FAIRCHILD FXMA2102UMX

FXMA2102
Dual Supply, 2-Bit Voltage Translator / Buffer /
Repeater / Isolator for I2C Applications
Features
Description

Bi-Directional Interface between Any Two Levels:
1.65 V to 5.5 V


Direction Control not Needed
The FXMA2102 is a high-performance configurable
dual-voltage-supply translator for bi-directional voltage
translation over a wide range of input and output
voltages levels.
System GPIO Resources Not Required when OE
Tied to VCCA



Intended for use as a voltage translator between I2CBus® complaint masters and slaves.
I2C 400 pF Buffer / Repeater


Open-Drain Inputs / Outputs




Supports I2C Clock Stretching & Multi-Master
I2C Bus Isolation
A/B Port VOL = 175 mV (Typical), VIL = 150 mV,
IOL = 6 mA
Accommodates Standard-Mode and Fast-Mode
I2C-Bus Devices
Fully Configurable: Inputs and Outputs Track VCC
Control Input (/OE) Referenced to VCCA.
The device is designed so that the A port tracks the
VCCA level and the B port tracks the VCCB level. This
allows for bi-directional A/B port voltage translation
between any two levels from 1.65 V to 5.5 V. VCCA can
equal VCCB from 1.65V to 5.5V. The OE pin is
referenced to VCCA.
Either VCC can be powered-up first. Internal power-down
control circuits place the device in 3-state if either VCC is
removed.
The two ports of the device have automatic direction
sense capability. Either port may sense an input signal
and transfer it as an output signal to the other port.
Non-Preferential Power-Up; Either VCC May Be
Powered-Up First



Outputs Switch to 3-State if Either VCC is at GND

ESD Protection Exceeds:
- 8 kV HBM ESD (per JESD22-A114)
- 2 kV CDM (per JESD22-C101)
Tolerant Output Enable: 5 V
Packaged in 8-Terminal Leadless MicroPak™
(1.6 mm x 1.6 mm) and Ultrathin MLP
(1.2 mm x 1.4 mm)
Ordering Information
Part Number
FXMA2102L8X
FXMA2102UMX
Operating
Temperature Range
Top
Mark
-40 to +85°C
XN
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
Package
8-Lead MicroPak™, 1.6 mm Wide
8-Lead Ultrathin MLP, 1.2 mm x 1.4 mm
Packing
Method
5000 Units on
Tape and Reel
www.fairchildsemi.com
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
August 2012
Figure 1. Block Diagram, 1 of 2 Channels
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Block Diagram
www.fairchildsemi.com
2
VCCB
B0
B1
OE
7
6
5
8
GND
4
1
2
3
VCCA
A0
A1
Figure 2. MicroPak™ (Top-Through View)
Figure 3. UMLP (Top-Through View)
Pin Definitions
Pin #
Name
Description
1
VCCA
A-Side Power Supply
2, 3
A0, A1
A-Side Inputs or 3-State Outputs
4
GND
Ground
5
OE
6, 7
B1, B0
B-Side Inputs or 3-State Outputs
8
VCCB
B-Side Power Supply
Output Enable Input (Referenced to VCCA )
Truth Table
Control
Outputs
OE
LOW Logic Level
3-State
HIGH Logic Level
Normal Operation
Note:
1. If the OE pin is driven LOW, the FXMA2102 is disabled and the A0, A1, B0, and B1 pins (including dynamic
drivers) are forced into 3-state.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Pin Configuration
www.fairchildsemi.com
3
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.
The absolute maximum ratings are stress ratings only.
Symbol
Parameter
Min.
Max.
–0.5
7.0
A Port
–0.5
7.0
B Port
–0.5
7.0
Control Input (OE)
–0.5
7.0
An Outputs 3-State
–0.5
7.0
Bn Outputs 3-State
–0.5
7.0
An Outputs Active
–0.5
VCCA + 0.5V
Bn Outputs Active
–0.5
VCCB + 0.5V
VCCA, VCCB Supply Voltage
VIN
VO
DC Input Voltage
Output Voltage(2)
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IOH / IOL
At VIN < 0 V
–50
At VO < 0 V
–50
At VO > VCC
+50
DC Output Source/Sink Current
–50
+50
Unit
V
V
mA
mA
mA
ICC
DC VCC or Ground Current per Supply Pin
±100
mA
PD
Power Dissipation
0.129
mW
+150
°C
At 400 KHz
TSTG
Storage Temperature Range
ESD
Electrostatic Discharge
Capability
–65
Human Body Model, JESD22-A114
8
Charged Device Mode, JESD22-C101
2
kV
Note:
2. IO absolute maximum rating must be observed.
Recommended Operating Conditions
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not
recommend exceeding them or designing to Absolute Maximum Ratings.
Symbol
Parameter
VCCA, VCCB Power Supply Operating
VIN
Input Voltage
Min.
Max.
Unit
1.65
5.50
V
A Port
0
5.5
B Port
0
5.5
Control Input (OE)
0
VCCA
8-Lead MicroPak™
279.0
8-Lead Ultrathin MLP
301.5
ΘJA
Thermal Resistance
TA
Free Air Operating Temperature
–40
+85
V
C°/W
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Absolute Maximum Ratings
°C
Note:
3. All unused inputs and I/O pins must be held at VCCI or GND.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
4
Power-Up/Power-Down Sequencing
The recommended power-up sequence is:
FXM translators offer an advantage in that either VCC
may be powered up first. This benefit derives from the
chip design. When either VCC is at 0 V, outputs are in a
high-impedance state. The control input (OE) is
designed to track the VCCA supply. A pull-down resistor
tying OE to GND should be used to ensure that bus
contention, excessive currents, or oscillations do not
occur during power-up/power-down. The size of the pulldown resistor is based upon the current-sinking
capability of the device driving the OE pin.
1. Apply power to the first VCC.
2. Apply power to the second VCC.
3. Drive the OE input HIGH to enable the device.
The recommended power-down sequence is:
1. Drive OE input LOW to disable the device.
2. Remove power from either VCC.
3. Remove power from other VCC.
Note:
4. Alternatively, the OE pin can be hardwired to VCCA
to save GPIO pins. If OE is hardwired to VCCA,
either VCC can be powered up or down first.
Application Circuit
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Functional Description
Figure 4. Application Circuit
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
5
is a slave on the B port, the Npassgates act as a low
resistive short between both ports until either of the
port’s VCC/2 thresholds are reached. After the RC time
constant has reached the VCC/2 threshold of either port,
the port’s edge detector triggers both dynamic drivers to
drive their respective ports in the LOW-to-HIGH (LH)
direction, accelerating the rising edge. The resulting rise
time resembles the scope shot in Figure 5. Effectively,
two distinct slew rates appear in rise time. The first slew
rate (slower) is the RC time constant of the bus. The
second slew rate (much faster) is the dynamic driver
accelerating the edge.
The FXMA2102 has open-drain I/Os and requires
external pull-up resistors on the four data I/O pins, as
shown in Figure 4. If a pair of data I/O pins (An/Bn) is not
used, both pins should be tied to GND (or both to VCC).
In this case, pull-down or pull-up resistors are not
required. The recommended values for the pull-up
resistors (RPU) are 1 KΩ to 10 KΩ; however, depending
on the total bus capacitance, the user is free to vary the
pull-up resistor value to meet the maximum I2C edge
rate per the I2C specification (UM10204 rev. 03, June
19, 2007). For example, the maximum edge rate (30% 70%) during fast mode (400 kbit/s) is 300 ns. If bus
capacitance is approaching the maximum 400 pF, lower
the RPU value to keep the rise time below 300 ns (Fast
Mode). Section 7.1 of the I2C specification provides an
excellent guideline for pull-up resistor sizing.
If both the A and B ports of the translator are HIGH, a
high-impedance path exists between the A and B ports
because both the Npassgates are turned off. If a master
or slave device decides to pull SCL or SDA LOW, that
device’s driver pulls down (Isink) SCL or SDA until the
edge reaches the A or B port VCC/2 threshold. When
either the A or B port threshold is reached, the port’s
edge detector triggers both dynamic drivers to drive their
respective ports in the HIGH-to-LOW (HL) direction,
accelerating the falling edge.
Theory of Operation
The FXMA2102 is designed for high-performance level
shifting and buffer / repeating in an I2C application.
Figure 1 shows that each bi-directional channel contains
two series-Npassgates and two dynamic drivers. This
hybrid architecture is highly beneficial in an I2C
application where auto-direction is a necessity.
For example, during the following three I2C protocol
events:



Clock Stretching
Slave’s ACK Bit (9th bit = 0) following a Master’s
Write Bit (8th bit = 0)
Clock Synchronization and Multi Master
Arbitration
the bus direction needs to change from master to slave
to slave to master without the occurrence of an edge. If
there is an I2C translator between the master and slave
in these examples, the I2C translator must change
direction when both A and B ports are LOW. The
Npassgates can accomplish this task very efficiently
because, when both A and B ports are LOW, the
Npassgates act as a low resistive short between the two
(A and B) ports.
Due to I2C’s open-drain topology, I2C masters and
slaves are not push/pull drivers. Logic LOWs are “pulled
down” (Isink), while logic HIGHs are “let go” (3-state). For
example, when the master lets go of SCL (SCL always
comes from the master), the rise time of SCL is largely
determined by the RC time constant, where R = RPU and
C = the bus capacitance. If the FXMA2102 is attached
to the master [on the A port] in this example, and there
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
Figure 5. FXMA2102 Waveform C: 600 pF, RPU: 2.2 K
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Application Notes
www.fairchildsemi.com
6
VOL vs. IOL
The FXMA2102 dynamic drivers have enough current
sourcing capability to drive a 400 pF capacitive bus.
This is beneficial for instances when an I2C buffer /
repeater is required. The I2C specification stipulates a
maximum bus capacitance of 400 pF. If an I2C segment
exceeds 400 pF, an I2C buffer / repeater is required to
split the segment into two segments, each of which is
less than 400 pF. Figure 5 is a scope shot of an
FXMA2102 driving a lumped load of 600 pF. Notice the
(30% - 70%) rise time is only 112 ns (RPU = 2.2 K). This
is well below the maximum edge rate of 300 ns. Not only
does the FXMA2102 drive 400 pF, but it also provides
excellent headroom below the I2C specification
maximum edge rate of 300 ns.
The I2C specification mandates a maximum VIL (IOL of
3 mA) of VCC • 0.3 and a maximum VOL of 0.4 V. If there
is a master on the A port of an I2C translator with a VCC
of 1.65 V and a slave on the I2C translator B port with a
VCC of 3.3 V, the maximum VIL of the master is (1.65 V x
0.3) 495 mV. The slave could legally transmit a valid
logic LOW of 0.4 V to the master.
If the I2C translator’s channel resistance is too high, the
voltage drop across the translator could present a VIL to
the master greater than 495 mV. To complicate matters,
the I2C specification states that 6 mA of IOL is
recommended for bus capacitances approaching
400 pF. More IOL increases the voltage drop across the
I2C translator. The I2C application benefits when I2C
translators exhibit low VOL performance. Figure 6 depicts
typical FXMA2102 VOL performance vs. the competition,
given a 0.4 V VIL.
Figure 6. VOL vs. IOL
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Buffer / Repeater Performance
www.fairchildsemi.com
7
2
The FXMA2102 supports I C-Bus isolation for the
following conditions:


Bus isolation if bus clear
Bus isolation if either VCC goes to ground
Either VCC to GND
If slave #2 is a camera that is suddenly removed from
the I2C bus, resulting in VCCB transitioning from a valid
VCC (1.65 V – 5.5 V) to 0 V, the FXMA2102
automatically forces SCL and SDA on both its A and B
ports into 3-state. Once VCCB has reached 0V, full I2C
communication between the master and slave #1
remains undisturbed.
Bus Clear
2
Because the I C specification defines the minimum SCL
frequency of DC, the SCL signal can be held LOW
forever; however, this condition shuts down the I2C bus.
The I2C specification refers to this condition as “Bus
Clear”. In Figure 7, if slave #2 holds down SCL forever,
the master and slave #1 are not able to communicate,
because the FXMA2102 passes the SCL stuck-LOW
condition from slave #2 to slave #1 as well as the
Figure 7. Bus Isolation
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
master. However, if the OE pin is pulled LOW
(disabled), both ports (A and B) are 3-stated. This
results in the FXMA2102 isolating slave #2 from the
master and slave #1, allowing full communication
between the master and slave #1.
2
I C-Bus® Isolation
www.fairchildsemi.com
8
TA = –40°C to +85°C.
Symbol
Parameter
VIHA
High Level Input
Voltage A
VIHB
High Level Input
Voltage B
VILA
Low Level Input
Voltage A
VILB
Low Level Input
Voltage B
VOL
Low Level
Output Voltage
VCCA (V)
VCCB (V)
Min.
Data Inputs An
1.65–5.50
1.65–5.50
VCCA – 0.4
Control Input OE
1.65–5.50
1.65–5.50
0.7 x VCCA
Data Inputs Bn
1.65–5.50
1.65–5.50
VCCB – 0.4
Data Inputs An
1.65–5.50
1.65–5.50
0.4
Control Input OE
1.65–5.50
1.65–5.50
0.3 x
VCCA
V
Data Inputs Bn
1.65–5.50
1.65–5.50
0.4
V
1.65–5.50
1.65–5.50
0.4
V
1.65–5.50
1.65–5.50
±1.0
µA
VIN or VO = 0 V to 5.5 V
0
5.50
±2.0
VIN or VO = 0 V to 5.5 V
5.50
0
±2.0
An, Bn
VO = 0 V to 5.5 V,
OE = VIL
5.50
5.50
±2.0
An
VO = 0 V to 5.5 V,
OE = Don’t Care
5.50
0
±2.0
Bn
VO = 0 V to 5.5 V,
OE = Don’t Care
0
5.50
±2.0
VIN = VCCI or GND, IO = 0
1.65–5.50
1.65–5.50
5.0
µA
ICCZ
VIN = VCCI or GND, IO = 0,
Quiescent
Supply Current(7) OE = VIL
1.65–5.50
1.65–5.50
5.0
µA
ICCA
VIN = 5.5 V or GND, IO = 0,
Quiescent
Supply Current(6) OE = Don’t Care, Bn to An
0
1.65–5.50
–2.0
1.65–5.50
0
2.0
ICCB
VIN = 5.5 V or GND, IO = 0,
Quiescent
Supply Current(6) OE = Don’t Care, An to Bn
1.65–5.50
0
–2.0
0
1.65–5.50
2.0
IL
IOFF
IOZ
ICCA/B
Input Leakage
Current
Condition
Quiescent
Supply
Current(7,8)
Unit
V
V
VIL = 0.15 V
IOL = 6 mA
Control Input OE,
VIN = VCCA or GND
An
Power Off
Leakage Current Bn
3-State Output
Leakage(6)
Max.
Notes:
5. This table contains the output voltage for static conditions. Dynamic drive specifications are given in Dynamic
Output Electrical Characteristics.
6. “Don’t Care” indicates any valid logic level.
7. VCCI is the VCC associated with the input side.
8. Reflects current per supply, VCCA or VCCB.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
µA
µA
µA
µA
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
DC Electrical Characteristics
www.fairchildsemi.com
9
Output Rise / Fall Time
Output load: CL = 50 pF, RPU = 2.2 kΩ, push / pull driver, and TA = -40°C to +85°C.
VCCO(10)
Symbol
Parameter
4.5 to 5.5 V 3.0 to 3.6 V
2.3 to 2.7 V
1.65 to 1.95 V Unit
Typ.
Typ.
Typ.
Typ.
trise
Output Rise Time; A Port, B
(11)
Port
3
4
5
7
ns
tfall
Output Fall Time; A Port, B Port(12)
1
1
1
1
ns
Notes:
9. Output rise and fall times guaranteed by design simulation and characterization; not production tested.
10. VCCO is the VCC associated with the output side.
11. See Figure 12.
12. See Figure 13.
( )
Maximum Data Rate 13
Output load: CL = 50 pF, RPU = 2.2 kΩ, push / pull driver, and TA = -40°C to +85°C.
VCCB
VCCA
4.5 V to 5.5 V
3.0 V to 3.6 V
2.3 V to 2.7 V
1.65 V to 1.95 V
Direction
4.5 to 5.5 V
3.0 to 3.6 V
2.3 to 2.7 V
1.65 to 1.95 V
Min.
Min.
Min.
Min.
A to B
50
50
40
30
B to A
50
50
40
40
A to B
50
50
40
19
B to A
50
50
40
40
A to B
40
40
30
19
B to A
40
40
30
30
A to B
40
40
30
19
B to A
30
30
19
19
Note:
13. F-toggle guaranteed by design simulation; not production tested.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
Unit
MHz
MHz
MHz
MHz
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Dynamic Output Electrical Characteristics
www.fairchildsemi.com
10
Output Load: CL = 50 pF, RPU = 2.2 kΩ, and TA = -40°C to +85°C.
VCCB
Symbol
Parameter
4.5 to 5.5 V
3.0 to 3.6 V
2.3 to 2.7 V
1.65 to 1.95 V Unit
Typ.
Max.
Typ.
Max.
Typ.
Max.
Typ.
Max.
VCCA = 4.5 to 5.5 V
A to B
tPLH
B to A
A to B
tPHL
B to A
OE to A
tPZL
OE to B
OE to A
tPLZ
OE to B
tskew
A Port, B Port(14)
1
1
2
2
4
3
65
5
0.50
3
3
4
4
5
5
100
9
1.50
1
2
3
2
6
4
65
6
0.50
3
4
5
5
10
7
105
10
1.00
1
3
4
2
5
5
65
7
0.50
3
5
6
6
9
8
105
12
1.00
1
4
5
5
7
10
65
9
0.50
3
7
7
7
15
15
105
16
1.00
VCCA = 3.0 to 3.6 V
A to B
tPLH
B to A
A to B
tPHL
B to A
OE to A
tPZL
OE to B
OE to A
tPLZ
OE to B
tskew
A Port, B Port(14)
2.0
1.5
2.0
2.0
4.0
4.0
100
5
0.5
5.0
3.0
4.0
4.0
8.0
8.0
115
10
1.5
1.5
1.5
2.0
2.0
5.0
6.0
100
4
0.5
3.0
4.0
4.0
4.0
9.0
9.0
115
8
1.0
1.5
2.0
2.0
2.0
6.0
8.0
100
5
0.5
3.0
6.0
5.0
5.0
11.0
11.0
115
10
1.0
1.5
3.0
3.0
3.0
7.0
10.0
100
9
0.5
3.0
9.0
5.0
5.0
15.0
14.0
115
15
1.0
VCCA = 2.3 to 2.7 V
A to B
tPLH
B to A
A to B
tPHL
B to A
OE to A
tPZL
OE to B
OE to A
tPLZ
OE to B
tskew
A Port, B Port(14)
2.5
1.5
2.0
2.0
5.0
4.0
100
65
0.5
5.0
3.0
5.0
5.0
10.0
8.0
115
110
1.5
2.5
2.0
2.0
2.0
5.0
4.5
100
65
0.5
5.0
4.0
5.0
5.0
10.0
9.0
115
110
1.0
2.0
3.0
2.0
2.0
6.0
5.0
100
65
0.5
4.0
6.0
5.0
5.0
12.0
10.0
115
115
1.0
1.0
5.0
3.0
3.0
9.0
9.0
100
12
0.5
3.0
10.0
6.0
6.0
18.0
18.0
115
25
1.0
VCCA = 1.65 to 1.95 V
A to B
tPLH
B to A
A to B
tPHL
B to A
OE to A
tPZL
OE to B
OE to A
tPLZ
OE to B
tskew
A Port, B Port(14)
4
1.0
5
4
11
6
75
75
0.5
7
2.0
8
8
15
14
115
115
1.5
4
1.0
3
3
11
6
75
75
0.5
7
2.0
7
7
14
12
115
115
1.0
5
1.5
3
3
14
6
75
75
0.5
8
3.0
7
7
28
12
115
115
1.0
5
5.0
3
3
14
9
75
75
0.5
10
10.0
7
7
23
16
115
115
1.0
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
AC Characteristics
ns
ns
ns
Note:
14. Skew is the variation of propagation delay between output signals and applies only to output signals on the same
port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 15). Skew is
guaranteed, but not tested.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
11
TA = +25°C.
Symbol
Parameter
Condition
Typ.
Unit
CIN
Input Capacitance Control Pin (OE)
VCCA = VCCB = GND
2.2
pF
CI/O
Input/Output Capacitance, An, Bn
VCCA = VCCB = 5.0 V, OE = GND, VA = VB = 5.0 V
13.0
pF
Cpd
Power Dissipation Capacitance
VCCA = VCCB = 5.0 V, VIN = 0 V or VCC, f = 400 KHz
13.5
pF
Figure 8. AC Test Circuit
Table 1.
Table 2.
Propagation Delay Table
Test
Input Signal
Output Enable Control
tPLH, tPHL
Data Pulses
VCCA
tPZL (OE to An, Bn)
0V
LOW to HIGH Switch
tPLZ (OE to An, Bn)
0V
HIGH to LOW Switch
VCCO
CL
RL
1.8 ± 0.15 V
50 pF
2.2 kΩ
2.5 ± 0.2 V
50 pF
2.2 kΩ
3.3 ± 0.3 V
50 pF
2.2 kΩ
5.0 ± 0.5 V
50 pF
2.2 kΩ
AC Load Table
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Capacitance
www.fairchildsemi.com
12
DATA
IN
VCCI
Vmi
DATA
OUT
VCCO
DATA
OUT
Waveform for Inverting and Non-Inverting
Functions(15)
Vmi
VOL
Symbol
VCC
Vmi(16)
VCCI / 2
Vmo
VCCO / 2
VX
0.5 x VCCO
VY
0.1 x VCCO
GND
Vx
VOL
VY
Figure 10. 3-STATE Output Low Enable Time(15)
VCCA
tPLZ
DATA
OUT
GND
tPZL
Vmo
OUTPUT
CONTROL
VCCA
Vmi
tpxx
tpxx
Figure 9.
OUTPUT
CONTROL
GND
(15)
Figure 11. 3-STATE Output High Enable Time
Figure 12. Active Output Rise Time
Figure 13. Active Output Fall Time
VCCO
DATA
OUTPUT
Vmo
Vmo
GND
tperiod
DATA
IN
VCCI / 2
VCCI / 2
tskew
VCCI
GND
DATA
OUTPUT
F-toggle rate, f = 1 / tperiod
tskew
VCCO
Vmo
Vmo
GND
tskew = (tpHLmax – tpHLmin) or (tpLHmax – tpLHmin)
Figure 14. F-Toggle Rate
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Timing Diagrams
Figure 15. Output Skew Time
Notes:
15. Input tR = tF = 2.0 ns, 10% to 90% at VIN = 1.65 V to 1.95 V;
Input tR = tF = 2.0 ns, 10% to 90% at VIN = 2.3V to 2.7 V;
Input tR = tF = 2.5 ns, 10% to 90%, at VIN = 3.0 V to 3.6 V only;
Input tR = tF = 2.5 ns, 10% to 90%, at VIN = 4.5 V to 5.5V only.
16. VCCI = VCCA for control pin OE or Vmi = (VCCA / 2).
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
13
0.10
2X
C
A
1.6
B
1.6
INDEX AREA
0.10
2X
C
TOP VIEW
0.55 MAX
0.05
0.05
0.00
DETAIL A
8X(0.09)
C
8X
0.05
Recommended Landpattern
C
(0.20)
1.0
2
1
4 (0.1)
C
8
0.35
0.25
3X(0.2)
0.35
0.25
0.5
3
4
7
6
5
(0.15)
0.15 8X
0.25
0.10
0.05
C A B
C
0.35
0.25
DETAIL A
PIN #1 TERMINAL
SCALE: 2X
BOTTOM VIEW
Notes:
1. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD
2. DIMENSIONS ARE IN MILLIMETERS
3. DRAWING CONFORMS TO ASME Y.14M-1994
4. PIN 1 FLAG, END OF PACKAGE OFFSET
5. DRAWING FILE NAME: MKT-MAC08AREV4
MAC08AREV4
Figure 16. 8-Lead MicroPak™, 1.6 mm Wide
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the
warranty therein, which covers Fairchild products.
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Physical Dimensions
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.
Tape & Reel Format for MicroPak™
Always visit Fairchild Semiconductor’s online packaging area for the most recent tape and reel specifications:
http://www.fairchildsemi.com/products/logic/pdf/micropak_tr.pdf.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
14
0.10 C
1.40
2X
A
1.45
0.725
0.40
B
1.25
0.45
1.20
0.625
(7X) 0.35
0.10 C
TOP VIEW
0.25
(8X)
2X
RECOMMENDED
LAND PATTERN
0.55 MAX
0.05 C
(0.15)
0.10
0.05 C
0.025
0.00
SEATING C
PLANE
0.20
45°
SIDE VIEW
0.30
0.10
DETAIL : A
SCALE : 2X
(0.20)
2
DETAIL A
A. PACKAGE DOES NOT FULLY CONFORM TO
JEDEC STANDARD.
B. DIMENSIONS ARE IN MILLIMETERS.
5
1
PIN#1 IDENT
NOTES:
0.35
0.25 (7X)
4
8
6
0.40
BOTTOM VIEW
C. DIMENSIONS AND TOLERANCES PER
ASME Y14.5M, 1994.
0.25 (8X)
0.15
0.10
0.05
C A B
C
D. LAND PATTERN RECOMMENDATION IS
BASED ON FSC DESIGN ONLY.
E. DRAWING FILENAME: MKT-UMLP08Arev3.
PACKAGE
EDGE
LEAD
OPTION 1
SCALE : 2X
Figure 17.
LEAD
OPTION 2
SCALE : 2X
8-Lead Ultrathin MLP, 1.2 mm x 1.4 mm
Product-Specific Dimensions
Symbol from JEDEC MO-220
Description
NOM Value
A
Overall Height
0.55
A1
PKG Standoff
0.012
A3
Lead Thickness
0.15
b
Lead Width
0.2
D
Body Length (X)
1.4
E
Body Width (Y)
1.2
L
Lead Length
0.3
e
Lead Pitch
0.4
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the
warranty therein, which covers Fairchild products.
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
Physical Dimensions
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:
http://www.fairchildsemi.com/packaging/.
Tape & Reel Format for MicroPak™
Always visit Fairchild Semiconductor’s online packaging area for the most recent tape and reel specifications:
http://www.fairchildsemi.com/dwg/UM/UMLP08A.pdf.
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5
www.fairchildsemi.com
15
FXMA2102 — Dual-Supply, 2-Bit Voltage Translator / Buffer / Repeater / Isolator for I2C Applications
16
www.fairchildsemi.com
© 2010 Fairchild Semiconductor Corporation
FXMA2102 • Rev. 1.0.5