LINER LT1498MPS8PBF

LT1498/LT1499
10MHz, 6V/µs, Dual/Quad
Rail-to-Rail Input and Output
Precision C-Load Op Amps
DESCRIPTION
FEATURES
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Rail-to-Rail Input and Output
475μV Max VOS from V+ to V–
Gain-Bandwidth Product: 10MHz
Slew Rate: 6V/μs
Low Supply Current per Amplifier: 1.7mA
Input Offset Current: 65nA Max
Input Bias Current: 650nA Max
Open-Loop Gain: 1000V/mV Min
Low Input Noise Voltage: 12nV/√Hz Typ
Wide Supply Range: 2.2V to ±15V
Large Output Drive Current: 30mA
Stable for Capacitive Loads Up to 10,000pF
Dual in 8-Pin PDIP and SO Package
Quad in Narrow 14-Pin SO
The LT®1498/LT1499 are dual/quad, rail-to-rail input and
output precision C-Load™ op amps with a 10MHz gainbandwidth product and a 6V/μs slew rate.
The LT1498/LT1499 are designed to maximize input
dynamic range by delivering precision performance over
the full supply voltage. Using a patented technique, both
input stages of the LT1498/LT1499 are trimmed, one at
the negative supply and the other at the positive supply.
The resulting guaranteed common mode rejection is much
better than other rail-to-rail input op amps. When used as
a unity-gain buffer in front of single supply 12-bit A-to-D
converters, the LT1498/LT1499 are guaranteed to add less
than 1LSB of error even in single 3V supply systems.
With 110dB of supply rejection, the LT1498/LT1499 maintain their performance over a supply range of 2.2V to 36V
and are specified for 3V, 5V and ±15V supplies. The inputs
can be driven beyond the supplies without damage or phase
reversal of the output. These op amps remain stable while
driving capacitive loads up to 10,000pF.
APPLICATIONS
n
n
n
n
n
Driving A-to-D Converters
Active Filters
Rail-to-Rail Buffer Amplifiers
Low Voltage Signal Processing
Battery-Powered Systems
The LT1498 is available with the standard dual op amp
configuration in 8-pin PDIP and SO packaging. The LT1499
features the standard quad op amp configuration and is
available in a 14-pin plastic SO package. These devices
can be used as plug-in replacements for many standard
op amps to improve input/output range and precision.
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and C-Load
is a trademark of Linear Technology Corporation. All other trademarks are the property of their
respective owners.
TYPICAL APPLICATION
Frequency Response
10
VIN = 2.7VP-P
V+ = 3V
0
Single Supply 100kHz 4th Order Butterworth Filter
–10
–20
6.81k
11.3k
VIN
5.23k
–
10.2k
–
1000pF
1/2 LT1498
1/2 LT1498
+
47pF
V+
5.23k
330pF
V+/2
–30
100pF
GAIN (dB)
6.81k
–40
–50
–60
–70
+
VOUT
–80
–90
–100
1498 TA01
–110
100
1k
100k
10k
FREQUENCY (Hz)
1M
10M
1498 TA02
14989fe
1
LT1498/LT1499
ABSOLUTE MAXIMUM RATINGS
(Note 1)
Total Supply Voltage (V+ to V–) .................................36V
Input Current........................................................ ±10mA
Output Short-Circuit Duration (Note 2) ......... Continuous
Operating Temperature Range
LT1498/LT1499 ....................................–40°C to 85°C
LT1498MP ......................................... –55°C to 125°C
Specified Temperature Range (Note 4)
LT1498/LT1499 ....................................–40°C to 85°C
LT1498MP ......................................... –55°C to 125°C
Junction Temperature ........................................... 150°C
Storage Temperature Range .................. –65°C to 150°C
Lead Temperature (Soldering, 10 sec)................... 300°C
PIN CONFIGURATION
TOP VIEW
TOP VIEW
OUT A 1
–IN A 2
A
+IN A 3
V– 4
B
8
V+
7
OUT B
6
–IN B
+IN A 3
5
+IN B
V– 4
OUT A 1
–IN A 2
8
A
B
V+
7
OUT B
6
–IN B
5
+IN B
S8 PACKAGE
8-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 130°C/W
N8 PACKAGE
8-LEAD PLASTIC DIP
TJMAX = 150°C, θJA = 130°C/W
14 OUT D
OUTA 1
TOP VIEW
–IN A 2
+IN A 3
A
D
V+ 4
+IN B 5
–IN B 6
OUT B 7
13 –IN D
12 +IN D
11 V–
B
C
10 +IN C
8
–IN C
8
OUT C
S PACKAGE
14-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 150°C/W
ORDER INFORMATION
LEAD FREE FINISH
TAPE AND REEL
PART MARKING*
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LT1498CN8#PBF
LT1498CN8#TRPBF
1498
8-Lead Plastic PDIP
0°C to 70°C
LT1498CS8#PBF
LT1498CS8#TRPBF
1498
8-Lead Plastic SO
0°C to 70°C
LT1498IN8#PBF
LT1498IN8#TRPBF
1498I
8-Lead Plastic PDIP
–40°C to 85°C
LT1498IS8#PBF
LT1498IS8#TRPBF
1498I
8-Lead Plastic SO
–40°C to 85°C
LT1498MPS8#PBF
LT1498MPS8#TRPBF
1498MP
8-Lead Plastic SO
–55°C to 125°C
LT1499CS#PBF
LT1499CS#TRPBF
1498
14-Lead Plastic SO
0°C to 70°C
LT1499IS#PBF
LT1499IS#TRPBF
1498I
14-Lead Plastic SO
–40°C to 85°C
LEAD BASED FINISH
TAPE AND REEL
PART MARKING*
PACKAGE DESCRIPTION
TEMPERATURE RANGE
LT1498CN8
LT1498CN8#TR
1498
8-Lead Plastic PDIP
0°C to 70°C
LT1498CS8
LT1498CS8#TR
1498
8-Lead Plastic SO
0°C to 70°C
LT1498IN8
LT1498IN8#TR
1498I
8-Lead Plastic PDIP
–40°C to 85°C
LT1498IS8
LT1498IS8#TR
1498I
8-Lead Plastic SO
–40°C to 85°C
LT1498MPS8
LT1498MPS8#TR
1498MP
8-Lead Plastic SO
–55°C to 125°C
LT1499CS
LT1499CS#TR
1498
14-Lead Plastic SO
0°C to 70°C
LT1499IS
LT1499IS#TR
1498I
14-Lead Plastic SO
–40°C to 85°C
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
14989fe
2
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless
otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
ΔVOS
Input Offset Voltage Shift
MIN
TYP
MAX
UNITS
150
150
475
475
μV
μV
150
425
μV
200
750
μV
250
–250
650
0
nA
nA
500
1300
nA
10
–10
100
0
nA
nA
5
5
65
65
nA
nA
10
130
Input Offset Current Shift
VCM = V+
VCM = V–
VCM = V– to V+
VCM = V+, V– (Note 5)
VCM = V+
VCM = V–
VCM = V– to V+
VCM = V+ (Note 5)
VCM = V– (Note 5)
VCM = V+
VCM = V–
VCM = V– to V+
Input Noise Voltage
0.1Hz to 10Hz
400
nVP-P
en
Input Noise Voltage Density
f = 1kHz
12
nV/√Hz
in
Input Noise Current Density
f = 1kHz
0.3
pA/√Hz
CIN
Input Capacitance
AVOL
Large-Signal Voltage Gain
VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
600
500
3800
2000
CMRR
Common Mode Rejection Ratio
VS = 5V, VCM = V– to V+
VS = 3V, VCM = V– to V+
81
76
90
86
dB
dB
CMRR Match (Channel-to-Channel) (Note 5)
VS = 5V, VCM = V– to V+
VS = 3V, VCM = V– to V+
75
70
91
86
dB
dB
Power Supply Rejection Ratio
VS = 2.2V to 12V, VCM = VO = 0.5V
88
105
dB
82
103
Input Offset Voltage Match (Channel-to-Channel)
IB
Input Bias Current
ΔIB
Input Bias Current Shift
Input Bias Current Match (Channel-to-Channel)
IOS
ΔIOS
PSRR
Input Offset Current
0
–650
0
–100
5
nA
pF
V/mV
V/mV
PSRR Match (Channel-to-Channel) (Note 5)
VS = 2.2V to 12V, VCM = VO = 0.5V
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 2.5mA
14
35
90
30
70
200
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
2.5
50
140
10
100
250
mV
mV
mV
ISC
Short-Circuit Current
VS = 5V
VS = 3V
IS
Supply Current per Amplifier
GBW
Gain-Bandwidth Product (Note 7)
SR
Slew Rate (Note 8)
±12.5
±12.0
±24
±19
6.8
10.5
MHz
2.6
2.3
4.5
4.0
V/μs
V/μs
1.7
VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
dB
mA
mA
2.2
mA
The l denotes the specifications which apply over the temperature range 0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V;
VCM = VOUT = half supply, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOS
Input Offset Voltage
VCM = V+
VCM = V– + 0.1V
l
l
175
175
650
650
μV
μV
VOS TC
Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
0.5
1.5
2.5
4.0
μV/°C
μV/°C
ΔVOS
Input Offset Voltage Shift
VCM = V– + 0.1V to V+
l
170
600
μV
l
200
900
μV
Input Offset Voltage Match (Channel-to-Channel) VCM
= V– + 0.1V, V+ (Note 5)
MIN
14989fe
3
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the temperature range
0°C < TA < 70°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
IB
Input Bias Current
l
l
ΔIB
Input Bias Current Shift
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
VCM = V+ (Note 5)
VCM = V– + 0.1V (Note 5)
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
Input Bias Current Match (Channel-to-Channel)
MIN
TYP
MAX
UNITS
0
–780
275
–275
780
0
nA
nA
550
1560
nA
15
–15
170
0
nA
nA
l
l
10
10
85
85
nA
nA
l
20
170
nA
l
l
l
0
–170
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
AVOL
Large-Signal Voltage Gain
VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
l
l
500
400
2500
2000
CMRR
Common Mode Rejection Ratio
VS = 5V, VCM = V– + 0.1V to V+
VS = 3V, VCM = V– + 0.1V to V+
l
l
78
73
89
85
dB
dB
CMRR Match (Channel-to-Channel) (Note 5)
VS = 5V, VCM = V– + 0.1V to V+
VS = 3V, VCM = V– + 0.1V to V+
l
l
74
69
90
86
dB
dB
PSRR
Power Supply Rejection Ratio
VS = 2.3V to 12V, VCM = VO = 0.5V
l
86
102
dB
PSRR Match (Channel-to-Channel) (Note 5)
VS = 2.3V to 12V, VCM = VO = 0.5V
l
80
102
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
17
40
110
35
80
220
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
55
160
15
120
300
mV
mV
mV
ISC
Short-Circuit Current
VS = 5V
VS = 3V
l
l
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
l
6.1
9
MHz
SR
Slew Rate (Note 8)
l
l
2.5
2.2
4.0
3.5
V/μs
V/μs
VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
±12
±10
V/mV
V/mV
dB
±23
±20
1.9
mA
mA
2.6
mA
The l denotes the specifications which apply over the temperature range –40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V;
VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOS
Input Offset Voltage
VCM = V+
VCM = V– + 0.1V
l
l
250
250
750
750
μV
μV
VOS TC
Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
0.5
1.5
2.5
4.0
μV/°C
μV/°C
ΔVOS
Input Offset Voltage Shift
VCM = V– + 0.1V to V+
l
250
650
μV
Input Offset Voltage Match (Channel-to-Channel) VCM
= V– + 0.1V, V+ (Note 5)
MIN
l
300
1500
μV
350
–350
975
0
nA
nA
700
1950
nA
30
–30
180
0
nA
nA
l
l
15
15
110
110
nA
nA
l
30
220
nA
IB
Input Bias Current
VCM = V+
VCM = V– + 0.1V
l
l
ΔIB
Input Bias Current Shift
VCM = V– + 0.1V to V+
l
Input Bias Current Match (Channel-to-Channel)
VCM = V+ (Note 5)
VCM = V– + 0.1V (Note 5)
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
l
l
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
0
–975
0
–180
14989fe
4
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the temperature range
–40°C < TA < 85°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
AVOL
Large-Signal Voltage Gain
VS = 5V, VO = 75mV to 4.8V, RL = 10k
VS = 3V, VO = 75mV to 2.8V, RL = 10k
CMRR
Common Mode Rejection Ratio
l
l
400
300
2500
2000
VS = 5V, VCM = V– + 0.1V to V+
VS = 3V, VCM = V– + 0.1V to V+
l
l
77
73
86
81
dB
dB
CMRR Match (Channel-to-Channel) (Note 5)
VS = 5V, VCM = V– + 0.1V to V+
VS = 3V, VCM = V– + 0.1V to V+
l
l
72
69
86
83
dB
dB
Power Supply Rejection Ratio
VS = 2.5V to 12V, VCM = VO = 0.5V
l
86
100
dB
PSRR Match (Channel-to-Channel) (Note 5)
VS = 2.5V to 12V, VCM = VO = 0.5V
l
80
100
dB
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
18
45
110
40
80
220
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
60
170
15
120
300
mV
mV
mV
ISC
Short-Circuit Current
VS = 5V
VS = 3V
l
l
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
l
5.8
8.5
MHz
SR
Slew Rate (Note 8)
l
l
2.2
1.9
3.6
3.2
V/μs
V/μs
PSRR
VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
±7.5
±7.5
MAX
V/mV
V/mV
±15
±15
2.0
UNITS
mA
mA
2.7
mA
The l denotes the specifications which apply over the temperature range –55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V;
VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOS
Input Offset Voltage
VCM = V+ – 0.5V
VCM = V– + 0.5V
l
l
300
300
1100
1100
μV
μV
VOS TC
Input Offset Voltage Drift (Note 3)
VCM = V+ – 0.5V
l
l
0.5
1.5
ΔVOS
Input Offset Voltage Shift
VCM = V– + 0.5V to V+ – 0.5V
l
250
2300
μV
l
300
1900
μV
450
–450
1100
0
nA
nA
900
2200
nA
40
–40
400
0
nA
nA
l
l
40
40
300
300
nA
nA
l
80
600
nA
Input Offset Voltage Match (Channel-to-Channel) VCM
IB
Input Bias Current
ΔIB
Input Bias Current Shift
Input Bias Current Match (Channel-to-Channel)
= V– + 0.5V, V+ – 0.5V (Note 5)
MIN
VCM = V+ – 0.5V
VCM = V– + 0.5V
VCM = V– + 0.5V to V+ – 0.5V
VCM = V+ – 0.5V (Note 5)
VCM = V– + 0.5V (Note 5)
VCM = V+ – 0.5V
VCM = V– + 0.5V
VCM = V– + 0.5V to V+ – 0.5V
l
l
0
–1100
l
l
l
0
–400
μV/°C
μV/°C
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
AVOL
Large-Signal Voltage Gain
VS = 5V, VO = 0.5mV to 4.5V, RL = 10k
VS = 3V, VO = 0.5mV to 2.5V, RL = 10k
l
l
40
20
210
210
V/mV
V/mV
CMRR
Common Mode Rejection Ratio
VS = 5V, VCM = V– + 0.5V to V+ – 0.5V
VS = 3V, VCM = V– + 0.5V to V+ – 0.5V
l
l
66
62
80
75
dB
dB
CMRR Match (Channel-to-Channel) (Note 5)
VS = 5V, VCM = V– + 0.5V to V+ – 0.5V
VS = 3V, VCM = V– + 0.5V to V+ – 0.5V
l
l
62
58
80
75
dB
dB
Power Supply Rejection Ratio
VS = 2.5V to 12V, VCM = VO = 0.5V
l
86
100
dB
VS = 2.5V to 12V, VCM = VO = 0.5V
l
80
100
dB
PSRR
PSRR Match (Channel-to-Channel) (Note 5)
14989fe
5
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the temperature range
–55°C < TA < 125°C. VS = 5V, 0V; VS = 3V, 0V; VCM = VOUT = half supply, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 2.5mA
l
l
l
22
45
110
50
80
220
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
l
l
l
3.5
60
170
20
120
350
mV
mV
mV
ISC
Short-Circuit Current
VS = 5V
VS = 3V
l
l
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
l
5.8
8.5
MHz
SR
Slew Rate (Note 8)
l
l
2.0
1.7
3.6
3.2
V/μs
V/μs
VS = 5V, AV = –1, RL = Open, VO = 4V
VS = 3V, AV = –1, RL = Open
MIN
±5
±5
±15
±15
2.4
mA
mA
3.0
mA
TA = 25°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOS
Input Offset Voltage
VCM = V+
VCM = V–
200
200
800
800
μV
μV
ΔVOS
Input Offset Voltage Shift
VCM = V– to V+
150
650
μV
250
1400
μV
250
–250
715
0
nA
nA
500
1430
nA
12
–12
120
0
nA
nA
6
6
70
70
nA
nA
12
140
nA
Input Offset Voltage Match (Channel-to-Channel)
VCM
IB
Input Bias Current
ΔIB
Input Bias Current Shift
MIN
= V+, V– (Note 5)
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
VCM = V+
VCM = V–
VCM = V– to V+
VCM = V+ (Note 5)
VCM = V– (Note 5)
VCM = V+
VCM = V–
VCM = V– to V+
Input Noise Voltage
0.1Hz to 10Hz
400
nVP-P
en
Input Noise Voltage Density
f = 1kHz
12
nV/√Hz
in
Input Noise Current Density
f = 1kHz
0.3
pA/√Hz
AVOL
Large-Signal Voltage Gain
VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
1000
500
Channel Separation
VO = –10V to 10V, RL = 2k
116
130
dB
Common Mode Rejection Ratio
VCM = V– to V+
93
106
dB
CMRR Match (Channel-to-Channel) (Note 5)
VCM = V– to V+
87
103
dB
Power Supply Rejection Ratio
VS = ±5V to ±15V
89
110
dB
PSRR Match (Channel-to-Channel) (Note 5)
VS = ±5V to ±15V
83
105
dB
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 10mA
18
40
230
30
80
500
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
2.5
55
420
10
120
800
mV
mV
mV
Input Bias Current Match (Channel-to-Channel)
CMRR
PSRR
0
–715
0
–120
5200
2300
V/mV
V/mV
14989fe
6
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
ISC
Short-Circuit Current
IS
Supply Current per Amplifier
GBW
Gain-Bandwidth Product (Note 7)
SR
Slew Rate
TA = 25°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted.
±15
±30
mA
6.8
10.5
MHz
3.5
6
V/μs
1.8
AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
2.5
mA
The l denotes the specifications which apply over the temperature range 0°C < TA < 70°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless
otherwise noted.
SYMBOL
PARAMETER
CONDITIONS
TYP
MAX
UNITS
VOS
Input Offset Voltage
VCM = V+
VCM = V– + 0.1V
l
l
200
200
900
900
μV
μV
VOS TC
Input Offset Voltage Drift (Note 3)
VCM = V+
l
l
1.0
2.0
3.5
5.0
μV/°C
μV/°C
ΔVOS
Input Offset Voltage Shift
VCM = V– + 0.1V to V+
l
200
750
μV
l
350
1500
μV
300
–300
875
0
nA
nA
600
1750
nA
20
–20
180
0
nA
nA
l
l
15
15
90
90
nA
nA
l
30
180
nA
Input Offset Voltage Match (Channel-to-Channel) VCM
= V– + 0.1V, V+ (Note 5)
MIN
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
VCM = V+ (Note 5)
VCM = V– + 0.1V (Note 5)
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
l
l
Large-Signal Voltage Gain
VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
l
l
900
400
Channel Separation
VO = –10V to 10V, RL = 2k
l
112
125
dB
Common Mode Rejection Ratio
VCM = V– + 0.1V to V+
l
92
103
dB
CMRR Match (Channel-to-Channel) (Note 5)
VCM = V– + 0.1V to V+
l
86
103
dB
Power Supply Rejection Ratio
VS = ±5V to ±15V
l
88
103
dB
PSRR Match (Channel-to-Channel) (Note 5)
VS = ±5V to ±15V
l
82
103
dB
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
18
45
270
40
90
520
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
60
480
15
120
1000
mV
mV
mV
ISC
Short-Circuit Current
l
IB
Input Bias Current
ΔIB
Input Bias Current Shift
Input Bias Current Match (Channel-to-Channel)
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
AVOL
CMRR
PSRR
0
–875
l
l
l
0
–180
±12
5000
2000
V/mV
V/mV
±28
mA
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
l
6.1
9
MHz
SR
Slew Rate
l
3.4
5.3
V/μs
AV = –1, RL = Open, VO = ±10V
Measured at VO = ±5V
1.9
2.8
mA
14989fe
7
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the temperature range
–40°C < TA < 85°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
VCM = V+
VCM = V– + 0.1V
VOS TC
Input Offset Voltage Drift (Note 3)
ΔVOS
Input Offset Voltage Shift
TYP
MAX
UNITS
l
l
300
300
950
950
μV
μV
VCM = V+
l
l
1.0
2.0
3.5
5.0
μV/°C
μV/°C
VCM = V– + 0.1V to V+
l
250
850
μV
l
350
1800
μV
350
–350
1050
0
nA
nA
700
2100
nA
20
–20
200
0
nA
nA
15
15
115
115
nA
nA
30
230
Input Offset Voltage Match (Channel-to-Channel) VCM
IB
Input Bias Current
ΔIB
Input Bias Current Shift
Input Bias Current Match (Channel-to-Channel)
= V– + 0.1V, V+ (Note 5)
MIN
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
VCM = V+ (Note 5)
VCM = V– + 0.1V (Note 5)
VCM = V+
VCM = V– + 0.1V
VCM = V– + 0.1V to V+
l
l
0
–1050
l
l
l
0
–200
l
l
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
AVOL
Large-Signal Voltage Gain
VO = –14.5V to 14.5V, RL = 10k
VO = –10V to 10V, RL = 2k
l
l
800
350
Channel Separation
VO = –10V to 10V, RL = 2k
l
110
120
dB
Common Mode Rejection Ratio
VCM
= V– + 0.1V to V+
l
90
101
dB
CMRR Match (Channel-to-Channel) (Note 5)
VCM = V– + 0.1V to V+
l
86
100
dB
Power Supply Rejection Ratio
VS = ±5V to ±15V
l
88
100
dB
PSRR Match (Channel-to-Channel) (Note 5)
VS = ±5V to ±15V
l
82
100
dB
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
25
50
275
50
100
520
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
65
500
15
120
1000
mV
mV
mV
ISC
Short-Circuit Current
l
CMRR
PSRR
l
5000
2000
±10
±18
nA
V/mV
V/mV
mA
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
l
5.8
8.5
MHz
SR
Slew Rate
l
3
4.75
V/μs
AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
2.0
3.0
mA
14989fe
8
LT1498/LT1499
ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the temperature range
–55°C < TA < 125°C. VS = ±15V, VCM = 0V, VOUT = 0V, unless otherwise noted. (Note 4)
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
VCM = V+ – 0.5V
VCM = V– + 0.5V
VOS TC
Input Offset Voltage Drift (Note 3)
ΔVOS
Input Offset Voltage Shift
TYP
MAX
UNITS
l
l
350
350
1300
1300
μV
μV
VCM = V+ – 0.5V
l
l
1.0
2.0
VCM = V– + 0.5V to V+ – 0.5V
l
250
1500
μV
l
400
2200
μV
500
–500
1200
0
nA
nA
1000
2400
nA
40
–40
400
0
nA
nA
40
40
300
300
nA
nA
80
600
Input Offset Voltage Match (Channel-to-Channel) VCM
MIN
= V– + 0.5V, V+ – 0.5V (Note 5)
μV/°C
μV/°C
IOS
Input Offset Current
ΔIOS
Input Offset Current Shift
VCM = V+ – 0.5V
VCM = V– + 0.5V
VCM = V– + 0.5V to V+ – 0.5V
VCM = V+ – 0.5V (Note 5)
VCM = V– + 0.5V (Note 5)
VCM = V+ – 0.5V
VCM = V– + 0.5V
VCM = V– + 0.5V to V+ – 0.5V
AVOL
Large-Signal Voltage Gain
VO = –14.5V to 14.5V, RL = 10k
l
40
400
V/mV
Channel Separation
VO = –10V to 10V, RL = 2k
IB
Input Bias Current
ΔIB
Input Bias Current Shift
Input Bias Current Match (Channel-to-Channel)
CMRR
PSRR
l
l
0
–1200
l
l
l
0
–400
l
l
l
nA
l
110
120
dB
Common Mode Rejection Ratio
VCM
= V– + 0.5V to V+ – 0.5V
l
86
100
dB
CMRR Match (Channel-to-Channel) (Note 5)
VCM = V– + 0.5V to V+ – 0.5V
l
80
100
dB
Power Supply Rejection Ratio
VS = ±5V to ±15V
l
88
100
dB
80
100
PSRR Match (Channel-to-Channel) (Note 5)
VS = ±5V to ±15V
l
VOL
Output Voltage Swing (Low) (Note 6)
No Load
ISINK = 0.5mA
ISINK = 10mA
l
l
l
25
50
275
75
100
520
mV
mV
mV
VOH
Output Voltage Swing (High) (Note 6)
No Load
ISOURCE = 0.5mA
ISOURCE = 10mA
l
l
l
3.5
65
500
20
120
1400
mV
mV
mV
ISC
Short-Circuit Current
l
IS
Supply Current per Amplifier
l
GBW
Gain-Bandwidth Product (Note 7)
SR
Slew Rate
AV = –1, RL = Open, VO = ±10V
Measure at VO = ±5V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: A heat sink may be required to keep the junction temperature
below the absolute maximum rating when the output is shorted
indefinitely.
Note 3: This parameter is not 100% tested.
Note 4: The LT1498C/LT1499C are guaranteed to meet specified
performance from 0°C to 70°C. The LT1498C/LT1499C are designed,
characterized and expected to meet specified performance from –40°C
to 85°C but are not tested or QA sampled at these temperatures. The
LT1498I/LT1499I are guaranteed to meet specified performance from
–40°C to 85°C. The LT1498MP is guaranteed to meet specified
performance from –55°C to 125°C.
±7.5
dB
±12
2.5
mA
3.2
mA
l
5.8
8.5
MHz
l
2.2
4.75
V/μs
Note 5: Matching parameters are the difference between amplifiers A and
D and between B and C on the LT1499; between the two amplifiers on the
LT1498.
Note 6: Output voltage swings are measured between the output and
power supply rails.
Note 7: VS = 3V, VS = ±15V GBW limit guaranteed by correlation to
5V tests.
Note 8: VS = 3V, VS = 5V slew rate limit guaranteed by correlation to
±15V tests.
14989fe
9
LT1498/LT1499
TYPICAL PERFORMANCE CHARACTERISTICS
VOS Distribution, VCM = 0V
(PNP Stage)
VOS Distribution VCM = 5V
(NPN Stage)
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 0V
20
PERCENT OF UNITS (%)
15
10
5
25
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 5V
15
10
5
0
–500
–300
100
300
–100
INPUT OFFSET VOLTAGE (μV)
–300
100
300
–100
INPUT OFFSET VOLTAGE (μV)
14989 G01
SUPPLY CURRENT PER AMPLIFIER (mA)
SUPPLY CURRENT PER AMPLIFIER (mA)
TA = 25°C
TA = –55°C
1.0
0.5
0
4
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
400
VS = 5V, 0V
1.5
1.0
0.5
200
100
0
–100
TA = 125°C
–200
TA = 25°C
–300
75
50
25
TEMPERATURE (°C)
0
100
–400
125
–2
–1
TA = –55°C
0
2
3
4
5
1
COMMON MODE VOLTAGE (V)
14989 G05
6
14989 G06
Output Saturation Voltage
vs Load Current (Output High)
Output Saturation Voltage
vs Load Current (Output Low)
1000
1000
NPN ACTIVE
100
VS = 5V, 0V
VCM = 5V
0
–100
PNP ACTIVE
VS = p15V
VCM = –15V
100
10
TA = –55°C
14989 G07
100
TA = 25°C
TA = 125°C
10
TA = –55°C
TA = 125°C
VS = 5V, 0V
VCM = 0V
–400
–50 –35 –20 –5 10 25 40 55 70 85 100
TEMPERATURE (°C)
SATURATION VOLTAGE (mV)
200
SATURATION VOLTAGE (mV)
VS = p15V
VCM = 15V
300
–300
VS = 5V, 0V
300
Input Bias Current vs Temperature
–200
500
Input Bias Current
vs Common Mode Voltage
VS = p15V
0
–50 –25
36
400
–300
100
300
–100
INPUT OFFSET VOLTAGE (μV)
14989 G03
2.0
14989 G04
INPUT BIAS CURRENT (nA)
0
–500
500
Supply Current vs Temperature
2.0
1.5
10
14989 G02
Supply Current vs Supply Voltage
TA = 125°C
15
5
0
–500
500
LT1498: N8, S8 PACKAGES
LT1499: S14 PACKAGE
VS = 5V, 0V
VCM = 0V TO 5V
20
INPUT BIAS CURRENT (nA)
PERCENT OF UNITS (%)
20
0
ΔVOS Shift for VCM = 0V to 5V
25
PERCENT OF UNITS (%)
25
TA = 25°C
1
0.001
0.01
0.1
1
LOAD CURRENT (mA)
10
14989 G08
1
0.001
0.01
0.1
1
LOAD CURRENT (mA)
10
14989 G09
14989fe
10
LT1498/LT1499
TYPICAL PERFORMANCE CHARACTERISTICS
0.1Hz to 10Hz
Output Voltage Noise
Minimum Supply Voltage
Noise Voltage Spectrum
200
VS = p2.5V
VCM = 0V
250
150
100
TA = 85°C
50
TA = 25°C
TA = 70°C
NONFUNCTIONAL
TA = –55°C
120
VCM = 2.5V
PNP ACTIVE
100
80
VCM = 4V
NPN ACTIVE
60
40
20
4
2
3
TOTAL SUPPLY VOLTAGE (V)
5
0
40
VOLTAGE GAIN (dB)
7
5
4
VCM = 4V
NPN ACTIVE
2
VCM = 2.5V
PNP ACTIVE
0
1
10
100
FREQUENCY (Hz)
1000
PHASE
30
0
GAIN
10
–36
–72
0
–10
–108
–20
–144
–30
0.01
0.1
80
30
GAIN BANDWIDTH (MHz)
NEGATIVE SUPPLY
VS = p15V
70
VS = p2.5V
60
50
40
30
10
1
100
–50
18
90
–60
16
80
–70
14
70
PHASE MARGIN
12
60
10
50
GAIN BANDWIDTH
VS = p15V
VOUT = p1VP-P
RL = 2k
–80
–90
–100
–110
40
6
30
10
4
20
0
2
10
–140
–10
0
0
–150
0.01
1
10
100
1000
FREQUENCY (kHz)
10000
14989 G16
0
5
10000
Channel Separation vs Frequency
20
8
20
100
1000
FREQUENCY (kHz)
14989 G15
PHASE MARGIN (DEG)
POSITIVE SUPPLY
40
90
Gain Bandwidth and Phase
Margin vs Supply Voltage
70
50
100
20
–180
100
1
10
FREQUENCY (MHz)
110
14989 G14
VS = p2.5V
60
36
20
PSRR vs Frequency
80
108
72
14989 G13
90
144
PHASE SHIFT (DEG)
50
1
RL = 10k
VS = p1.5V
VS = p15V
60
8
CMRR vs Frequency
120
180
COMMON MODE REJECTION RATIO (dB)
VS = 5V, 0V
3
14989 G12
Gain and Phase vs Frequency
70
6
1000
14989 G11
Noise Current Spectrum
9
10
100
FREQUENCY (Hz)
TIME (1s/DIV)
14989 G10
10
1
10
CHANNEL SEPARATION (dB)
1
CURRENT NOISE (pA/√Hz)
140
0
0
POWER SUPPLY REJECTION RATIO (dB)
160
NOISE VOLTAGE (nV/•Hz)
200
VS = 5V, 0V
180
OUTPUT VOLTAGE (200nV/DIV)
CHANGE IN OFFSET VOLTAGE (μV)
300
25
15
20
10
TOTAL SUPPLY VOLTAGE (V)
30
14989 G17
–120
–130
0.1
1
10
FREQUENCY (kHz)
100
1000
14989 G18
14989fe
11
LT1498/LT1499
TYPICAL PERFORMANCE CHARACTERISTICS
70
60
VOUT = 80% OF VS
AV = –1
8
SLEW RATE (V/μs)
OVERSHOOT (%)
10
9
VS = 5V, 0V
AV = 1
RL = 1k
50
40
30
20
VS = p15V
8
NONINVERTING
6
RISING EDGE
7
6
FALLING EDGE
5
INVERTING
4
2
0
–2
–4
INVERTING
–6
4
10
NONINVERTING
–8
0
10
1000
10000
100
CAPACITIVE LOAD (pF)
–10
3
100000
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
4
0
14989 G19
VS = p15V
RL = 10k
VS = 5V, 0V
0
–5
2
0
–2
–15
–3
15
–4
20
RL = 10k
–1
–10
–20
0
5
–20 –15 –10 –5
10
OUTPUT VOLTAGE (V)
RL = 2k
1
1
0
2
4
3
OUTPUT VOLTAGE (V)
AV = 1
VS = p1.5V
THD + NOISE (%)
THD + NOISE (%)
1
AV = –1
VS = p1.5V
AV = 1
VS = p2.5V
AV = –1
VS = p2.5V
0.001
0.0001
0
1
S8 PACKAGE, VS = p15V
–20
N8 PACKAGE, VS = p15V
–30
LT1499CS, VS = p15V
0
20
40 60 80 100 120 140 160
TIME AFTER POWER-UP (SEC)
2
3
4
INPUT VOLTAGE (VP-P)
5
14989 G25
14989 G24
Total Harmonic Distortion + Noise
vs Frequency
f = 1kHz
RL = 10k
0.01
N8 PACKAGE, VS = p2.5V
LT1499CS, VS = p2.5V
–10
14989 G23
Total Harmonic Distortion + Noise
vs Peak-to-Peak Voltage
0.1
S8 PACKAGE, VS = p2.5V
0
–40
6
5
14989 G22
1
3.5
Warm-Up Drift vs Time
CHANGE IN OFFSET VOLTAGE (μV)
INPUT VOLTAGE (μV)
RL = 2k
3.0
2.5
SETTLING TIME (μs)
10
3
10
2.0
14989 G21
Open-Loop Gain
4
15
5
1.5
36
14989 G20
Open-Loop Gain
20
INPUT VOLTAGE (μV)
Output Step
vs Settling Time to 0.01%
Slew Rate vs Supply Voltage
OUTPUT STEP (V)
Capacitive Load Handling
VS = p1.5V
VIN = 2VP-P
RL = 10k
AV = 1
0.1
AV = –1
0.01
0.001
0.01
0.1
1
10
FREQUENCY (kHz)
100
14989 G26
14989fe
12
LT1498/LT1499
TYPICAL PERFORMANCE CHARACTERISTICS
5V Large-Signal Response
1V/DIV
5mV/DIV
5V Small-Signal Response
14989 G27
VS = 5V
200ns/DIV
AV = 1
VIN = 20mVP-P AT 50kHz
RL = 1k
VS = 5V
2μs/DIV
AV = 1
VIN = 4VP-P AT 10kHz
RL = 1k
±15V Large-Signal Response
5V/DIV
5mV/DIV
±15V Small-Signal Response
14989 G28
VS = p15V
200ns/DIV
AV = 1
VIN = 20mVP-P AT 50kHz
RL = 1k
14989 G29
VS = p15V
2μs/DIV
AV = 1
VIN = 20VP-P AT 10kHz
RL = 1k
14989 G30
APPLICATIONS INFORMATION
Rail-to-Rail Input and Output
The LT1498/LT1499 are fully functional for an input and
output signal range from the negative supply to the positive supply. Figure 1 shows a simplified schematic of the
amplifier. The input stage consists of two differential amplifiers, a PNP stage (Q1/Q2) and an NPN stage (Q3/Q4)
which are active over different ranges of input common
mode voltage. A complementary common emitter output
stage (Q14/Q15) is employed allowing the output to swing
from rail-to-rail. The devices are fabricated on Linear
Technology’s proprietary complementary bipolar process
to ensure very similar DC and AC characteristics for the
output devices (Q14/Q15).
The PNP differential input pair is active for input common
mode voltages, VCM, between the negative supply to
approximately 1.3V below the positive supply. As VCM
moves further toward the positive supply, the transistor
(Q5) will steer the tail current, I1, to the current mirror
(Q6/Q7) activating the NPN differential pair, and the PNP
differential pair becomes inactive for the rest of the input
common mode range up to the positive supply.
The output is configured with a pair of complementary
common emitter stages that enables the output to swing
from rail to rail. Capacitors (C1 and C2) form local
feedback loops that lower the output impedance at high
frequencies.
14989fe
13
LT1498/LT1499
APPLICATIONS INFORMATION
V+
R3
I1
D1
+IN
Q12
Q11
D5
Q15
C2
Q13
VBIAS
D2
D6
V–
R7
Q4
Q3
Q1
Q10
Q9
Q8
D4
Q7
CC
OUT
Q2
D3
V
R5
R6
Q5
–IN
R4
BUFFER
AND
OUTPUT BIAS
C1
Q6
–
R1
R2
Q14
14989 F01
Figure 1. LT1498 Simplified Schematic Diagram
Input Offset Voltage
The offset voltage changes depending upon which input
stage is active. The input offsets are random, but are
trimmed to less than 475μV. To maintain the precision
characteristics of the amplifier, the change of VOS over the
entire input common mode range (CMRR) is guaranteed
to be less than 425μV on a single 5V supply.
Input Bias Current
The input bias current polarity also depends on the input
common mode voltage, as described in the previous section. When the PNP differential pair is active, the input bias
currents flow out of the input pins; they flow in opposite
direction when the NPN input stage is active. The offset error
due to input bias current can be minimized by equalizing
the noninverting and inverting input source impedances.
This will reduce the error since the input offset currents
are much less than the input bias currents.
Overdrive Protection
To prevent the output from reversing polarity when the
input voltage exceeds the power supplies, two pair of
crossing diodes D1 to D4 are employed. When the input
voltage exceeds either power supply by approximately
700mV, D1/D2 or D3/D4 will turn on, forcing the output
to the proper polarity. For the phase reversal protection to
work properly, the input current must be less than 5mA.
If the amplifier is to be severely overdriven, an external
resistor should be used to limit the overdrive current.
Furthermore, the LT1498/LT1499’s input stages are protected by a pair of back-to-back diodes, D5/D6. When a
differential voltage of more than 0.7V is applied to the
inputs, these diodes will turn on, preventing the Zener
breakdown of the input transistors. The current in D5/D6
should be limited to less than 10mA. Internal resistors R6
and R7 (700Ω total) limit the input current for differential
input signals of 7V or less. For larger input levels, a resistor in series with either or both inputs should be used
to limit the current. Worst-case differential input voltage
usually occurs when the output is shorted to ground. In
addition, the amplifier is protected against ESD strikes up
to 3kV on all pins.
Capacitive Load
The LT1498/LT1499 are designed for ease of use. The
amplifier can drive a capacitive load of more than 10nF
14989fe
14
LT1498/LT1499
APPLICATIONS INFORMATION
without oscillation at unity gain. When driving a heavy
capacitive load, the bandwidth is reduced to maintain
stability. Figures 2a and 2b illustrate the stability of the
device for small-signal and large-signal conditions with
capacitive loads. Both the small-signal and large-signal
transient response with a 10nF capacitive load are well
behaved.
CL = 0pF
CL = 500pF
CL = 10nF
Feedback Components
To minimize the loading effect of feedback, it is possible
to use the high value feedback resistors to set the gain.
However, care must be taken to insure that the pole formed
by the feedback resistors and the total input capacitance
at the inverting input does not degrade the stability of the
amplifier. For instance, the LT1498/LT1499 in a noninverting gain of 2, set with two 30k resistors, will probably
oscillate with 10pF total input capacitance (5pF input
capacitance + 5pF board capacitance). The amplifier has
a 2.5MHz crossing frequency and a 60° phase margin at
6dB of gain. The feedback resistors and the total input
capacitance create a pole at 1.06MHz that induces 67° of
phase shift at 2.5MHz! The solution is simple, either lower
the value of the resistors or add a feedback capacitor of
10pF of more.
14989 F02a
VS = 5V
AV = 1
Figure 2a. LT1498 Small-Signal Response
CL = 0pF
CL = 500pF
CL = 10nF
14989 F02b
VS = 5V
AV = 1
Figure 2b. LT1498 Large-Signal Response
TYPICAL APPLICATIONS
1A Voltage Controlled Current Source
1A Voltage Controlled Current Sink
0.5Ω
V+
V+
V+
1k
1k
VIN
500pF
–
1k
VIN
IOUT
+
100Ω
1/2 LT1498
Si9410DY
–
100Ω
1/2 LT1498
RL
500pF
Si9430DY
+
1k
IOUT =
V+ – VIN
tr < 1μs
IOUT
RL
0.5Ω
14989 TA03
VIN
0.5Ω
tr < 1μs
IOUT =
0.5Ω
14989 TA04
14989fe
15
LT1498/LT1499
TYPICAL APPLICATION
Input Bias Current Cancellation
RG
RF
–
SIGNAL
AMP
VOUT
1/2 LT1498
+
VIN
1M
+
1/2 LT1498
CANCELLATION
AMP
–
22pF
1M
14989 TA05
INPUT BIAS CURRENT LESS THAN 50nA
FOR 500mV ≤ VIN ≤ (V+ – 500mV)
PACKAGE DESCRIPTION
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
.255 ± .015*
(6.477 ± 0.381)
.300 – .325
(7.620 – 8.255)
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
8.255
+0.889
–0.381
)
.045 – .065
(1.143 – 1.651)
.130 ± .005
(3.302 ± 0.127)
.065
(1.651)
TYP
.100
(2.54)
BSC
.120
(3.048) .020
MIN
(0.508)
MIN
.018 ± .003
(0.457 ± 0.076)
N8 1002
NOTE:
1. DIMENSIONS ARE
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
14989fe
16
LT1498/LT1499
PACKAGE DESCRIPTION
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.189 – .197
(4.801 – 5.004)
NOTE 3
.045 ±.005
.050 BSC
8
.245
MIN
7
6
5
.160 ±.005
.150 – .157
(3.810 – 3.988)
NOTE 3
.228 – .244
(5.791 – 6.197)
.030 ±.005
TYP
1
RECOMMENDED SOLDER PAD LAYOUT
.010 – .020
× 45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
3
4
.053 – .069
(1.346 – 1.752)
.004 – .010
(0.101 – 0.254)
0°– 8° TYP
.016 – .050
(0.406 – 1.270)
NOTE:
1. DIMENSIONS IN
2
.014 – .019
(0.355 – 0.483)
TYP
INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
.050
(1.270)
BSC
SO8 0303
14989fe
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
17
LT1498/LT1499
PACKAGE DESCRIPTION
S Package
14-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.337 – .344
(8.560 – 8.738)
NOTE 3
.045 ±.005
.050 BSC
14
N
12
11
10
9
8
N
.245
MIN
.160 ±.005
.150 – .157
(3.810 – 3.988)
NOTE 3
.228 – .244
(5.791 – 6.197)
1
.030 ±.005
TYP
13
2
3
N/2
N/2
RECOMMENDED SOLDER PAD LAYOUT
1
.010 – .020
× 45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
2
3
4
5
.053 – .069
(1.346 – 1.752)
NOTE:
1. DIMENSIONS IN
.014 – .019
(0.355 – 0.483)
TYP
INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
7
.004 – .010
(0.101 – 0.254)
0° – 8° TYP
.016 – .050
(0.406 – 1.270)
6
.050
(1.270)
BSC
S14 0502
14989fe
18
LT1498/LT1499
REVISION HISTORY
(Revision history begins at Rev E)
REV
DATE
DESCRIPTION
E
10/09
Edit in Absolute Maximum Ratings
PAGE NUMBER
2
14989fe
19
LT1498/LT1499
TYPICAL APPLICATION
Bidirectional Current Sensor
A1 forces a voltage equal to (IL)(RSENSE) across RA. This
voltage is then amplified at the Charge Out by the ratio of
RB over RA. In this mode, the output of A2 remains high,
keeping Q2 off and the Discharge Out low, even though
the (+) input of A2 exceeds the positive power supply.
During the discharge cycle, A2 and Q2 are active and the
operation is similar to the charge cycle.
A bidirectional current sensor for battery-powered systems is shown in Figure 3. Two outputs are provided: one
proportional to charge current, the other proportional
to discharge current. The circuit takes advantage of the
LT1498’s rail-to-rail input range and its output phase
reversal protection. During the charge cycle, the op amp
IL
CHARGE
VBATTERY
+
A2
1/2 LT1498
–
RSENSE
0.1Ω
VBATTERY
DISCHARGE
RA
RA
DISCHARGE
OUT
A1
1/2 LT1498
RA
RA
Q2
MTP23P06
+
–
Q1
MTP23P06
CHARGE
OUT
RB
RB
()
RB
R
RA SENSE
FOR RA = 1k, RB = 10k
VO
= 1V/A
14989 F03
IL
VO = IL
Figure 3. Bidirectional Current Sensor
RELATED PARTS
PART NUMBER DESCRIPTION
COMMENTS
LTC®1152
Rail-to-Rail Input and Output, Zero-Drift Op Amp
High DC Accuracy, 10μV VOS(MAX), 100nV/°C Drift, 1MHz GBW, 1V/μs
Slew Rate, Max Supply Current 2.2mA
LT1211/LT1212
Dual/Quad 14MHz, 7V/μs, Single Supply Precision Op Amps
Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max
Drift, Max Supply Current 1.8mA per Op Amp
LT1213/LT1214
Dual/Quad 28MHz, 12V/μs, Single Supply Precision Op Amps
Input Common Mode Includes Ground, 275μV VOS(MAX), 6μV/°C Max
Drift, Max Supply Current 3.5mA per Op Amp
LT1215/LT1216
Dual/Quad 23MHz, 50V/μs, Single Supply Precision Op Amps
Input Common Mode Includes Ground, 450μV VOS(MAX), Max Supply
Current 6.6mA per Op Amp
LT1366/LT1367
Dual/Quad Precision, Rail-to-Rail Input and Output Op Amps
475μV VOS(MAX), 400kHz GBW, 0.13V/μs Slew Rate, Max Supply
Current 520μA per Op Amp
LT1490/LT1491
Dual/Quad Micropower, Rail-to-Rail Input and Output Op Amps
Max Supply Current 50μA per Op Amp, 200kHz GBW, 0.07V/μs Slew
Rate, Operates with Inputs 44V Above V– Independent of V+
LT1884/LT1885
Dual/Quad, Rail-to-Rail Output Picoamp Input Precision Op Amps ICC = 650μA, VOS < 50μV, IB < 400pA
14989fe
20 Linear Technology Corporation
LT 1009 REV E • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 2009