Freescale Semiconductor Technical Data Document Number: MRFE6VP100H Rev. 0, 5/2012 RF Power LDMOS Transistors MRFE6VP100HR5 MRFE6VP100HSR5 High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs RF power transistors designed for both narrowband and broadband ISM, broadcast and aerospace applications operating at frequencies from 1.8 to 2000 MHz. These devices are fabricated using Freescale’s enhanced ruggedness platform and are suitable for use in applications where high VSWRs are encountered. 1.8--2000 MHz, 100 W, 50 V BROADBAND RF POWER LDMOS TRANSISTORS Typical Performance: VDD = 50 Volts Frequency (MHz) Signal Type Pout (W) Gps (dB) ηD (%) IMD (dBc) 30--512 (1,3) Two--Tone (100 kHz spacing) 100 PEP 19.0 30.0 --30 512 (2) CW 100 27.2 70.0 — Pulse (200 μsec, 20% Duty Cycle) 100 Peak 26.0 70.0 — 512 (2) NI--780--4 MRFE6VP100HR5 Load Mismatch/Ruggedness Frequency (MHz) 512 (2) 512 (2) Signal Type VSWR Pout (W) Test Voltage Pulse (100 μsec, 20% Duty Cycle) >65:1 at all Phase Angles 130 (3 dB Overdrive) 50 CW Result No Device Degradation NI--780S--4 MRFE6VP100HSR5 126 (3 dB Overdrive) 1. Measured in 30--512 MHz broadband reference circuit. 2. Measured in 512 MHz narrowband test circuit. 3. The values shown are the minimum measured performance numbers across the indicated frequency range. Gate A Drain A Gate B Drain B Features • • • • • • • Wide Operating Frequency Range Extremely Rugged Unmatched, Capable of Very Broadband Operation Integrated Stability Enhancements Low Thermal Resistance Integrated ESD Protection Circuitry In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel. (Top View) Note: The backside of the package is the source terminal for the transistor. Figure 1. Pin Connections Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS --0.5, +133 Vdc Gate--Source Voltage VGS --6.0, +10 Vdc Storage Temperature Range Tstg --65 to +150 °C TC --40 to +150 °C TJ --40 to +225 °C Case Operating Temperature Operating Junction Temperature (4,5) 4. Continuous use at maximum temperature will affect MTTF. 5. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. © Freescale Semiconductor, Inc., 2012. All rights reserved. RF Device Data Freescale Semiconductor, Inc. MRFE6VP100HR5 MRFE6VP100HSR5 1 Table 2. Thermal Characteristics Characteristic Symbol Value (1,2) Unit Thermal Resistance, Junction to Case CW: Case Temperature 81°C, 100 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 512 MHz RθJC 0.38 °C/W Thermal Impedance, Junction to Case Pulse: Case Temperature 73°C, 100 W Peak, 100 μsec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 512 MHz ZθJC 0.12 °C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 2000 V Table 4. Electrical Characteristics (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 400 nAdc 133 141 — Vdc Off Characteristics (3) Gate--Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain--Source Breakdown Voltage (VGS = 0 Vdc, ID = 50 mA) V(BR)DSS Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 3 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Gate Threshold Voltage (3) (VDS = 10 Vdc, ID = 170 μAdc) VGS(th) 1.6 2.1 2.6 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 100 mAdc, Measured in Functional Test) VGS(Q) 2.1 2.6 3.1 Vdc Drain--Source On--Voltage (3) (VGS = 10 Vdc, ID = 1 Adc) VDS(on) — 0.23 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.24 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 23.9 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 73.6 — pF On Characteristics Dynamic Characteristics (3) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 100 W Peak (20 W Avg.), f = 512 MHz, 200 μsec Pulse Width, 20% Duty Cycle Power Gain Gps 25.0 26.0 27.0 Drain Efficiency ηD 68.0 70.0 — dB % Input Return Loss IRL — --14 --9 dB Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system, IDQ(A+B) = 100 mA) Frequency (MHz) Signal Type VSWR Pout (W) 512 Pulse (100 μsec, 20% Duty Cycle) >65:1 at all Phase Angles 130 Peak (3 dB Overdrive) CW Test Voltage, VDD Result 50 No Device Degradation 126 (3 dB Overdrive) 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes -- AN1955. 3. Each side of device measured separately. MRFE6VP100HR5 MRFE6VP100HSR5 2 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS 1.05 1000 200 mA 1.04 Ciss 100 Coss 10 1 VDD = 50 Vdc IDQ(A+B) = 100 mA 1.03 NORMALIZED VGS(Q) C, CAPACITANCE (pF) Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 300 mA 1.02 600 mA 1.01 1 0.99 0.98 0.97 Crss 0.96 0.95 0.1 0 10 30 20 40 --50 50 --25 0 25 50 75 VDS, DRAIN--SOURCE VOLTAGE (VOLTS) TC, CASE TEMPERATURE (°C) Note: Each side of device measured separately. Figure 3. Normalized VGS versus Quiescent Current and Case Temperature Figure 2. Capacitance versus Drain--Source Voltage IDQ (mA) Slope (mV/°C) 100 --1.945 200 --1.826 300 --1.700 600 --1.648 100 108 MTTF (HOURS) VDD = 50 Vdc ID = 2.2 Amps 107 2.8 Amps 106 3.3 Amps 105 104 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. Figure 4. MTTF versus Junction Temperature -- CW MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 3 512 MHz NARROWBAND PRODUCTION TEST FIXTURE B1 C2 MRFE6VP100H/S Rev. 1 C1 C14 C13 COAX1 L1 C4 C6 C24 C15 C16 C17 C18 C7 CUT OUT AREA L2 COAX2 COAX3 L3 C5 C3 C12 C10 C11 L4 COAX4 C19 C8 C9 B2 C20 C21 C22 C23 Figure 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Layout — 512 MHz Table 5. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Component Designations and Values — 512 MHz Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair-Rite C1, C8 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C2, C9 120 pF Chip Capacitors ATC100B121JT500XT ATC C3 4.3 pF Chip Capacitor ATC100B4R3CT500XT ATC C4, C5 56 pF Chip Capacitors ATC100B560CT500XT ATC C6, C7, C15, C16, C17, C18 27 pF Chip Capacitors ATC100B270JT500XT ATC C10, C21 0.1 μF Chip Capacitors C1812F104K1RACTU Kemet C11, C22 0.01 μF Chip Capacitors C1825C103K1GACTU Kemet C12, C23 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C13, C19 240 pF Chip Capacitors ATC100B241JT200XT ATC C14, C20 2.2 μF Chip Capacitors G2225X7R225KT3AB ATC C24 7.5 pF Chip Capacitor ATC100B7R5CT500XT ATC Coax1, 2 25 Ω Semi Rigid Coax, 2.2″ Shield Length UT-141C-25 Micro-Coax Coax3, 4 25 Ω Semi Rigid Coax, 2.0″ Shield Length UT-141C-25 Micro-Coax L1, L2 5 Turns, 18.5 nH Inductors, Wire Wound A05TKLC Coilcraft L3, L4 7 Turns, 22 nH Inductors, Wire Wound B07TJLC Coilcraft PCB 0.030″, εr = 2.55 AD255D Arlon MRFE6VP100HR5 MRFE6VP100HSR5 4 RF Device Data Freescale Semiconductor, Inc. MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 5 RF INPUT Z1 COAX2 COAX1 C5 C4 VBIAS C3 Z16 Z3 Z17 Z4 Z5 C8 + B2 C6 Z18 C1 + C9 C7 Z19 Z6 C2 L2 Z20 Z21 Z8 Z7 L1 DUT Z22 Z9 L4 Z23 Z24 Z11 Z10 L3 C19 C18 C17 C16 C15 C13 C20 C14 C21 Z25 Z12 C10 C22 C11 0.366″ × 0.082″ Microstrip 0.070″ × 0.102″ Microstrip 0.094″ × 0.102″ Microstrip 0.103″ × 0.102″ Microstrip 0.125″ × 0.102″ Microstrip 0.168″ × 0.102″ Microstrip 0.912″ × 0.058″ Microstrip 0.420″ × 0.726″ Microstrip Z2, Z15 Z3, Z16 Z4, Z17 Z5, Z18 Z6, Z19 Z7*, Z20* Z8, Z21 Description Z1 Microstrip 0.173″ × 0.082″ Microstrip 0.192″ × 0.082″ Microstrip 0.257″ × 0.216″ Microstrip 0.590″ × 0.216″ Microstrip 0.822″ × 0.150″ Microstrip 0.271″ × 0.507″ Microstrip Description * Line length includes microstrip bends Z14 Z13 Z12, Z25 Z11, Z24 Z10*, Z23* Z9, Z22 Microstrip Table 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrips — 512 MHz Figure 6. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Schematic — 512 MHz Z15 Z2 VBIAS B1 C23 + COAX4 COAX3 C12 + VSUPPLY Z13 VSUPPLY C24 Z14 RF OUTPUT TYPICAL CHARACTERISTICS — 512 MHz 135 105 90 Pin = 0.24 W 75 Pout, OUTPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) 58 56 VDD = 50 Vdc f = 512 MHz 120 Pin = 0.12 W 60 45 30 15 VDD = 50 Vdc IDQ(A+B) = 100 mA f = 512 MHz 54 52 50 48 46 44 42 40 38 36 0 0 0.5 1 1.5 2 2.5 3 3.5 34 12 4.5 4 14 16 VGS, GATE--SOURCE VOLTAGE (VOLTS) 18 20 22 24 26 28 30 Pin, INPUT POWER (dBm) Figure 7. CW Output Power versus Gate--Source Voltage at a Constant Input Power f (MHz) P1dB (W) P3dB (W) 512 117 132 Figure 8. CW Output Power versus Input Power Gps, POWER GAIN (dB) 27 80 --30_C VDD = 50 Vdc IDQ(A+B) = 100 mA f = 512 MHz 25_C 70 85_C 60 26 25 50 TC = --30_C 40 24 25_C 23 Gps 30 ηD 85_C 22 20 21 3 10 ηD, DRAIN EFFICIENCY (%) 28 100 10 200 Pout, OUTPUT POWER (WATTS) CW Figure 9. Power Gain and Drain Efficiency versus CW Output Power MRFE6VP100HR5 MRFE6VP100HSR5 6 RF Device Data Freescale Semiconductor, Inc. 512 MHz NARROWBAND PRODUCTION TEST FIXTURE VDD = 50 Vdc, IDQ(A+B) = 100 mA, Pout = 100 W Peak f MHz Zsource Ω Zload Ω 512 1.50 + j8.90 12.2 + j18.0 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω Input Matching Network = Test circuit impedance as measured from drain to drain, balanced configuration. + -Zsource Device Under Test -- Output Matching Network 50 Ω + Zload Figure 10. Narrowband Series Equivalent Source and Load Impedance — 512 MHz MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 7 30--512 MHz BROADBAND REFERENCE CIRCUIT Table 7. 30--512 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system) VDD = 50 Volts, IDQ(A+B) = 400 mA Signal Type Two-Tone (200 kHz spacing) Pout (W) f (MHz) Gps (dB) ηD (%) IMD (dBc) 25 PEP 30 24.5 25.3 -37.8 100 19.6 19.9 -35.7 512 21.3 20.3 -42.8 30 24.5 36.7 -29.1 100 19.9 28.9 -32.9 512 21.7 29.6 -43.7 30 23.9 44.6 -24.1 100 19.4 35.1 -25.1 512 21.7 36.8 -37.4 30 23.2 50.7 -20.1 100 18.8 39.8 -20.4 512 21.6 42.2 -28.6 50 PEP 75 PEP 100 PEP MRFE6VP100HR5 MRFE6VP100HSR5 8 RF Device Data Freescale Semiconductor, Inc. 30--512 MHz BROADBAND REFERENCE CIRCUIT R1 MRFE6VP100H Rev. 1 C1 C6 C5 C14 E6 R3 T2 Connects shields above PCB T4 L1 E5 E3 C2 C7 C8 Q1 E1 E2 C9 C10 C3 C11 C15 E4 L2 T3 T1 E7 R4 R2 C4 C12 C13 C16 Figure 11. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Layout — 30--512 MHz Table 8. MRFE6VP100HR5(HSR5) Broadband Reference Circuit Component Designations and Values — 30--512 MHz Part Description Part Number Manufacturer C1, C4 2.2 μF Chip Capacitors C1825C225J5RAC Kemet C2, C3, C7, C8, C9, C10 20K pF Chip Capacitors ATC200B203KT50XT ATC C5, C13 200 nF Chip Capacitors C1812C224K5RAC-TU Kemet C6, C12 2.2 μF Chip Capacitors G2225X7R225KT3AB ATC C11 2.7 pF Chip Capacitor ATC100B2R7BT500XT ATC C14, C16 470 μF, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C15 2.0 pF Chip Capacitor ATC100B2R0BT500XT ATC E1, E2 #43 Ferrite Beads 2643023402 Fair-Rite E3, E4, E5 Binocular Toroid K Material 12-365-K Ferronics E6, E7 Toroid Ferrite K Material 11--750--K Ferronics L1, L2 10 Turns, #18 AWG, Toroid Transformer with Ferrites E6, E7 8075 Copper Magnetic Wire Belden Q1 RF Power LDMOS Transistor MRFE6VP100HR5 Freescale R1, R2 10 Ω, 1/4 W Chip Resistors CRCW120610ROJNEA Vishay R3, R4 56 Ω, 1/4 W Chip Resistors CRCW120656ROJNEA Vishay T1 50 Ω Flex Cable, 4″ Sucoform 141 Hubert+Suhner T2, T3 22 Ω Flex Cable, 3.25″ M27500-16RC1509 Whitmor-Wirenetics T4 25 Ω Semi Rigid, 2.75″ UT-90-25 Micro-Coax PCB 0.030″, εr = 2.55 AD255A Arlon MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 9 VBIAS C6 L1, E6 C1 Z6 Z2 Z1 Z4 Z10 Z14 Z16 Z18 C8 E4 E1, E2 Z5 C11 E5 Z9 T2 C15 E3 C3 RF Z20 OUTPUT T4 DUT Z3 C14 C7 Z8 T3 C2 T1 C5 R3 Z12 RF INPUT VSUPPLY + R1 Z11 Z15 C9 Z17 Z19 Z7 Z13 C10 R4 VBIAS R2 L2, E7 C4 VSUPPLY + C12 C13 C16 Figure 12. MRFE6VP100HR5(HSR5) Broadband Test Circuit Schematic — 30--512 MHz Table 9. MRFE6VP100HR5(HSR5) Narrowband Test Circuit Microstrips — 30--512 MHz Microstrip Description Microstrip Description Z1 0.366″ × 0.082″ Microstrip Z12*, Z13* Z2, Z3 0.070″ × 0.102″ Microstrip Z14, Z15 0.563″ × 0.219″ Microstrip Z4,Z5 0.094″ × 0.102″ Microstrip Z16, Z17 0.094″ × 0.219″ Microstrip 1.125″ × 0.150″ Microstrip Z6*, Z7* 1.375″ × 0.063″ Microstrip Z18, Z19 0.156″ × 0.219″ Microstrip Z8, Z9 0.561″ × 0.219″ Microstrip Z20 0.359″ × 0.078″ Microstrip Z10, Z11 0.250″ × 0.219″ Microstrip * Line length includes microstrip bends MRFE6VP100HR5 MRFE6VP100HSR5 10 RF Device Data Freescale Semiconductor, Inc. VDD = 50 Vdc, Pin = 2 W IDQ(A+B) = 100 mA Pout Gps ηD 0 50 100 250 300 350 400 450 150 200 210 195 180 165 150 135 120 105 90 75 60 45 30 15 0 500 550 ηD, DRAIN EFFICIENCY (%) 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 Pout, OUTPUT POWER (WATTS) CW Gps, POWER GAIN (dB) TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT f, FREQUENCY (MHz) Figure 13. Power Gain, CW Output Power and Drain Efficiency versus Frequency at a Constant Input Power 200 VDD = 50 Vdc Pin = 1 W 30 MHz Pout, OUTPUT POWER (WATTS) Pout, OUTPUT POWER (WATTS) 200 150 100 512 MHz 100 MHz 50 0 VDD = 50 Vdc Pin = 2 W 30 MHz 150 512 MHz 100 100 MHz 50 0 0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4 VGS, GATE--SOURCE VOLTAGE (VOLTS) VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 14. CW Output Power versus Gate--Source Voltage at a Constant Input Power Figure 15. CW Output Power versus Gate--Source Voltage at a Constant Input Power MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 11 TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT 52 VDD = 50 Vdc IDQ(A+B) = 100 mA Pout, OUTPUT POWER (dBm) 50 48 46 f = 30 MHz 44 42 512 MHz 40 38 100 MHz 36 34 18 20 22 24 26 28 30 32 34 36 Pin, INPUT POWER (dBm) f (MHz) P1dB (W) P3dB (W) 30 78 107 100 81 118 512 123 142 Figure 16. CW Output Power versus Input Power 26 80 VDD = 50 Vdc IDQ(A+B) = 100 mA 70 ηD 30 MHz 22 20 50 512 MHz 18 40 100 MHz Gps 16 512 MHz 100 MHz 14 12 10 30 20 30 MHz 3 60 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 24 100 10 200 Pout, OUTPUT POWER (WATTS) CW Figure 17. Power Gain and Drain Efficiency versus CW Output Power MRFE6VP100HR5 MRFE6VP100HSR5 12 RF Device Data Freescale Semiconductor, Inc. TYPICAL CHARACTERISTICS — 30--512 MHz BROADBAND REFERENCE CIRCUIT — TWO--TONE (1) --10 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) --10 VDD = 50 Vdc, IDQ(A+B) = 400 mA f1 = 29.9 MHz, f2 = 30.1 MHz Two--Tone Measurements --20 --30 --40 3rd Order --50 5th Order --60 7th Order --70 1 10 100 VDD = 50 Vdc, IDQ(A+B) = 400 mA f1 = 99.9 MHz, f2 = 100.1 MHz Two--Tone Measurements --20 --30 --40 3rd Order --50 5th Order --60 7th Order --70 200 10 1 100 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 18. Intermodulation Distortion Products versus Output Power — 30 MHz Figure 19. Intermodulation Distortion Products versus Output Power — 100 MHz 200 IMD, INTERMODULATION DISTORTION (dBc) --20 VDD = 50 Vdc, IDQ(A+B) = 400 mA f1 = 511.9 MHz, f2 = 512.1 MHz Two--Tone Measurements --30 --40 3rd Order --50 5th Order --60 7th Order --70 1 10 100 200 Pout, OUTPUT POWER (WATTS) PEP Figure 20. Intermodulation Distortion Products versus Output Power — 520 MHz 1. The distortion products are referenced to one of the two tones and the peak envelope power (PEP) is 6 dB above the power in a single tone. MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 13 30--512 MHz BROADBAND REFERENCE CIRCUIT Zo = 50 Ω f = 512 MHz f = 512 MHz Zsource f = 30 MHz f = 30 MHz Zload VDD = 50 Vdc, Pout = 100 W CW f MHz Zsource Ω Zload Ω 30 10.7 + j1.20 45.8 – j9.00 64 10.9 + j0.70 39.7 – j15.4 88 10.9 + j0.50 33.9 – j18.1 108 10.3 + j0.70 30.0 – j14.4 144 11.0 + j0.70 26.0 – j16.7 170 10.4 + j0.60 21.8 – j13.4 230 9.90 + j0.90 17.0 – j10.7 352 8.90 + j2.30 13.8 – j0.60 450 7.60 + j4.80 16.9 + j9.50 512 7.20 + j6.00 23.7 + j13.5 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload 50 Ω = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Zsource -- Device Under Test -- Output Matching Network 50 Ω + Zload Figure 21. Broadband Series Equivalent Source and Load Impedance — 30--512 MHz MRFE6VP100HR5 MRFE6VP100HSR5 14 RF Device Data Freescale Semiconductor, Inc. PACKAGE DIMENSIONS MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 15 MRFE6VP100HR5 MRFE6VP100HSR5 16 RF Device Data Freescale Semiconductor, Inc. MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 17 MRFE6VP100HR5 MRFE6VP100HSR5 18 RF Device Data Freescale Semiconductor, Inc. PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS Refer to the following documents, software and tools to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices Software • Electromigration MTTF Calculator • RF High Power Model • .s2p File Development Tools • Printed Circuit Boards For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the Software & Tools tab on the part’s Product Summary page to download the respective tool. REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 May 2012 Description • Initial Release of Data Sheet MRFE6VP100HR5 MRFE6VP100HSR5 RF Device Data Freescale Semiconductor, Inc. 19 How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm. Freescale, the Freescale logo, AltiVec, C--5, CodeTest, CodeWarrior, ColdFire, C--Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. E 2012 Freescale Semiconductor, Inc. MRFE6VP100HR5 MRFE6VP100HSR5 Document Number: MRFE6VP100H Rev. 0, 5/2012 20 RF Device Data Freescale Semiconductor, Inc.