FREESCALE MRFE6VP100HSR5

Freescale Semiconductor
Technical Data
Document Number: MRFE6VP100H
Rev. 0, 5/2012
RF Power LDMOS Transistors
MRFE6VP100HR5
MRFE6VP100HSR5
High Ruggedness N--Channel
Enhancement--Mode Lateral MOSFETs
RF power transistors designed for both narrowband and broadband ISM,
broadcast and aerospace applications operating at frequencies from 1.8 to
2000 MHz. These devices are fabricated using Freescale’s enhanced
ruggedness platform and are suitable for use in applications where high VSWRs
are encountered.
1.8--2000 MHz, 100 W, 50 V
BROADBAND
RF POWER LDMOS TRANSISTORS
Typical Performance: VDD = 50 Volts
Frequency
(MHz)
Signal Type
Pout
(W)
Gps
(dB)
ηD
(%)
IMD
(dBc)
30--512 (1,3)
Two--Tone
(100 kHz spacing)
100 PEP
19.0
30.0
--30
512 (2)
CW
100
27.2
70.0
—
Pulse (200 μsec, 20%
Duty Cycle)
100 Peak
26.0
70.0
—
512
(2)
NI--780--4
MRFE6VP100HR5
Load Mismatch/Ruggedness
Frequency
(MHz)
512 (2)
512 (2)
Signal Type
VSWR
Pout
(W)
Test
Voltage
Pulse
(100 μsec, 20%
Duty Cycle)
>65:1
at all Phase
Angles
130
(3 dB
Overdrive)
50
CW
Result
No Device
Degradation
NI--780S--4
MRFE6VP100HSR5
126
(3 dB
Overdrive)
1. Measured in 30--512 MHz broadband reference circuit.
2. Measured in 512 MHz narrowband test circuit.
3. The values shown are the minimum measured performance numbers across the
indicated frequency range.
Gate A
Drain A
Gate B
Drain B
Features
•
•
•
•
•
•
•
Wide Operating Frequency Range
Extremely Rugged
Unmatched, Capable of Very Broadband Operation
Integrated Stability Enhancements
Low Thermal Resistance
Integrated ESD Protection Circuitry
In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel.
(Top View)
Note: The backside of the package is the
source terminal for the transistor.
Figure 1. Pin Connections
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain--Source Voltage
VDSS
--0.5, +133
Vdc
Gate--Source Voltage
VGS
--6.0, +10
Vdc
Storage Temperature Range
Tstg
--65 to +150
°C
TC
--40 to +150
°C
TJ
--40 to +225
°C
Case Operating Temperature
Operating Junction Temperature
(4,5)
4. Continuous use at maximum temperature will affect MTTF.
5. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
© Freescale Semiconductor, Inc., 2012. All rights reserved.
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP100HR5 MRFE6VP100HSR5
1
Table 2. Thermal Characteristics
Characteristic
Symbol
Value (1,2)
Unit
Thermal Resistance, Junction to Case
CW: Case Temperature 81°C, 100 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 512 MHz
RθJC
0.38
°C/W
Thermal Impedance, Junction to Case
Pulse: Case Temperature 73°C, 100 W Peak, 100 μsec Pulse Width,
20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 512 MHz
ZθJC
0.12
°C/W
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22--A114)
2, passes 2500 V
Machine Model (per EIA/JESD22--A115)
B, passes 250 V
Charge Device Model (per JESD22--C101)
IV, passes 2000 V
Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
IGSS
—
—
400
nAdc
133
141
—
Vdc
Off Characteristics (3)
Gate--Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
Drain--Source Breakdown Voltage
(VGS = 0 Vdc, ID = 50 mA)
V(BR)DSS
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
3
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Gate Threshold Voltage (3)
(VDS = 10 Vdc, ID = 170 μAdc)
VGS(th)
1.6
2.1
2.6
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test)
VGS(Q)
2.1
2.6
3.1
Vdc
Drain--Source On--Voltage (3)
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.23
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.24
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
23.9
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
73.6
—
pF
On Characteristics
Dynamic Characteristics (3)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 100 W Peak (20 W Avg.), f = 512 MHz,
200 μsec Pulse Width, 20% Duty Cycle
Power Gain
Gps
25.0
26.0
27.0
Drain Efficiency
ηD
68.0
70.0
—
dB
%
Input Return Loss
IRL
—
--14
--9
dB
Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system, IDQ(A+B) = 100 mA)
Frequency
(MHz)
Signal
Type
VSWR
Pout
(W)
512
Pulse
(100 μsec, 20% Duty Cycle)
>65:1
at all Phase Angles
130 Peak
(3 dB Overdrive)
CW
Test Voltage, VDD
Result
50
No Device Degradation
126
(3 dB Overdrive)
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select
Documentation/Application Notes -- AN1955.
3. Each side of device measured separately.
MRFE6VP100HR5 MRFE6VP100HSR5
2
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS
1.05
1000
200 mA
1.04
Ciss
100
Coss
10
1
VDD = 50 Vdc
IDQ(A+B) = 100 mA
1.03
NORMALIZED VGS(Q)
C, CAPACITANCE (pF)
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
300 mA
1.02
600 mA
1.01
1
0.99
0.98
0.97
Crss
0.96
0.95
0.1
0
10
30
20
40
--50
50
--25
0
25
50
75
VDS, DRAIN--SOURCE VOLTAGE (VOLTS)
TC, CASE TEMPERATURE (°C)
Note: Each side of device measured separately.
Figure 3. Normalized VGS versus Quiescent
Current and Case Temperature
Figure 2. Capacitance versus Drain--Source Voltage
IDQ (mA)
Slope (mV/°C)
100
--1.945
200
--1.826
300
--1.700
600
--1.648
100
108
MTTF (HOURS)
VDD = 50 Vdc
ID = 2.2 Amps
107
2.8 Amps
106
3.3 Amps
105
104
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
Note: MTTF value represents the total cumulative operating time
under indicated test conditions.
Figure 4. MTTF versus Junction Temperature -- CW
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
3
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
B1
C2
MRFE6VP100H/S
Rev. 1
C1
C14
C13
COAX1
L1
C4
C6
C24
C15
C16
C17
C18
C7
CUT OUT AREA
L2
COAX2
COAX3
L3
C5
C3
C12
C10 C11
L4
COAX4
C19
C8
C9
B2
C20
C21 C22
C23
Figure 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Layout — 512 MHz
Table 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Designations and Values — 512 MHz
Part
Description
Part Number
Manufacturer
B1, B2
Small Ferrite Beads, Surface Mount
2743019447
Fair-Rite
C1, C8
22 μF, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C2, C9
120 pF Chip Capacitors
ATC100B121JT500XT
ATC
C3
4.3 pF Chip Capacitor
ATC100B4R3CT500XT
ATC
C4, C5
56 pF Chip Capacitors
ATC100B560CT500XT
ATC
C6, C7, C15, C16, C17, C18
27 pF Chip Capacitors
ATC100B270JT500XT
ATC
C10, C21
0.1 μF Chip Capacitors
C1812F104K1RACTU
Kemet
C11, C22
0.01 μF Chip Capacitors
C1825C103K1GACTU
Kemet
C12, C23
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C13, C19
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C14, C20
2.2 μF Chip Capacitors
G2225X7R225KT3AB
ATC
C24
7.5 pF Chip Capacitor
ATC100B7R5CT500XT
ATC
Coax1, 2
25 Ω Semi Rigid Coax, 2.2″ Shield Length
UT-141C-25
Micro-Coax
Coax3, 4
25 Ω Semi Rigid Coax, 2.0″ Shield Length
UT-141C-25
Micro-Coax
L1, L2
5 Turns, 18.5 nH Inductors, Wire Wound
A05TKLC
Coilcraft
L3, L4
7 Turns, 22 nH Inductors, Wire Wound
B07TJLC
Coilcraft
PCB
0.030″, εr = 2.55
AD255D
Arlon
MRFE6VP100HR5 MRFE6VP100HSR5
4
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
5
RF
INPUT Z1
COAX2
COAX1
C5
C4
VBIAS
C3
Z16
Z3
Z17
Z4
Z5
C8
+
B2
C6
Z18
C1
+
C9
C7
Z19
Z6
C2
L2
Z20
Z21
Z8
Z7
L1
DUT
Z22
Z9
L4
Z23
Z24
Z11
Z10
L3
C19
C18
C17
C16
C15
C13
C20
C14
C21
Z25
Z12
C10
C22
C11
0.366″ × 0.082″ Microstrip
0.070″ × 0.102″ Microstrip
0.094″ × 0.102″ Microstrip
0.103″ × 0.102″ Microstrip
0.125″ × 0.102″ Microstrip
0.168″ × 0.102″ Microstrip
0.912″ × 0.058″ Microstrip
0.420″ × 0.726″ Microstrip
Z2, Z15
Z3, Z16
Z4, Z17
Z5, Z18
Z6, Z19
Z7*, Z20*
Z8, Z21
Description
Z1
Microstrip
0.173″ × 0.082″ Microstrip
0.192″ × 0.082″ Microstrip
0.257″ × 0.216″ Microstrip
0.590″ × 0.216″ Microstrip
0.822″ × 0.150″ Microstrip
0.271″ × 0.507″ Microstrip
Description
* Line length includes microstrip bends
Z14
Z13
Z12, Z25
Z11, Z24
Z10*, Z23*
Z9, Z22
Microstrip
Table 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrips — 512 MHz
Figure 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Schematic — 512 MHz
Z15
Z2
VBIAS
B1
C23
+
COAX4
COAX3
C12
+
VSUPPLY
Z13
VSUPPLY
C24
Z14
RF
OUTPUT
TYPICAL CHARACTERISTICS — 512 MHz
135
105
90
Pin = 0.24 W
75
Pout, OUTPUT POWER (dBm)
Pout, OUTPUT POWER (WATTS)
58
56
VDD = 50 Vdc
f = 512 MHz
120
Pin = 0.12 W
60
45
30
15
VDD = 50 Vdc
IDQ(A+B) = 100 mA
f = 512 MHz
54
52
50
48
46
44
42
40
38
36
0
0
0.5
1
1.5
2
2.5
3
3.5
34
12
4.5
4
14
16
VGS, GATE--SOURCE VOLTAGE (VOLTS)
18
20
22
24
26
28
30
Pin, INPUT POWER (dBm)
Figure 7. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
f
(MHz)
P1dB
(W)
P3dB
(W)
512
117
132
Figure 8. CW Output Power versus Input Power
Gps, POWER GAIN (dB)
27
80
--30_C
VDD = 50 Vdc
IDQ(A+B) = 100 mA
f = 512 MHz
25_C
70
85_C 60
26
25
50
TC = --30_C
40
24
25_C
23
Gps 30
ηD
85_C
22
20
21
3
10
ηD, DRAIN EFFICIENCY (%)
28
100
10
200
Pout, OUTPUT POWER (WATTS) CW
Figure 9. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VP100HR5 MRFE6VP100HSR5
6
RF Device Data
Freescale Semiconductor, Inc.
512 MHz NARROWBAND PRODUCTION TEST FIXTURE
VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 100 W Peak
f
MHz
Zsource
Ω
Zload
Ω
512
1.50 + j8.90
12.2 + j18.0
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 Ω
Input
Matching
Network
= Test circuit impedance as measured from
drain to drain, balanced configuration.
+
-Zsource
Device
Under
Test
--
Output
Matching
Network
50 Ω
+
Zload
Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
7
30--512 MHz BROADBAND REFERENCE CIRCUIT
Table 7. 30--512 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)
VDD = 50 Volts, IDQ(A+B) = 400 mA
Signal Type
Two-Tone
(200 kHz spacing)
Pout
(W)
f
(MHz)
Gps
(dB)
ηD
(%)
IMD
(dBc)
25 PEP
30
24.5
25.3
-37.8
100
19.6
19.9
-35.7
512
21.3
20.3
-42.8
30
24.5
36.7
-29.1
100
19.9
28.9
-32.9
512
21.7
29.6
-43.7
30
23.9
44.6
-24.1
100
19.4
35.1
-25.1
512
21.7
36.8
-37.4
30
23.2
50.7
-20.1
100
18.8
39.8
-20.4
512
21.6
42.2
-28.6
50 PEP
75 PEP
100 PEP
MRFE6VP100HR5 MRFE6VP100HSR5
8
RF Device Data
Freescale Semiconductor, Inc.
30--512 MHz BROADBAND REFERENCE CIRCUIT
R1
MRFE6VP100H
Rev. 1
C1
C6
C5
C14
E6
R3
T2
Connects shields
above PCB
T4
L1
E5
E3
C2
C7
C8
Q1
E1
E2
C9
C10
C3
C11
C15
E4
L2
T3
T1
E7
R4
R2
C4
C12
C13
C16
Figure 11. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Layout — 30--512 MHz
Table 8. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Designations and Values — 30--512 MHz
Part
Description
Part Number
Manufacturer
C1, C4
2.2 μF Chip Capacitors
C1825C225J5RAC
Kemet
C2, C3, C7, C8, C9, C10
20K pF Chip Capacitors
ATC200B203KT50XT
ATC
C5, C13
200 nF Chip Capacitors
C1812C224K5RAC-TU
Kemet
C6, C12
2.2 μF Chip Capacitors
G2225X7R225KT3AB
ATC
C11
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C14, C16
470 μF, 63 V Electrolytic Capacitors
MCGPR63V477M13X26-RH
Multicomp
C15
2.0 pF Chip Capacitor
ATC100B2R0BT500XT
ATC
E1, E2
#43 Ferrite Beads
2643023402
Fair-Rite
E3, E4, E5
Binocular Toroid K Material
12-365-K
Ferronics
E6, E7
Toroid Ferrite K Material
11--750--K
Ferronics
L1, L2
10 Turns, #18 AWG, Toroid Transformer with
Ferrites E6, E7
8075 Copper Magnetic Wire
Belden
Q1
RF Power LDMOS Transistor
MRFE6VP100HR5
Freescale
R1, R2
10 Ω, 1/4 W Chip Resistors
CRCW120610ROJNEA
Vishay
R3, R4
56 Ω, 1/4 W Chip Resistors
CRCW120656ROJNEA
Vishay
T1
50 Ω Flex Cable, 4″
Sucoform 141
Hubert+Suhner
T2, T3
22 Ω Flex Cable, 3.25″
M27500-16RC1509
Whitmor-Wirenetics
T4
25 Ω Semi Rigid, 2.75″
UT-90-25
Micro-Coax
PCB
0.030″, εr = 2.55
AD255A
Arlon
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
9
VBIAS
C6
L1, E6
C1
Z6
Z2
Z1
Z4
Z10
Z14
Z16
Z18
C8
E4
E1, E2
Z5
C11 E5
Z9
T2
C15
E3
C3
RF
Z20 OUTPUT
T4
DUT
Z3
C14
C7
Z8
T3
C2
T1
C5
R3
Z12
RF
INPUT
VSUPPLY
+
R1
Z11
Z15
C9
Z17
Z19
Z7
Z13
C10
R4
VBIAS
R2
L2, E7
C4
VSUPPLY
+
C12
C13
C16
Figure 12. MRFE6VP100HR5(HSR5) Broadband Test Circuit Schematic — 30--512 MHz
Table 9. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrips — 30--512 MHz
Microstrip
Description
Microstrip
Description
Z1
0.366″ × 0.082″ Microstrip
Z12*, Z13*
Z2, Z3
0.070″ × 0.102″ Microstrip
Z14, Z15
0.563″ × 0.219″ Microstrip
Z4,Z5
0.094″ × 0.102″ Microstrip
Z16, Z17
0.094″ × 0.219″ Microstrip
1.125″ × 0.150″ Microstrip
Z6*, Z7*
1.375″ × 0.063″ Microstrip
Z18, Z19
0.156″ × 0.219″ Microstrip
Z8, Z9
0.561″ × 0.219″ Microstrip
Z20
0.359″ × 0.078″ Microstrip
Z10, Z11
0.250″ × 0.219″ Microstrip
* Line length includes microstrip bends
MRFE6VP100HR5 MRFE6VP100HSR5
10
RF Device Data
Freescale Semiconductor, Inc.
VDD = 50 Vdc, Pin = 2 W
IDQ(A+B) = 100 mA
Pout
Gps
ηD
0
50
100
250 300 350 400 450
150 200
210
195
180
165
150
135
120
105
90
75
60
45
30
15
0
500 550
ηD, DRAIN EFFICIENCY (%)
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
Pout, OUTPUT POWER (WATTS) CW
Gps, POWER GAIN (dB)
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT
f, FREQUENCY (MHz)
Figure 13. Power Gain, CW Output Power and Drain
Efficiency versus Frequency at a Constant Input Power
200
VDD = 50 Vdc
Pin = 1 W
30 MHz
Pout, OUTPUT POWER (WATTS)
Pout, OUTPUT POWER (WATTS)
200
150
100
512 MHz
100 MHz
50
0
VDD = 50 Vdc
Pin = 2 W
30 MHz
150
512 MHz
100
100 MHz
50
0
0
0.5
1
1.5
2
2.5
3
3.5
4
0
0.5
1
1.5
2
2.5
3
3.5
4
VGS, GATE--SOURCE VOLTAGE (VOLTS)
VGS, GATE--SOURCE VOLTAGE (VOLTS)
Figure 14. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
Figure 15. CW Output Power versus Gate--Source
Voltage at a Constant Input Power
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
11
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT
52
VDD = 50 Vdc
IDQ(A+B) = 100 mA
Pout, OUTPUT POWER (dBm)
50
48
46
f = 30 MHz
44
42
512 MHz
40
38
100 MHz
36
34
18
20
22
24
26
28
30
32
34
36
Pin, INPUT POWER (dBm)
f
(MHz)
P1dB
(W)
P3dB
(W)
30
78
107
100
81
118
512
123
142
Figure 16. CW Output Power versus Input Power
26
80
VDD = 50 Vdc
IDQ(A+B) = 100 mA
70
ηD
30 MHz
22
20
50
512 MHz
18
40
100 MHz
Gps
16
512 MHz
100 MHz
14
12
10
30
20
30 MHz
3
60
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
24
100
10
200
Pout, OUTPUT POWER (WATTS) CW
Figure 17. Power Gain and Drain Efficiency
versus CW Output Power
MRFE6VP100HR5 MRFE6VP100HSR5
12
RF Device Data
Freescale Semiconductor, Inc.
TYPICAL CHARACTERISTICS — 30--512 MHz
BROADBAND REFERENCE CIRCUIT — TWO--TONE (1)
--10
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
--10
VDD = 50 Vdc, IDQ(A+B) = 400 mA
f1 = 29.9 MHz, f2 = 30.1 MHz
Two--Tone Measurements
--20
--30
--40
3rd Order
--50
5th Order
--60
7th Order
--70
1
10
100
VDD = 50 Vdc, IDQ(A+B) = 400 mA
f1 = 99.9 MHz, f2 = 100.1 MHz
Two--Tone Measurements
--20
--30
--40
3rd Order
--50
5th Order
--60
7th Order
--70
200
10
1
100
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 18. Intermodulation Distortion
Products versus Output Power — 30 MHz
Figure 19. Intermodulation Distortion
Products versus Output Power — 100 MHz
200
IMD, INTERMODULATION DISTORTION (dBc)
--20
VDD = 50 Vdc, IDQ(A+B) = 400 mA
f1 = 511.9 MHz, f2 = 512.1 MHz
Two--Tone Measurements
--30
--40
3rd Order
--50
5th Order
--60
7th Order
--70
1
10
100
200
Pout, OUTPUT POWER (WATTS) PEP
Figure 20. Intermodulation Distortion
Products versus Output Power — 520 MHz
1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone.
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
13
30--512 MHz BROADBAND REFERENCE CIRCUIT
Zo = 50 Ω
f = 512 MHz
f = 512 MHz
Zsource
f = 30 MHz
f = 30 MHz
Zload
VDD = 50 Vdc, Pout = 100 W CW
f
MHz
Zsource
Ω
Zload
Ω
30
10.7 + j1.20
45.8 – j9.00
64
10.9 + j0.70
39.7 – j15.4
88
10.9 + j0.50
33.9 – j18.1
108
10.3 + j0.70
30.0 – j14.4
144
11.0 + j0.70
26.0 – j16.7
170
10.4 + j0.60
21.8 – j13.4
230
9.90 + j0.90
17.0 – j10.7
352
8.90 + j2.30
13.8 – j0.60
450
7.60 + j4.80
16.9 + j9.50
512
7.20 + j6.00
23.7 + j13.5
Zsource = Test circuit impedance as measured from
gate to gate, balanced configuration.
Zload
50 Ω
= Test circuit impedance as measured from
drain to drain, balanced configuration.
Input
Matching
Network
+
Zsource
--
Device
Under
Test
--
Output
Matching
Network
50 Ω
+
Zload
Figure 21. Broadband Series Equivalent Source and Load Impedance — 30--512 MHz
MRFE6VP100HR5 MRFE6VP100HSR5
14
RF Device Data
Freescale Semiconductor, Inc.
PACKAGE DIMENSIONS
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
15
MRFE6VP100HR5 MRFE6VP100HSR5
16
RF Device Data
Freescale Semiconductor, Inc.
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
17
MRFE6VP100HR5 MRFE6VP100HSR5
18
RF Device Data
Freescale Semiconductor, Inc.
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS
Refer to the following documents, software and tools to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
Software
• Electromigration MTTF Calculator
• RF High Power Model
• .s2p File
Development Tools
• Printed Circuit Boards
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the
Software & Tools tab on the part’s Product Summary page to download the respective tool.
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
May 2012
Description
• Initial Release of Data Sheet
MRFE6VP100HR5 MRFE6VP100HSR5
RF Device Data
Freescale Semiconductor, Inc.
19
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for
each customer application by customer’s technical experts. Freescale does not convey
any license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.
Freescale, the Freescale logo, AltiVec, C--5, CodeTest, CodeWarrior, ColdFire,
C--Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor
Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack,
ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,
QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic
are trademarks of Freescale Semiconductor, Inc. All other product or service names
are the property of their respective owners.
E 2012 Freescale Semiconductor, Inc.
MRFE6VP100HR5 MRFE6VP100HSR5
Document Number: MRFE6VP100H
Rev. 0, 5/2012
20
RF Device Data
Freescale Semiconductor, Inc.