VN800S / VN800PT ® HIGH SIDE DRIVER TYPE VN800S VN800PT RDS(on) IOUT VCC 135 mΩ 0.7 A 36 V CMOS COMPATIBLE INPUT THERMAL SHUTDOWN ■ CURRENT LIMITATION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ PROTECTION AGAINST LOSS OF GROUND ■ VERY LOW STAND-BY CURRENT ■ ■ ■ REVERSE BATTERY PROTECTION (*) DESCRIPTION The VN800S, VN800PT are monolithic devices made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes. Active current limitation combined with thermal shutdown and SO-8 PPAK ORDER CODES PACKAGE SO-8 PPAK TUBE VN800S VN800PT T&R VN800S13TR VN800PT13TR automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection. This device is especially suitable for industrial applications in norms conformity with IEC1131 (Programmable Controllers International Standard). BLOCK DIAGRAM VCC OVERVOLTAGE DETECTION VCC CLAMP UNDERVOLTAGE DETECTION GND Power CLAMP DRIVER OUTPUT LOGIC INPUT CURRENT LIMITER STATUS OVERTEMPERATURE DETECTION (*) See note at page 7 July 2004 Rev. 1 1/22 1 VN800S / VN800PT ABSOLUTE MAXIMUM RATING Symbol Value Parameter VCC - VCC - IGND IOUT - IOUT IIN VIN VSTAT SO-8 DC Supply Voltage Reverse DC Supply Voltage DC Reverse Ground Pin Current DC Output Current Reverse DC Output Current DC Input Current Input Voltage Range DC Status Voltage Electrostatic Discharge (Human Body Model: R=1.5KΩ; C=100pF) VESD EMAX V V mA A A mA V V - INPUT 4000 V - STATUS 4000 V - OUTPUT 5000 V 5000 4.2 (L=125mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A) Junction Operating Temperature Case Operating Temperature Storage Temperature Max Inductive Load (VCC=30V; ILOAD=0.5A; Tamb=100°C; Tj Tc Tstg Lmax 41.7 121 (L=77.5mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=1.5A) Maximum Switching Energy EMAX Unit 41 - 0.3 - 200 Internally Limited -6 +/- 10 -3/+VCC + VCC - VCC Power Dissipation TC=25°C Maximum Switching Energy Ptot PPAK V W mJ 195 mJ Internally Limited - 40 to 150 - 55 to 150 °C °C °C 2 Rthcase>ambient≤25°C/W) H CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS VCC VCC 5 4 N.C. OUTPUT STATUS OUTPUT VCC INPUT 8 1 GND Connection / Pin Status Floating To Ground X N.C. Output Input X X X X Through 10KΩ resistor CURRENT AND VOLTAGE CONVENTIONS IS VF IIN VCC INPUT ISTAT IOUT STATUS VCC OUTPUT GND VIN VSTAT 1 OUTPUT 4 STATUS 3 2 1 PPAK SO-8 2/22 5 IGND VOUT INPUT GND VN800S / VN800PT THERMAL DATA Symbol Rthj-case Thermal Resistance Junction-case Rthj-lead Thermal Resistance Junction-lead Rthj-amb Value Parameter Max Max Max Max Thermal Resistance Junction-ambient SO-8 PPAK Unit - 3 30 - °C/W °C/W 93 (1) 78 (3) °C/W 82 (2) 45 (4) °C/W (1) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35µ thick) connected to all V CC pins. (2) When mounted on FR4 printed circuit board with 2 cm2 of copper area (at least 35µ thick). (3) When mounted on FR4 printed circuit board with 0.5 cm2 of copper area (at least 35µ thick) connected to all V CC pins. (4) When mounted on FR4 printed circuit board with 6 cm2 of copper area (at least 35µ thick). ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C, unless otherwise specified) POWER Symbol VCC VUSD VOV RON IS ILGND IL(off1) IL(off2) IL(off3) Parameter Operating Supply Voltage Undervoltage Shut-down Overvoltage Shut-down On State Resistance Test Conditions Min 5.5 3 36 Typ 135 Unit V V V mΩ 10 270 20 mΩ µA 1.5 3.5 mA 2.6 1 50 5 3 mA mA µA µA µA Max Unit 4 42 IOUT =0.5A; Tj=25°C IOUT =0.5A Off State; VCC=24V; Tcase=25°C Supply Current On State; VCC=24V Output Current at turn-off Off State Output Current Off State Output Current Off State Output Current On State; VCC=24V; Tcase=100°C VCC=VSTAT=VIN=VGND=24V;VOUT=0V VIN=VOUT=0V VIN=VOUT=0V; VCC=13V; Tj =125°C VIN=VOUT=0V; VCC=13V; Tj =25°C 0 Max 36 5.5 SWITCHING (V CC=24V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time Test Conditions RL=48Ω from VIN rising edge to VOUT=2.4V RL=48Ω from VIN falling edge to VOUT=21.6V dVOUT/ dt(on) Turn-on Voltage Slope RL=48Ω from VOUT=2.4V to VOUT=19.2V dVOUT/ dt(off) Turn-off Voltage Slope RL=48Ω from VOUT=21.6V to VOUT=2.4V Min Typ 10 µs 40 µs See relative diagram See relative diagram V/µs V/µs INPUT PIN Symbol VINL IINL VINH IINH VI(hyst) IIN Parameter Input Low Level Low Level Input Current Input High Level High Level Input Current Input Hysteresis Voltage Input Current Test Conditions VIN=1.25V Min Typ Max 1.25 1 3.25 VIN=3.25V 10 0.5 VIN=VCC=36V 200 Unit V µA V µA V µA 3/22 1 VN800S / VN800PT ELECTRICAL CHARACTERISTICS (continued) VCC - OUTPUT DIODE Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=0.6A; Tj=150°C Min Typ Max 0.7 Unit V Test Conditions ISTAT =1.6 mA Normal Operation; VSTAT=VCC=36 V Min Typ Max 0.5 10 Unit V µA 30 pF Max 200 Unit °C °C °C 20 µs 2 A STATUS PIN Symbol VSTAT ILSTAT CSTAT Parameter Status Low Output Voltage Status Leakage Current Status Pin Input Capacitance Normal Operation; VSTAT= 5V PROTECTIONS (see note 1) Symbol TTSD TR Thyst TSDL Ilim Vdemag Parameter Shut-down Temperature Reset Temperature Thermal Hysteresis Status Delay in Overload Condition DC Short Circuit Current Turn-off Output Clamp Voltage Test Conditions Min 150 135 7 Tj>Tjsh VCC=24V; RLOAD=10mΩ IOUT =0.5 A; L=6mH 0.7 Typ 175 15 VCC-47 VCC-52 VCC-57 V Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and number of activation cycles. OVERTEMP STATUS TIMING Tj>Tjsh VIN VSTAT tSDL 4/22 2 tSDL VN800S / VN800PT Switching time Waveforms VOUT 90% 80% dVOUT/dt(off) dVOUT/dt(on) 10% tr tf t VIN td(on) td(off) t TRUTH TABLE CONDITIONS Normal Operation Current Limitation Overtemperature Undervoltage Overvoltage INPUT L H L H H L H L H L H OUTPUT L H L X X L L L L L L STATUS H H H (Tj < TTSD) H (Tj > TTSD) L H L X X H H 5/22 VN800S / VN800PT Figure 1: Peak Short Circuit Current Test Circuit +VCC 10kΩ STATUS CONTROL UNIT VCC INPUT OUTPUT RIN GND RL=10mΩ GND Figure 2: Avalanche Energy Test Circuit +VCC 10kΩ STATUS CONTROL UNIT VCC INPUT OUTPUT RIN GND LOAD GND 6/22 VN800S / VN800PT APPLICATION SCHEMATIC VCC 24VDC 5V Volt. Reg Control & Diagnostic I/O VCC Rprot STATUSn OUTPUTn Rprot INPUTn BUS ASIC LOAD R GND L VGND GND PROTECTION REVERSE BATTERY NETWORK AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / (IS(on)max). 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). RGND DGND Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. µC I/Os PROTECTION: If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. 7/22 VN800S / VN800PT Figure 3: Waveforms NORMAL OPERATION INPUT LOAD VOLTAGE STATUS UNDERVOLTAGE VUSDhyst VCC VUSD INPUT LOAD VOLTAGE STATUS undefined OVERVOLTAGE VCC<VOV VCC>VOV VCC INPUT LOAD VOLTAGE STATUS Tj INPUT LOAD CURRENT STATUS 8/22 TTSD TR OVERTEMPERATURE VN800S / VN800PT High Level Input Current Off State Output Current IL(off1) (µA) Iih (µA) 2.5 8 2.25 7 Off state Vcc=36V Vin=Vout=0V 2 1.75 Vin=3.25V 6 5 1.5 1.25 4 1 3 0.75 2 0.5 1 0.25 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (ºC) 50 75 100 125 150 175 100 125 150 175 Tc (ºC) ILIM Vs Tcase Status Leakage Current Ilim (A) Ilstat (µA) 0.1 2.5 0.09 2.25 Vstat=Vcc=36V 0.08 2 0.07 1.75 0.06 1.5 0.05 1.25 0.04 1 0.03 0.75 0.02 0.5 0.01 0.25 Vcc=24V Rl=10mOhm 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 On State Resistance Vs Tcase Ron (mOhm) 400 400 350 Iout=0.5A Vcc=8V; 13V; 36V 300 75 On State Resistance Vs V CC Ron (mOhm) 350 50 Tc (ºC) Tc (ºC) Iout=0.5A 300 250 250 200 200 150 150 100 100 50 50 Tc= 150ºC Tc= 25ºC 0 Tc= - 40ºC 0 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 5 10 15 20 25 30 35 40 Vcc (V) 9/22 VN800S / VN800PT Input High Level Input Low Level Vih (V) Vil (V) 3.6 2.6 3.4 2.4 3.2 2.2 3 2 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 125 150 175 125 150 175 Tc (°C) Input Hysteresis Voltage Overvoltage Shutdown Vhyst (V) Vov (V) 1.5 50 1.4 48 1.3 46 1.2 44 1.1 42 1 40 0.9 38 0.8 36 0.7 34 0.6 32 30 0.5 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 50 75 100 Tc (°C) Tc (°C) Turn-on Voltage Slope Turn-off Voltage Slope dVout/dt(on) (V/ms) dVout/dt(off) (V/ms) 1600 800 1 700 1400 Vcc=24V Rl=48Ohm 1200 1000 500 800 400 600 300 400 200 200 100 0 0 -50 -25 0 25 50 75 Tc (ºC) 10/22 Vcc=24V Rl=48Ohm 600 100 125 150 175 -50 -25 0 25 50 75 Tc (ºC) 100 125 150 175 VN800S / VN800PT PPAK Maximum turn off current versus load inductance ILMAX (A) 10 A B 1 C 0.1 1 10 100 1000 L(mH) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 11/22 VN800S / VN800PT SO-8 Maximum turn off current versus load inductance ILMAX (A) 10 A B 1 C 0.1 1 10 100 1000 L(mH ) A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC Conditions: VCC=13.5V Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization t 12/22 VN800S / VN800PT SO-8 THERMAL DATA SO-8 PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.14cm2, 2cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (ºC/W) SO8 at 2 pins connected to TAB 110 105 100 95 90 85 80 75 70 0 0.5 1 1.5 2 2.5 PCB Cu heatsink area (cm^2) 13/22 VN800S / VN800PT PPAK THERMAL DATA PPAK PC Board Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2). Rthj-amb Vs PCB copper area in open box free air condition RTHj_amb (ºC/W) 90 80 70 60 50 40 30 20 10 0 0 2 4 6 PCB Cu heatsink area (cm^2) 14/22 8 10 VN800S / VN800PT SO-8 Thermal Impedance Junction Ambient Single Pulse ZT H (°C/W) 1000 0.5 cm2 100 2 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 T ime (s) Thermal fitting model of a single channel HSD in SO-8 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z T Htp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.14 0.24 1.2 4.5 21 16 58 0.00015 0.0005 7.50E-03 0.045 0.35 1.05 2 28 2 15/22 VN800S / VN800PT PPAK Thermal Impedance Junction Ambient Single Pulse ZTH (°C/W) 1000 100 0.44 cm2 6 cm2 10 1 0.1 0.0001 0.001 0.01 0.1 1 Time (s) Thermal fitting model of a single channel HSD in PPAK 10 100 1000 Pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Thermal Parameter Tj C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd T_amb 16/22 Area/island (cm2) R1 (°C/W) R2 (°C/W) R3 ( °C/W) R4 (°C/W) R5 (°C/W) R6 (°C/W) C1 (W.s/°C) C2 (W.s/°C) C3 (W.s/°C) C4 (W.s/°C) C5 (W.s/°C) C6 (W.s/°C) 0.44 0.04 0.25 0.3 2 15 61 0.0008 0.007 0.02 0.3 0.45 0.8 6 24 5 VN800S / VN800PT SO-8 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.25 a2 MAX. 0.068 0.003 0.009 1.65 0.064 a3 0.65 0.85 0.025 0.033 b 0.35 0.48 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.25 0.5 0.010 0.019 c1 45 (typ.) D 4.8 5 0.188 0.196 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 3.81 0.150 F 3.8 4 0.14 0.157 L 0.4 1.27 0.015 0.050 M 0.6 S L1 0.023 8 (max.) 0.8 1.2 0.031 0.047 17/22 VN800S / VN800PT PPAK MECHANICAL DATA DIM. MIN. A 2.20 2.40 A1 0.90 1.10 A2 0.03 0.23 B 0.40 0.60 B2 5.20 5.40 C 0.45 0.60 C2 0.48 D1 TYP MAX. 0.60 5.1 D 6.00 6.20 E 6.40 6.60 E1 4.7 e 1.27 G 4.90 5.25 G1 2.38 2.70 H 9.35 10.10 L2 L4 0.8 0.60 R V2 Package Weight 1.00 1.00 0.2 0º 8º Gr. 0.3 P032T1 18/22 VN800S / VN800PT SO-8 TUBE SHIPMENT (no suffix) B Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C A 100 2000 532 3.2 6 0.6 All dimensions are in mm. TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 12 4 8 1.5 1.5 5.5 4.5 2 End Start Top No components Components No components cover tape 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 19/22 VN800S / VN800PT PPAK TUBE SHIPMENT (no suffix) A C Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B 75 3000 532 6 21.3 0.6 All dimensions are in mm. TAPE AND REEL SHIPMENT (suffix “13TR”) REEL DIMENSIONS Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 16.4 60 22.4 All dimensions are in mm. TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) All dimensions are in mm. 16 4 8 1.5 1.5 7.5 6.5 2 End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed 20/22 1 VN800S / VN800PT REVISION HISTORY Date Revision Description of Changes - Current and voltage convention update (page 2). - “Configuration diagram (top view) & suggested connections for unused and n.c. pins” insertion (page 2). Jul. 2004 1 - 6cm2 Cu condition insertion in Thermal Data table (page 3). - VCC - OUTPUT DIODE section update (page 4). - PROTECTIONS note insertion (page 4). - Revision History table insertion (page 21). - Disclaimers update (page 22). 21/22 1 VN800S / VN800PT Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 22/22