 in Thermal Characteristics table. For Pout = 55 W CW, changed Stage 1A, Stage 1B thermal resistance values from 4.6 (Stage 1A), 4.2 (Stage 1B) to 2.3°C/W and Stage 2A, Stage 2B thermal resistance values from 1.2 (Stage 2A), 2.0 (Stage 2B) to 1.1 in Thermal Characteristics table. Thermal value now reflects the use of the combined dissipated power from the carrier amplifier and peaking amplifier, p. 2. • Fig. 4, Test Circuit Component Layout, added labels to distinguish Carrier and Peaking side of amplifier, p. 6 3 Sept. 2010 • Fig. 3, Test Circuit Schematic, corrected labeling of C9 and C11 0.5 pF Chip Capacitors, p. 5 MD7IC2755NR1 MD7IC2755GNR1 RF Device Data Freescale Semiconductor 21 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1--800--521--6274 or +1--480--768--2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1--8--1, Shimo--Meguro, Meguro--ku, Tokyo 153--0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1--800--441--2447 or +1--303--675--2140 Fax: +1--303--675--2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009--2010. All rights reserved. MD7IC2755NR1 MD7IC2755GNR1 Document Number: MD7IC2755N Rev. 3, 9/2010 22 RF Device Data Freescale Semiconductor