Ordering number : EN8262A Bi-CMOS IC LV1116N/NV Surround Processor ICs for Electronic Volume Control Overview The LV1116N/NV are sound processor ICs developed for use in TV sets. They incorporate the surround processing functions including (AViSS), pseudo stereo function, (L+R) output, and the major functional blocks of an electronic volume control IC. Features • Input function SWs (stereo inputs [L, R]). • Line out pin (through output). • Input gain control (−6dB, −4dB, 0dB, 4dB, 6dB: 5 positions). • AViSS (ON/OFF/4-stage level control). • Tone control (BASS: ±20dB, TREBLE: ±18dB [in 2dB steps]). • Volume control (0dB to −14dB: 1dB steps/−14dB to −80dB: 2dB steps/−∞=−82dB). • Balance control. • Through mode/Mute mode. • Pseudo stereo function (ON/OFF/MONO). • L+R output with LPF (Mute + 7-stage level control: 8 positions). • I2C bus control. * Initial gain of L+R AMP can be controlled by the resistance value of external resistor. Specifications Maximum Ratings at Ta = 25°C Parameter Symbol Conditions Maximum supply voltage VCC max Allowable power dissipation 1 Pd max1 Ta ≤ 70°C *, DIP Allowable power dissipation 2 Pd max2 Ta ≤ 70°C *, SSOP Ratings Unit 10.5 V 700 mW 550 mW Operating temperature Topr -25 to +70 °C Storage temperature Tstg -40 to +125 °C Note *: Mounted on a specified board: 114.3mm×76.1mm×1.6mm, glass epoxy board Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer' s products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer' s products or equipment. 12308 TI IM B8-8523,8524 / N2206 / 21805 JK No.8262-1/18 LV1116N/1116NV Operating Condtions at Ta = 25°C Parameter Recommended supply voltage Symbol Conditions Ratings Unit VCC Operating supply voltage 1 VCC opg1 DIP Operating supply voltage 2 VCC opg2 SSOP 9.0 V 5.0 to 10.0 V 5.0 to 9.0 V Control data “H” level voltage VIH 2.0 to 5.5 V “L” level voltage VIL 0.0 to 1.0 V μs Pulse width tφw 1.0 Hold time thold 1.0 μs Operating frequency fopg 500 kHz Electrical Characteristics at Ta = 25°C, VCC = 9.0V, fin = 1kHz, VIN = 300mVrms = 0dB, RL = 10kΩ (Input=L/R-A, Output=L/R-VROUT) Parameter Quiescent current Symbol Conditions Ratings min ICCO typ Unit max 48 mA Total through (Total through mode, Volume control: 0dB) Voltage gain VGT Maximum output voltage VOT THD=1% -1.6 -0.6 2.0 2.6 +0.6 dB Vrms Total harmonic distortion THDT DIN AUDIO 0.03 0.1 % Output noise voltage VNOT DIN AUDIO -99 -85 dBV CTT DIN AUDIO Cross talk 85 95 -1.7 -0.7 1.5 2.0 dB Matrix through (Matrix mode, Input gain: 0dB, Volume control: 0dB) Voltage gain VGF Maximum output voltage VOM THD=1% +0.7 dB Vrms Total harmonic distortion THDM DIN AUDIO 0.04 0.1 % Output noise voltage VNOM DIN AUDIO -95 -85 dBV CTM DIN AUDIO Cross talk 85 93 dB MONO mode (MONO mode, Input gain: 0dB, Volume control: 0dB) Maximum output voltage VOS Total harmonic distortion THDS DIN AUDIO THD=1% 1.5 0.04 2.0 0.5 Vrms % Output noise voltage VNOS DIN AUDIO -95 -85 dBV Surround (Surround mode-A, Input gain: 0dB, Volume control: 0dB) Maximum output voltage VOS Total harmonic distortion THDS DIN AUDIO THD=1% 1.5 0.2 2.0 0.5 Vrms % Output noise voltage VNOS DIN AUDIO -92 -85 dBV Pseudo stereo (Pseudo stereo mode, Input gain: 0dB, Volume control: 0dB) Maximum output voltage VOS Total harmonic distortion THDS DIN AUDIO THD=1% 1.5 0.07 2.0 0.5 Vrms % Output noise voltage VNOS DIN AUDIO -92 -85 dBV dB Bass band EQ (Matrix through mode, Input gain: 0dB, Volume control: 0dB) Control Range 1 GeqB Max. Boost/Cut, DIP ±18 ±20 ±22 Control Range 2 GeqB Max. Boost/Cut, SSOP ±17 ±20 ±23 dB 1.0 2.0 3.0 dB dB Step resolution EstepB Treble band EQ (Matrix through mode, Input gain: 0dB, Volume control: 0dB) Control Range 1 GeqT Max. Boost/Cut, DIP ±16 ±18 ±20 Control Range 2 GeqT Max. Boost/Cut, SSOP ±15 ±18 ±21 dB 1.0 2.0 3.0 dB Step resolution EstepT Continued on next page. No.8262-2/18 LV1116N/1116NV Continued from preceding page. Parameter Symbol Conditions Ratings min typ Unit max L+R output (Output=L+R-OUT, Step=0dB, L+R_Step=Step4) Gain VGF -2.3 2.0 -1.3 -0.3 Maximum output voltage VOF Total harmonic distortion THDF DIN AUDIO 0.03 0.1 % Output noise voltage VNOF DIN AUDIO -99 -85 dBV THD=1% 2.5 dB Vrms Note: The output wave form becomes big depending on the surround or tone control setting. Please make sure the output waveform is not distorted. If the waveform is distorted, reduce the gain setting of surround, tone control, or input signal level. Package Dimensions unit : mm (typ) 3170A [LV1116N] 32.4 10.16 19 8.6 36 18 0.25 1 (3.25) 0.51min 3.0 3.95max 0.95 0.48 1.78 (1.1) SANYO : DIP36S(400mil) Package Dimensions unit : mm (typ) 3247A [LV1116NV] 7.6 19 0.5 5.6 36 1 18 0.2 (0.7) 0.8 (1.5) 0.1 15.0 1.7max 0.3 SANYO : SSOP36(275mil) No.8262-3/18 LV1116N/1116NV Block Diagram No.8262-4/18 LV1116N/1116NV I2C BUS Control Signal tHIGH tR tF SCL tSU:STA tHD:STA tLOW tHD:DAT tSU:STO tSU:DAT tBUF SDA Figure1 I2C BUS Control Signal timing chart I2C BUS register 1) The explanation of I2C Bus I2C Bus (Inter IC Bus) is the bus system which the PHILIPS company developed. It does controls such as the start, the stop by two control signals of SDA (Serial Data) and SCL (Serial Clock). The output of each signal is open drain and forms out of wired OR. S: Start condition P: Stop condition ACK: Acknowledge Data is transmitted in the MSB first. 1 unit is composed of 8 bits and ACK is put back from the slave to confirm. Slave IC reads data with rising edge of SCL. Master IC changes data by falling edge in SCL. 2) The control register Table1 Slave Address MSB LSB 1 1 1 0 1 1 1 0 Note; LV1116N/NV are reception exclusive use. It depends and it uses LSB by the "0" fixation. Table2 I2C Bus transmission Sub Address Function Input control/Gain control Data BINARY HEX D7 D6 0000 0001 01 0 0 D5 D4 D3 D2 Gain D1 D0 Input Volume control 0000 0010 02 Output/Surround/MODE control 0000 0011 03 Channel Volume Tone control [Bass] 0000 0100 04 0 0 0 Bass Tone control [TREBLE] 0000 0101 05 0 0 0 TREBLE D7 D6 D5 D4 D3 D2 D1 Mute 0 0 * * * 0 0 0 In A 0 0 * * * 0 0 1 0 0 * * * 0 1 0 0 0 * * * 0 1 1 D7 D6 D5 D4 D3 D2 D1 D0 -6dB 0 0 0 1 1 * * * -4dB 0 0 0 1 0 * * * 0 0 0 0 0 * * * +4dB 0 0 1 1 0 * * * +6dB 0 0 1 1 1 * * * L+R out gain Surround MODE Table3 Input Selection Sub Address A7 In B 0 A6 0 A5 0 A4 0 A3 0 Data A2 0 A1 0 A0 1 In C D0 Table4 Gain control Sub Address A7 0dB 0 A6 0 A5 0 A4 0 A3 0 Data A2 0 A1 0 A0 1 No.8262-5/18 LV1116N/1116NV Table5 Mode control Sub Address A7 D6 D5 D4 D3 D2 D1 Total * * * * * * 0 0 Matrix * * * * * * 0 1 0 0 A5 0 A4 0 A3 Data D7 Mono A6 0 A2 0 A1 1 A0 1 D0 * * * * * * 1 0 * * * * * * 1 1 D7 D6 D5 D4 D3 D2 D1 D0 OFF * * * 0 0 0 * * MODE-C * * * 0 1 1 * * * * * 0 1 0 * * * * * 0 0 1 * * 1 1 1 Pseudo Table6 Surround control Sub Address A7 A6 A5 A4 A3 Data A2 A1 A0 MODE-B MODE-A 0 0 0 0 0 0 1 1 MODE-F MODE-E 1 1 0 * * * 1 0 1 * * D7 D6 D5 D4 D3 D2 D1 D0 MUTE 0 0 0 * * * * * Step1 0 0 1 * * * * * Step2 0 1 0 * * * * * Step3 0 1 1 * * * * * 1 0 0 * * * * * Step5 1 0 1 * * * * * Step6 1 1 0 * * * * * Step7 1 1 1 * * * * * D7 D6 D5 D4 D3 D2 D1 D0 +20dB 0 0 0 0 1 0 1 0 +18dB 0 0 0 0 1 0 0 1 +16dB 0 0 0 0 1 0 0 0 +14dB 0 0 0 0 0 1 1 1 +12dB 0 0 0 0 0 1 1 0 +10dB 0 0 0 0 0 1 0 1 +8dB 0 0 0 0 0 1 0 0 +6dB 0 0 0 0 0 0 1 1 +4dB 0 0 0 0 0 0 1 0 +2dB 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -2dB 0 0 0 1 0 0 0 1 -4dB 0 0 0 1 0 0 1 0 -6dB 0 0 0 1 0 0 1 1 -8dB 0 0 0 1 0 1 0 0 -10dB 0 0 0 1 0 1 0 1 -12dB 0 0 0 1 0 1 1 0 -14dB 0 0 0 1 0 1 1 1 -16dB 0 0 0 1 1 0 0 0 -18dB 0 0 0 1 1 0 0 1 -20dB 0 0 0 1 1 0 1 0 MODE-D Note; At the time of forced mono mode, there is not surround effect. Note; Output gain = Step1 < Step7 Table7 L+R Output Gain control Sub Address A7 Step4 0 A6 0 A5 0 A4 0 A3 0 Data A2 0 A1 1 A0 1 Note; Output gain = Step1 < Step7 Table8 Tone control [Bass control] Sub Address A7 0dB 0 A6 0 A5 0 A4 0 A3 0 Data A2 1 A1 0 A0 0 No.8262-6/18 LV1116N/1116NV Table9 Tone control [TREBLE control] Sub Address A7 D6 D5 D4 D3 D2 D1 D0 +18dB 0 0 0 0 1 0 0 1 +16dB 0 0 0 0 1 0 0 0 +14dB 0 0 0 0 0 1 1 1 +12dB 0 0 0 0 0 1 1 0 +10dB 0 0 0 0 0 1 0 1 +8dB 0 0 0 0 0 1 0 0 +6dB 0 0 0 0 0 0 1 1 +4dB 0 0 0 0 0 0 1 0 +2dB 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -2dB 0 0 0 1 0 0 0 1 -4dB 0 0 0 1 0 0 1 0 -6dB 0 0 0 1 0 0 1 1 -8dB 0 0 0 1 0 1 0 0 -10dB 0 0 0 1 0 1 0 1 -12dB 0 0 0 1 0 1 1 0 -14dB 0 0 0 1 0 1 1 1 -16dB 0 0 0 1 1 0 0 0 -18dB 0 0 0 1 1 0 0 1 D7 D6 D5 D4 D3 D2 D1 D0 0dB * * 0 0 0 0 0 0 -1dB * * 0 0 0 0 0 1 -2dB * * 0 0 0 0 1 0 -3dB * * 0 0 0 0 1 1 -4dB * * 0 0 0 1 0 0 -5dB * * 0 0 0 1 0 1 -6dB * * 0 0 0 1 1 0 -7dB * * 0 0 0 1 1 1 -8dB * * 0 0 1 0 0 0 -9dB * * 0 0 1 0 0 1 -10dB * * 0 0 1 0 1 0 -11dB * * 0 0 1 0 1 1 -12dB * * 0 0 1 1 0 0 -13dB * * 0 0 1 1 0 1 -14dB * * 0 0 1 1 1 0 -16dB * * 0 0 1 1 1 1 -18dB * * 0 1 0 0 0 0 * * 0 1 0 0 0 1 -22dB * * 0 1 0 0 1 0 -24dB * * 0 1 0 0 1 1 -26dB * * 0 1 0 1 0 0 -28dB * * 0 1 0 1 0 1 -30dB * * 0 1 0 1 1 0 -32dB * * 0 1 0 1 1 1 -34dB * * 0 1 1 0 0 0 -36dB * * 0 1 1 0 0 1 -38dB * * 0 1 1 0 1 0 -40dB * * 0 1 1 0 1 1 -42dB * * 0 1 1 1 0 0 -44dB * * 0 1 1 1 0 1 -46dB * * 0 1 1 1 1 0 -48dB * * 0 1 1 1 1 1 -50dB * * 1 0 0 0 0 0 -52dB * * 1 0 0 0 0 1 0 0 A5 0 A4 0 A3 Data D7 0dB A6 0 A2 1 A1 0 A0 1 Table10 Volume control Sub Address A7 -20dB 0 A6 0 A5 0 A4 0 A3 0 Data A2 0 A1 1 A0 0 Continued on next page. No.8262-7/18 LV1116N/1116NV Continued from preceding page. Sub Address A7 D6 D5 D4 D3 D2 D1 D0 -54dB * * 1 0 0 0 1 0 -56dB * * 1 0 0 0 1 1 -58dB * * 1 0 0 1 0 0 -60dB * * 1 0 0 1 0 1 -62dB * * 1 0 0 1 1 0 -64dB * * 1 0 0 1 1 1 -66dB * * 1 0 1 0 0 0 * * 1 0 1 0 0 1 -70dB * * 1 0 1 0 1 0 -72dB * * 1 0 1 0 1 1 -74dB * * 1 0 1 1 0 0 -76dB * * 1 0 1 1 0 1 -78dB * * 1 0 1 1 1 0 -80dB * * 1 0 1 1 1 1 -∞dB * * 1 1 0 0 0 0 D0 0 0 A5 A4 0 0 A3 Data D7 -68dB A6 A2 0 0 A1 1 A0 0 Table11 Volume channel control Sub Address A7 A6 A5 A4 A3 Data A2 A1 A0 L-ch R-ch 0 0 0 0 0 0 1 0 L/R D7 D6 D5 D4 D3 D2 D1 0 1 * * * * * * 1 0 * * * * * * 1 1 * * * * * * It is the flow chart of theprogram which controls LV1116N/NV. Ex.1: It is the order, sets an initial and input port control. When doing an initial setting Start Slave_Address (EEH) Transmits Start_Sub_Address (01H) Transmits Sub_Address1_Data (01H) Transmits Input = Ch-A Gain = 0dB Sub_Address2_Data (D6H) Transmits Lch = Rch = -30dB Sub_Address3_Data (01H) Transmits Matrix mode Surround off L+R mute Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note: The data to transmit is ex.. No.8262-8/18 LV1116N/1116NV Ex.2: It is the order, sets a volume control data, when Lch and Rch are same data. When doing a volume setting (Lch = Rch) Start Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (D6H) Transmits Lch = Rch = -30dB Sub_Address3_Data (01H) Transmits Matrix mode Surround off L+R mute Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control and input gain control. Ex.3: It is the order, sets a volume control data, when Lch and Rch are other data. When doing a volume setting (Lch = -28dB, Rch = -32dB) Start Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (55H) Transmits Lch = -28dB Sub_Address3_Data (01H) Transmits Matrix mode Surround off L+R mute Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB Slave_Address (EEH) Transmits Start_Sub_Address (02H) Transmits Sub_Address2_Data (97H) Transmits Rch = -32dB Sub_Address3_Data (01H) Transmits Matrix mode Surround off L+R mute Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control and input gain control. No.8262-9/18 LV1116N/1116NV Ex.4: It is the order, sets a mode control, surround and output control data. When doing a mode setting Start Slave_Address (EEH) Transmits Start_Sub_Address (03H) Transmits Sub_Address3_Data (01H) Transmits Matrix mode Surround off L+R mute Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input control, input gain control and volume control. Ex.5: It is the order, sets a mode control, bass band control data. When doing a bass band setting Start Slave_Address (EEH) Transmits Start_Sub_Address (04H) Transmits Sub_Address4_Data (03H) Transmits Bass Band +6dB Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, input, gain, volume, and output mode control. Ex.6: It is the order, sets a mode control, treble band control data. When doing a treble band setting Start Slave_Address (EEH) Transmits Start_Sub_Address (05H) Transmits Sub_Address5_Data (13H) Transmits Treble Band -6dB End Note 1: The data to transmit is ex.. Note 2: This control doesn’t change, Except this treble band data. No.8262-10/18 2 Rch-A 1 GND 35 36 Lch-A Rch-B 3 34 Lch-B Rch-C 4 33 Lch-C R LINE out 5 32 L Line out R-DC 6 31 L-DC ST-1 7 30 ST-2 28 R-TC1 27 L-BC1 26 L-BC2 LPFC 8 R-TC1 9 R-BC1 10 R-BC2 11 LV1116N/1116NV 29 HPFC R-OUT 12 25 L-OUT 14 13 1 F R-VROUT 23 L+R 15 22 L-VROUT L+R LPF 24 + AGND + 1 F VREF 16 21 VSS VCC 17 20 CLK VDD 18 19 DATA LV1116N/1116NV Sample Application Circuit No.8262-11/18 LV1116N/1116NV Pin Functions Pin No 1 Function GND 2 INPUT-A(R) 35 INPUT-A(L) 3 INPUT-B(R) 34 INPUT-B(L) 4 INPUT-C(R) 33 INPUT-C(L) 5 LINE-OUT(R) Voltage Remarks Internal equivalent circuit 0 VREF Input Impedance ri=50kΩ VREF Function SW Output ro=50kΩ 32 LINE-OUT(L) 6 DC Cut(R) VREF DC offset cancellation capacitor connection pin 31 DC Cut(L) 6 31 7 ST-1 VREF Pseudo stereo phase shift capacitor connection pin 30 ST-2 7 30 8 AViSS LPF VREF Capacitor connection pin for surround low pass filter 8 9 TREBLE(R) VREF Capacitor connection pin for configuring treble filter 28 10 TREBLE(L) BASS-1(R) VREF 9 28 10 27 Bass band filter configuration capacitor and resistor connection pins 27 BASS-1(L) 11 BASS-2(R) 26 BASS-2(L) 12 OUT(R) 11 26 VREF Output Impedance ro=50kΩ 12 25 OUT(L) 25 Continued on next page. No.8262-12/18 LV1116N/1116NV Continued from preceding page. Pin No 13 Function EVR-IN(R) Voltage VREF Remarks Internal equivalent circuit Input Impedance ri=50kΩ 13 24 24 EVR-IN(L) 14 EVR-OUT(R) VREF Output Impedance 14 23 ro=50kΩ 23 EVR-OUT(L) 15 L+R OUT VREF Output Impedance ro=10kΩ 15 16 VREF 0.5VCC Reference voltage VCC 16 17 VCC VCC 18 VDD VDD 19 I2C-DATA I2C control data input 2 20 I C-CLK 21 VSS 22 L+R LPF 0 VREF Internal resistor 22 29 AViSS HPF VREF 29 36 ANALOG GND VREF 36 No.8262-13/18 LV1116N/1116NV Treble / Bass Band Block Equivalent Circuit Diagram From L-Input Block SW3 + - SW3 + - SW2 To L-OUT Block SW2 SW1 SW4 SW1 SW4 0dB ±2dB R1=10.633kΩ ±4dB R2=8.446kΩ ±6dB R3=6.709kΩ ±8dB R4=5.329kΩ ±10dB R5=4.233kΩ ±12dB R6=3.363kΩ ±14dB R7=2.671kΩ ±16dB R8=2.122kΩ ±18dB R9=1.665kΩ 0dB Total=51.7kΩ R10=6.510kΩ ±2dB R1=15.220kΩ ±4dB R2=12.089kΩ ±6dB R3=9.603kΩ ±8dB R4=7.628kΩ ±10dB R5=6.059kΩ ±12dB R6=4.813kΩ ±14dB R7=3.823kΩ ±16dB R8=3.037kΩ ±18dB R9=2.412kΩ ±20dB R10=1.916kΩ R12=100Ω L-TC1 L-BC2 Total=66.7kΩ R11=100Ω L-BC1 Same for Right channel During boost, SW1 and SW3 are ON, during cut, SW2 and SW4 are ON, when 0dB, 0dBSW and SW2 and SW3 are ON. L+R Block Equivalent Circuit Diagram From L-VROUT + - R1=50kΩ Mute + - R4=10kΩ L+R R2=50kΩ From R-VROUT + - Step1 R3=50kΩ L+R_LPF Step2 R5=10.284kΩ Step3 R6=8.169kΩ Step4 R7=6.489kΩ Step5 R8=5.154kΩ Step6 R9=4.094kΩ Step7 R10=3.252kΩ Total=50kΩ R11=12.559kΩ AGND ILV00257 No.8262-14/18 LV1116N/1116NV Tone Circuit Constant Calculation Examples Treble Band Circuit: The shelving characteristics can be obtained for the treble band. The equivalent circuit and calculation formula during boost are indicated below. • Calculation example 1 Specification Set frequency: f = 10000Hz Gain during maximum boost: G+18dB = 17.5dB Let us use R1 = 6.51kΩ and R2 = 45.19kΩ The above constants are inserted in the following formula G = 20 × Log10 1+ + R2 R2 R1 R12+(1/ ω C)2 C 1 C= 2 R2 2πf -R12 10G/20-1 1 = 45190 2π10000 7.50 - 1 ≈6500 (pF) 2 2 - 6510 Bass Band Circuit: The equivalent circuit and the formula for calculating the external RC with a mean frequency of 100Hz are shown below. • Calculation example 1 specification Mean frequency: f0 = 100Hz Gain during maximum boost: G+20dB = 20dB Let us use R1 = 0kΩ and R2 = 66.7kΩ, and C1 = C2 = C. + R1 R2 We obtain R3 from G = 20dB G = 20 × Log10 1+ R3 = C1 R2 2R3 R2 2 (10G+20dB/20 - 1) C2 R3 = 66700 2 (10 - 1) ≈3.6kΩ We obtain C from mean frequency f0 = 100Hz f0 = C= 2π 1 (R3R2C1C2) 1 2πf0 R3R2 = 2π × 100 1 66700 × 3600 ≈0.1μF We obtain Q Q= R3R2 2R3 × 1 R3R2 ≈2.15 Note item when using (1) When turning on the power, the setting inside is unsettled. Before setting control data, it does a mute. (2) To prevent the digital noise of the high frequency influence a terminal. (SCL, SDA) It can be protected by a signal line in the ground pattern or by the shielding cable. (3) To prevent the noise in changing a mode, please set the mute ON. No.8262-15/18 LV1116N/1116NV Volume Control Step Characteristics Vcc = 9.0V Vin = 0dBV Input = VRIN Output = VROUT -20 -30 Vcc = 9.0V Vin = -10dBV Input = L/R Ch-A Output = L/R OUT 8 6 Gain Attenetion (dB) -10 Volume attenuation (dB) Gain - Frequency 10 0 -40 -50 -60 -70 4 2 0 -2 -4 -6 -80 -8 -90 -90 -80 -70 -60 -50 -40 -30 -20 -10 -10 0 -6 Step Setting (dB) -15 -20 -25 -30 -35 -10 -15 -20 4 6 -25 -30 -35 -40 -40 -45 -45 10 100 1000 10000 10 100000 100 Frequency (Hz) -5 10000 100000 L+R Frequency Characteristics 10 Vcc = 9.0V Vin = -20dBV Input = L/R Ch-A Output = L/R OUT -15 -20 Vcc = 9.0V Vin = 0dBV Input = VRIN Output = VROUT 0 -10 Gain (dBV) -10 1000 Frequency (Hz) Surround Mode Frequency Characteristics Gain (dBV) 0 2 Gain Step (dB) Vcc = 9.0V Vin = -20dBV C = 2700pF Input = L/R Ch-A Output = L/R OUT 0 -5 Gain (dBV) Gain (dBV) 5 Vcc = 9.0V Vin = -20dBV C = 0.1uF R = 3.6kΩ Input = L/R Ch-A Output = L/R OUT -5 -10 -2 Treble Band Frequency Characteristics Bass Band Frequency Characteristics 5 0 -4 -20 -30 -40 -50 -25 -60 10 100 1000 10000 100000 10 100 Pseud Lch vs Rch Phese Shift vs Frequency Characteristics 100000 100.0 Vomax (dBV) Phase Shift (DEG) 10000 Vcc - Vomax Characteristics (1) Vcc = 9.0V Vin = -20dBV Input = L/R Ch-A Output = L/R OUT 180 1000 Frequency (Hz) Frequency (Hz) 90 Total 10.0 Matrix 1.0 THD = 1% Input = L/R Ch-A Output = L/R OUT 0.1 0 10 100 1000 Frequency (Hz) 10000 100000 5 6 7 8 Vcc (V) 9 10 No.8262-16/18 LV1116N/1116NV THD - Vin characteristics THD - Vin characteristics (Surround) Total harmonic distotion (%) Vcc=9.0V fin=1kHz 0.1 Total 0.01 Matrix Mono Psudo 0.001 -40 -30 -20 -10 Total harmonic distotion (%) 1 1 Vcc=9.0V fin=1kHz Mode_A 0.1 0.01 0.001 -40 0 -30 -20 Vin (dBV) THD - Frequency Characteistics Vcc=9.0V Vin=-10dBV 0.1 Total Matrix Mono Psudo Surround 1000 0 THD - Supply Voltage Characteristics 10000 1 Total harmonic distotion (%) Total harmonic distotion (%) 1 0.01 100 -10 Vin (dBV) Total 0.1 Matrix Mono Psudo Surround 0.01 4.0 100000 Vin=-10dBV fin=1kHz 5.0 6.0 7.0 8.0 9.0 10.0 11.0 Supply Voltage (V) Frequency (Hz) VCC - VREF VCC - VDD 3.3 6.0 5.5 3.1 4.5 VDD (V) VREF (V) 5.0 4.0 3.5 3.0 2.9 2.7 2.5 2.0 1.5 4.0 5.0 6.0 7.0 8.0 9.0 10.0 2.5 4.0 11.0 5.0 6.0 VCC (V) 60.0 5.0 55.0 4.5 50.0 ICCO (mA) AGND (V) 65.0 5.5 4.0 3.5 3.0 25.0 VCC (V) 9.0 10.0 11.0 35.0 30.0 8.0 11.0 40.0 2.0 7.0 10.0 45.0 2.5 6.0 9.0 VCC - ICCO 6.0 5.0 8.0 VCC (V) VCC - AGND 1.5 4.0 7.0 9.0 10.0 11.0 20.0 4.0 5.0 6.0 7.0 8.0 VCC (V) No.8262-17/18 LV1116N/1116NV SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of January, 2008. Specifications and information herein are subject to change without notice. PS No.8262-18/18