STMICROELECTRONICS VN800PT13TR

VN800S
/ VN800PT
®
HIGH SIDE DRIVER
TYPE
VN800S
VN800PT
RDS(on)
IOUT
VCC
135 mΩ
0.7 A
36 V
CMOS COMPATIBLE INPUT
THERMAL SHUTDOWN
■ CURRENT LIMITATION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
■
■
■
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN800S, VN800PT are monolithic devices
made by using STMicroelectronics VIPower M0-3
Technology, intended for driving any kind of load
with one side connected to ground.
Active VCC pin voltage clamp protects the device
against low energy spikes. Active current
limitation combined with thermal shutdown and
SO-8
PPAK
ORDER CODES
PACKAGE
SO-8
PPAK
TUBE
VN800S
VN800PT
T&R
VN800S13TR
VN800PT13TR
automatic restart protect the device against
overload. Device automatically turns off in case of
ground pin disconnection. This device is
especially suitable for industrial applications in
norms conformity with IEC1131 (Programmable
Controllers International Standard).
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
OUTPUT
LOGIC
INPUT
CURRENT LIMITER
STATUS
OVERTEMPERATURE
DETECTION
(*) See note at page 7
July 2004
Rev. 1
1/22
1
VN800S / VN800PT
ABSOLUTE MAXIMUM RATING
Symbol
Value
Parameter
VCC
- VCC
- IGND
IOUT
- IOUT
IIN
VIN
VSTAT
SO-8
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
Input Voltage Range
DC Status Voltage
Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
VESD
EMAX
V
V
mA
A
A
mA
V
V
- INPUT
4000
V
- STATUS
4000
V
- OUTPUT
5000
V
5000
4.2
(L=125mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A)
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
Max Inductive Load (VCC=30V; ILOAD=0.5A; Tamb=100°C;
Tj
Tc
Tstg
Lmax
41.7
121
(L=77.5mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A)
Maximum Switching Energy
EMAX
Unit
41
- 0.3
- 200
Internally Limited
-6
+/- 10
-3/+VCC
+ VCC
- VCC
Power Dissipation TC=25°C
Maximum Switching Energy
Ptot
PPAK
V
W
mJ
195
mJ
Internally Limited
- 40 to 150
- 55 to 150
°C
°C
°C
2
Rthcase>ambient≤25°C/W)
H
CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C.
PINS
VCC
VCC
5
4
N.C.
OUTPUT
STATUS
OUTPUT
VCC
INPUT
8
1
GND
Connection / Pin Status
Floating
To Ground
X
N.C.
Output
Input
X
X
X
X
Through 10KΩ resistor
CURRENT AND VOLTAGE CONVENTIONS
IS
VF
IIN
VCC
INPUT
ISTAT
IOUT
STATUS
VCC
OUTPUT
GND
VIN
VSTAT
1
OUTPUT
4
STATUS
3
2
1
PPAK
SO-8
2/22
5
IGND
VOUT
INPUT
GND
VN800S / VN800PT
THERMAL DATA
Symbol
Rthj-case
Thermal Resistance Junction-case
Rthj-lead
Thermal Resistance Junction-lead
Rthj-amb
Value
Parameter
Max
Max
Max
Max
Thermal Resistance Junction-ambient
SO-8
PPAK
Unit
-
3
30
-
°C/W
°C/W
93 (1)
78 (3)
°C/W
82 (2)
45 (4)
°C/W
(1) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35µ thick) connected to all V CC pins.
(2) When mounted on FR4 printed circuit board with 2 cm2 of copper area (at least 35µ thick).
(3) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35µ thick) connected to all V CC pins.
(4) When mounted on FR4 printed circuit board with 6 cm2 of copper area (at least 35µ thick).
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C, unless otherwise specified)
POWER
Symbol
VCC
VUSD
VOV
RON
IS
ILGND
IL(off1)
IL(off2)
IL(off3)
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Overvoltage Shut-down
On State Resistance
Test Conditions
Min
5.5
3
36
Typ
135
Unit
V
V
V
mΩ
10
270
20
mΩ
µA
1.5
3.5
mA
2.6
1
50
5
3
mA
mA
µA
µA
µA
Max
Unit
4
42
IOUT =0.5A; Tj=25°C
IOUT =0.5A
Off State; VCC=24V; Tcase=25°C
Supply Current
On State; VCC=24V
Output Current at turn-off
Off State Output Current
Off State Output Current
Off State Output Current
On State; VCC=24V; Tcase=100°C
VCC=VSTAT=VIN=VGND=24V;VOUT=0V
VIN=VOUT=0V
VIN=VOUT=0V; VCC=13V; Tj =125°C
VIN=VOUT=0V; VCC=13V; Tj =25°C
0
Max
36
5.5
SWITCHING (V CC=24V)
Symbol
Parameter
td(on)
Turn-on Delay Time
td(off)
Turn-off Delay Time
Test Conditions
RL=48Ω from VIN rising edge to
VOUT=2.4V
RL=48Ω from VIN falling edge to
VOUT=21.6V
dVOUT/
dt(on)
Turn-on Voltage Slope
RL=48Ω from VOUT=2.4V to
VOUT=19.2V
dVOUT/
dt(off)
Turn-off Voltage Slope
RL=48Ω from VOUT=21.6V to
VOUT=2.4V
Min
Typ
10
µs
40
µs
See
relative
diagram
See
relative
diagram
V/µs
V/µs
INPUT PIN
Symbol
VINL
IINL
VINH
IINH
VI(hyst)
IIN
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Current
Test Conditions
VIN=1.25V
Min
Typ
Max
1.25
1
3.25
VIN=3.25V
10
0.5
VIN=VCC=36V
200
Unit
V
µA
V
µA
V
µA
3/22
1
VN800S / VN800PT
ELECTRICAL CHARACTERISTICS (continued)
VCC - OUTPUT DIODE
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT=0.6A; Tj=150°C
Min
Typ
Max
0.7
Unit
V
Test Conditions
ISTAT =1.6 mA
Normal Operation; VSTAT=VCC=36 V
Min
Typ
Max
0.5
10
Unit
V
µA
30
pF
Max
200
Unit
°C
°C
°C
20
µs
2
A
STATUS PIN
Symbol
VSTAT
ILSTAT
CSTAT
Parameter
Status Low Output Voltage
Status Leakage Current
Status Pin Input
Capacitance
Normal Operation; VSTAT= 5V
PROTECTIONS (see note 1)
Symbol
TTSD
TR
Thyst
TSDL
Ilim
Vdemag
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
Status Delay in Overload
Condition
DC Short Circuit Current
Turn-off Output Clamp
Voltage
Test Conditions
Min
150
135
7
Tj>Tjsh
VCC=24V; RLOAD=10mΩ
IOUT =0.5 A; L=6mH
0.7
Typ
175
15
VCC-47 VCC-52 VCC-57
V
Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and
number of activation cycles.
OVERTEMP STATUS TIMING
Tj>Tjsh
VIN
VSTAT
tSDL
4/22
2
tSDL
VN800S / VN800PT
Switching time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
VIN
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS
Normal Operation
Current Limitation
Overtemperature
Undervoltage
Overvoltage
INPUT
L
H
L
H
H
L
H
L
H
L
H
OUTPUT
L
H
L
X
X
L
L
L
L
L
L
STATUS
H
H
H
(Tj < TTSD) H
(Tj > TTSD) L
H
L
X
X
H
H
5/22
VN800S / VN800PT
Figure 1: Peak Short Circuit Current Test Circuit
+VCC
10kΩ
STATUS
CONTROL
UNIT
VCC
INPUT
OUTPUT
RIN
GND
RL=10mΩ
GND
Figure 2: Avalanche Energy Test Circuit
+VCC
10kΩ
STATUS
CONTROL
UNIT
VCC
INPUT
OUTPUT
RIN
GND
LOAD
GND
6/22
VN800S / VN800PT
APPLICATION SCHEMATIC
VCC
24VDC
5V
Volt.
Reg
Control & Diagnostic I/O
VCC
Rprot
STATUSn
OUTPUTn
Rprot INPUTn
BUS
ASIC
LOAD
R
GND
L
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
RGND
DGND
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
7/22
VN800S / VN800PT
Figure 3: Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUT
LOAD VOLTAGE
STATUS
Tj
INPUT
LOAD CURRENT
STATUS
8/22
TTSD
TR
OVERTEMPERATURE
VN800S / VN800PT
High Level Input Current
Off State Output Current
IL(off1) (µA)
Iih (µA)
2.5
8
2.25
7
Off state
Vcc=36V
Vin=Vout=0V
2
1.75
Vin=3.25V
6
5
1.5
1.25
4
1
3
0.75
2
0.5
1
0.25
0
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
Tc (ºC)
ILIM Vs Tcase
Status Leakage Current
Ilim (A)
Ilstat (µA)
0.1
2.5
0.09
2.25
Vstat=Vcc=36V
0.08
2
0.07
1.75
0.06
1.5
0.05
1.25
0.04
1
0.03
0.75
0.02
0.5
0.01
0.25
Vcc=24V
Rl=10mOhm
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
On State Resistance Vs Tcase
Ron (mOhm)
400
400
350
Iout=0.5A
Vcc=8V; 13V; 36V
300
75
On State Resistance Vs V CC
Ron (mOhm)
350
50
Tc (ºC)
Tc (ºC)
Iout=0.5A
300
250
250
200
200
150
150
100
100
50
50
Tc= 150ºC
Tc= 25ºC
0
Tc= - 40ºC
0
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
5
10
15
20
25
30
35
40
Vcc (V)
9/22
VN800S / VN800PT
Input High Level
Input Low Level
Vih (V)
Vil (V)
3.6
2.6
3.4
2.4
3.2
2.2
3
2
2.8
1.8
2.6
1.6
2.4
1.4
2.2
1.2
2
1
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
125
150
175
Tc (°C)
Input Hysteresis Voltage
Overvoltage Shutdown
Vhyst (V)
Vov (V)
1.5
50
1.4
48
1.3
46
1.2
44
1.1
42
1
40
0.9
38
0.8
36
0.7
34
0.6
32
30
0.5
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
Tc (°C)
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
1600
800
1
700
1400
Vcc=24V
Rl=48Ohm
1200
1000
500
800
400
600
300
400
200
200
100
0
0
-50
-25
0
25
50
75
Tc (ºC)
10/22
Vcc=24V
Rl=48Ohm
600
100
125
150
175
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
VN800S / VN800PT
PPAK Maximum turn off current versus load inductance
ILMAX (A)
10
A
B
1
C
0.1
1
10
100
1000
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
11/22
VN800S / VN800PT
SO-8 Maximum turn off current versus load inductance
ILMAX (A)
10
A
B
1
C
0.1
1
10
100
1000
L(mH )
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
12/22
VN800S / VN800PT
SO-8 THERMAL DATA
SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.14cm2, 2cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
SO8 at 2 pins connected to TAB
110
105
100
95
90
85
80
75
70
0
0.5
1
1.5
2
2.5
PCB Cu heatsink area (cm^2)
13/22
VN800S / VN800PT
PPAK THERMAL DATA
PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
90
80
70
60
50
40
30
20
10
0
0
2
4
6
PCB Cu heatsink area (cm^2)
14/22
8
10
VN800S / VN800PT
SO-8 Thermal Impedance Junction Ambient Single Pulse
ZT H (°C/W)
1000
0.5 cm2
100
2 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of a single channel HSD
in SO-8
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z T Htp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.14
0.24
1.2
4.5
21
16
58
0.00015
0.0005
7.50E-03
0.045
0.35
1.05
2
28
2
15/22
VN800S / VN800PT
PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.44 cm2
6 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of a single channel HSD
in PPAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
16/22
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.44
0.04
0.25
0.3
2
15
61
0.0008
0.007
0.02
0.3
0.45
0.8
6
24
5
VN800S / VN800PT
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.25
a2
MAX.
0.068
0.003
0.009
1.65
0.064
a3
0.65
0.85
0.025
0.033
b
0.35
0.48
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.019
c1
45 (typ.)
D
4.8
5
0.188
0.196
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
3.81
0.150
F
3.8
4
0.14
0.157
L
0.4
1.27
0.015
0.050
M
0.6
S
L1
0.023
8 (max.)
0.8
1.2
0.031
0.047
17/22
VN800S / VN800PT
PPAK MECHANICAL DATA
DIM.
MIN.
A
2.20
2.40
A1
0.90
1.10
A2
0.03
0.23
B
0.40
0.60
B2
5.20
5.40
C
0.45
0.60
C2
0.48
D1
TYP
MAX.
0.60
5.1
D
6.00
6.20
E
6.40
6.60
E1
4.7
e
1.27
G
4.90
5.25
G1
2.38
2.70
H
9.35
10.10
L2
L4
0.8
0.60
R
V2
Package Weight
1.00
1.00
0.2
0º
8º
Gr. 0.3
P032T1
18/22
VN800S / VN800PT
SO-8 TUBE SHIPMENT (no suffix)
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
A
100
2000
532
3.2
6
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
12
4
8
1.5
1.5
5.5
4.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
19/22
VN800S / VN800PT
PPAK TUBE SHIPMENT (no suffix)
A
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
75
3000
532
6
21.3
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
16.4
60
22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
8
1.5
1.5
7.5
6.5
2
End
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
20/22
1
VN800S / VN800PT
REVISION HISTORY
Date
Revision
Description of Changes
- Current and voltage convention update (page 2).
- “Configuration diagram (top view) & suggested connections for unused and n.c.
pins” insertion (page 2).
Jul. 2004
1
- 6cm2 Cu condition insertion in Thermal Data table (page 3).
- VCC - OUTPUT DIODE section update (page 4).
- PROTECTIONS note insertion (page 4).
- Revision History table insertion (page 21).
- Disclaimers update (page 22).
21/22
1
VN800S / VN800PT
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics
 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
22/22