74LVQ161 SYNCHRONOUS PRESETTABLE 4-BIT COUNTER ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ HIGH SPEED: fMAX = 180 MHz (TYP.) at VCC = 3.3 V COMPATIBLE WITH TTL OUTPUTS LOW POWER DISSIPATION: ICC = 4 µA (MAX.) at TA=25°C LOW NOISE: VOLP = 0.3V (TYP.) at VCC = 3.3V 75Ω TRANSMISSION LINE DRIVING CAPABILITY SYMMETRICAL OUTPUT IMPEDANCE: |IOH| = IOL = 12mA (MIN) at VCC = 3.0 V PCI BUS LEVELS GUARANTEED AT 24 mA BALANCED PROPAGATION DELAYS: tPLH ≅ tPHL OPERATING VOLTAGE RANGE: VCC(OPR) = 2V to 3.6V (1.2V Data Retention) PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 161 IMPROVED LATCH-UP IMMUNITY DESCRIPTION The 74LVQ161 is a low voltage CMOS SYNCHRONOUS PRESETTABLE COUNTER fabricated with sub-micron silicon gate and double-layer metal wiring C2MOS technology. It is ideal for low power and low noise 3.3V applications. It is a 4 bit binary counter with Asynchronous Clear. The circuit have four fundamental modes of operation, in order of preference: synchronous SOP TSSOP Table 1: Order Codes PACKAGE T&R SOP TSSOP 74LVQ161MTR 74LVQ161TTR reset, parallel load, count-up and hold. Four control inputs, Master Reset (CLEAR), Parallel Enable Input (PE) and Count Enable Carry Input (TE), determine the mode of operation as shown in the Truth Table. A LOW signal on CLEAR overrides counting and parallel loading and sets all outputs on LOW state. A LOW signal on LOAD overrides counting and allows information on Parallel Data Qn inputs to be loaded into the flip-flops on the next rising edge of CLOCK. With LOAD and CLEAR, PE and TE permit counting when both are high. Conversely, a LOW signal on either PE and TE inhibits counting. All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage. Figure 1: Pin Connection And IEC Logic Symbols July 2004 Rev. 2 1/14 74LVQ161 Figure 2: Input And Output Equivalent Circuit Table 2: Pin Description PIN N° SYMBOL NAME AND FUNCTION 1 CLEAR 2 CLOCK 3, 4, 5, 6 7 10 9 14, 13, 12, 11 15 8 16 A, B, C, D PE TE LOAD QA to QD Asynchronous Master Reset Clock Input (LOW to HIGH Edge Trigger) Data Inputs Count Enable Input Count Enable Carry Input Parallel Enable Input Flip-Flop Outputs CARRY OUT Terminal Count Output GND Ground (0V) VCC Positive Supply Voltage Table 3: Truth Table INPUTS OUTPUTS FUNCTION CLEAR LOAD PE TE CK L X X X X H L X X H H X L NO CHANGE NO COUNT H H L X NO CHANGE NO COUNT H H H H COUNT UP COUNT H X X X NO CHANGE NO COUNT L L L L RESET TO "0" A B C D PRESET DATA X : Don’t Care; A, B, C, D; Logic level of data input; CARRY OUT: TE x QA x QB x QC x QD Figure 3: Logic Diagram 2/14 74LVQ161 Figure 4: Timing Chart Table 4: Absolute Maximum Ratings Symbol VCC Parameter Supply Voltage Value Unit -0.5 to +7 V -0.5 to VCC + 0.5 -0.5 to VCC + 0.5 V DC Input Diode Current ± 20 mA IOK DC Output Diode Current ± 20 mA IO DC Output Current VI DC Input Voltage VO DC Output Voltage IIK ICC or IGND DC VCC or Ground Current Storage Temperature Tstg TL Lead Temperature (10 sec) V ± 50 mA ± 300 mA -65 to +150 °C 300 °C Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied 3/14 74LVQ161 Table 5: Recommended Operating Conditions Symbol VCC Parameter Value Unit Supply Voltage (note 1) 2 to 3.6 V VI Input Voltage 0 to VCC V VO Output Voltage 0 to VCC V Top Operating Temperature dt/dv Input Rise and Fall Time VCC = 3.0V (note 2) -55 to 125 °C 0 to 10 ns/V 1) Truth Table guaranteed: 1.2V to 3.6V 2) VIN from 0.8V to 2V Table 6: DC Specifications Test Condition Symbol VIH VIL VOH Parameter TA = 25°C VCC (V) Min. High Level Input Volt. 3.0 to 3.6 Low Level Input Volt. High Level Output Voltage 3.0 Value Typ. Max. 2.0 Low Level Output Voltage 3.0 -55 to 125°C Min. Min. IO=-50 µA 2.9 IO=-12 mA 2.58 2.99 2.9 2.9 2.48 2.2 IO=50 µA 0.002 0.1 IO=12 mA 0 0.36 ICC IOLD IOHD Input Leakage Current Quiescent Supply Current Dynamic Output Current (note 1, 2) V 0.8 2.48 Unit Max. 2.0 0.8 V V 2.2 0.1 IO=24 mA II Max. 2.0 0.8 IO=-24 mA VOL -40 to 85°C 0.1 0.44 0.44 0.55 0.55 V 3.6 VI = VCC or GND ± 0.1 ±1 ±1 µA 3.6 VI = VCC or GND 4 40 40 µA 3.6 VOLD = 0.8 V max 36 25 mA VOHD = 2 V min -25 -25 mA 1) Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as 75Ω Table 7: Dynamic Switching Characteristics Test Condition Symbol VOLP VOLV VIHD VILD Parameter Dynamic Low Voltage Quiet Output (note 1, 2) Dynamic High Voltage Input (note 1, 3) Dynamic Low Voltage Input (note 1, 3) Value TA = 25°C VCC (V) Min. 3.3 -0.8 3.3 Typ. Max. 0.3 0.8 -40 to 85°C -55 to 125°C Min. Min. Max. Unit Max. V -0.3 2 V CL = 50 pF 3.3 0.8 V 1) Worst case package. 2) Max number of outputs defined as (n). Data inputs are driven 0V to 3.3V, (n-1) outputs switching and one output at GND. 3) Max number of data inputs (n) switching. (n-1) switching 0V to 3.3V. Inputs under test switching: 3.3V to threshold (VILD), 0V to threshold (VIHD), f=1MHz. 4/14 74LVQ161 Table 8: AC Electrical Characteristics (CL = 50 pF, RL = 500 Ω, Input tr = tf = 3ns) Test Condition Symbol Parameter tPLH tPHL Propagation Delay Time CK to Q tPLH tPHL Propagation Delay Time CK to CARRY OUT tPLH tPHL Propagation Delay Time TE to CARRY OUT tPHL Propagation Delay Time CLR to Q tPHL tW(L) tW ts th ts th ts th tREM fMAX tOSLH tOSHL Propagation Delay Time CLR to CARRY OUT CLR Pulse Width, LOW (LOAD) CLOCK Pulse Width, HIGH or LOW Setup Time HIGH or LOW (INPUT to CLOCK) Hold Time HIGH or LOW (INPUT to CLOCK) Setup Time HIGH or LOW (LOAD to CLOCK) Hold Time HIGH or LOW (LOAD to CLOCK) Setup Time HIGH or LOW (PE or TE to CLOCK) Hold Time HIGH or LOW (PE or TE to CLOCK) Recovery Time CLR to CK Maximum Clock Frequency Output To Output Skew Time (note1, 2) VCC (V) Value TA = 25°C Min. Typ. Max. -40 to 85°C -55 to 125°C Min. Min. Max. Max. 2.7 8.0 13.0 15.0 17.0 3.3(*) 2.7 6.8 9.5 11.0 12.5 9.1 14.0 16.0 18.5 3.3(*) 7.5 10.5 12.0 14.0 2.7 5.6 10.0 11.5 13.0 3.3(*) 4.7 8.0 9.5 10.5 2.7 8.0 12.0 15.0 17.0 3.3(*) 2.7 6.1 9.5 11.0 12.5 8.0 14.0 16.0 18.5 3.3(*) 6.7 10.5 12.0 14.0 2.7 4.0 1.9 4.0 4.0 3.3(*) 2.7 3.0 1.9 3.0 3.0 4.0 1.9 4.0 4.0 3.3(*) 3.0 1.9 3.0 3.0 2.7 5.0 2.5 5.0 5.0 3.3(*) 4.0 2.1 4.0 4.0 2.7 1 -1.3 1 1 3.3(*) 0.5 -1.0 0.5 0.5 2.7 3.0 1.5 3.0 3.0 2.5 1.2 2.5 2.5 1 -0.6 1 1 0.5 -0.5 0.5 0.5 2.7 7.0 3.4 7.0 7.0 3.3(*) 6.0 3.0 6.0 6.0 2.7 0 -2.6 0 0 0 -2.2 0 0 2.7 1 -0.8 1 1 3.3(*) 0.5 -0.6 0.5 0.5 2.7 100 150 80 60 3.3(*) 120 180 100 80 (*) 3.3 2.7 (*) 3.3 (*) 3.3 2.7 (*) 3.3 0.5 0.5 1.0 1.0 1.0 1.0 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns MHz 1.0 1.0 ns 1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (tOSLH = |tPLHm - tPLHn|, tOSHL = |tPHLm - tPHLn|) 2) Parameter guaranteed by design (*) Voltage range is 3.3V ± 0.3V 5/14 74LVQ161 Table 9: Capacitive Characteristics Test Condition Symbol Parameter TA = 25°C VCC (V) CIN Input Capacitance 3.3 CPD Power Dissipation Capacitance (note 1) 3.3 Value Min. fIN = 10MHz Typ. Max. -40 to 85°C -55 to 125°C Min. Min. Max. Unit Max. 4 pF 16 pF 1) CPD is defined as the value of the IC’s internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. ICC(opr) = CPD x VCC x fIN + ICC/n (per circuit) Figure 5: Test Circuit CL = 50pF or equivalent (includes jig and probe capacitance) RL = 500Ω or equivalent RT = ZOUT of pulse generator (typically 50Ω) Figure 6: Waveform - Propagation Delays, Count Mode (f=1MHz; 50% duty cycle) 6/14 74LVQ161 Figure 7: Waveform - Propagation Delays Clear Mode (f=1MHz; 50% duty cycle) Figure 8: Waveform - Propagation Delays Preset Mode (f=1MHz; 50% duty cycle) 7/14 74LVQ161 Figure 9: Waveform - Propagation Delays Countable Mode (f=1MHz; 50% duty cycle) Figure 10: Waveform - Propagation Delays Cascade Mode (f=1MHz; 50% duty cycle) 8/14 74LVQ161 SO-16 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.25 a2 MAX. 0.004 0.010 1.64 0.063 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45° (typ.) D 9.8 10 0.385 0.393 E 5.8 6.2 0.228 0.244 e 1.27 e3 0.050 8.89 0.350 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.62 0.024 8° (max.) 0016020D 9/14 74LVQ161 TSSOP16 MECHANICAL DATA mm. inch DIM. MIN. TYP A MAX. MIN. TYP. MAX. 1.2 A1 0.05 A2 0.8 b 0.047 0.15 0.002 0.004 0.006 1.05 0.031 0.039 0.041 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.0079 D 4.9 5 5.1 0.193 0.197 0.201 E 6.2 6.4 6.6 0.244 0.252 0.260 E1 4.3 4.4 4.48 0.169 0.173 0.176 1 e 0.65 BSC K 0˚ L 0.45 A 0.60 0.0256 BSC 8˚ 0˚ 0.75 0.018 8˚ 0.024 0.030 A2 A1 b e K c L E D E1 PIN 1 IDENTIFICATION 1 0080338D 10/14 74LVQ161 Tape & Reel SO-16 MECHANICAL DATA mm. inch DIM. MIN. A TYP MAX. MIN. 330 MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 13.2 TYP. 0.504 22.4 0.519 0.882 Ao 6.45 6.65 0.254 0.262 Bo 10.3 10.5 0.406 0.414 Ko 2.1 2.3 0.082 0.090 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 11/14 74LVQ161 Tape & Reel TSSOP16 MECHANICAL DATA mm. inch DIM. MIN. A MAX. MIN. 330 13.2 TYP. MAX. 12.992 C 12.8 D 20.2 0.795 N 60 2.362 T 12/14 TYP 0.504 22.4 0.519 0.882 Ao 6.7 6.9 0.264 0.272 Bo 5.3 5.5 0.209 0.217 Ko 1.6 1.8 0.063 0.071 Po 3.9 4.1 0.153 0.161 P 7.9 8.1 0.311 0.319 74LVQ161 Table 10: Revision History Date Revision 29-Jul-2004 2 Description of Changes Ordering Codes Revision - pag. 1. 13/14 74LVQ161 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners © 2004 STMicroelectronics - All Rights Reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 14/14