MITSUBISHI CM300DX-12A

MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
CM300DX-12A
¡IC ................................................................... 300A
¡VCES ............................................................ 600V
¡Dual
¡Flatbase Type / Insulated Package /
Copper (non-plating) base plate
¡RoHS Directive compliant
APPLICATION
General purpose Inverters, Servo Amplifiers, Power supply, etc.
OUTLINE DRAWING & CIRCUIT DIAGRAM
(13.5)
17
4-M6 NUTS
(7.4)
1.2
(3.81)
(20.5)
7
0.8
(4.2)
(13.5)
1.15
0.65
Dimensions in mm
152
137
121.7
110 ±0.5
99
94.5
TERMINAL t = 0.8
*58.4
(14)
(14)
22
17
17
12
12
6
6
46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
φ4.3
24
23
2
6.5
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
A
*95
(102.25)
*68.34
*72.14
*41.66
*45.48
*15
*18.8
0
(7.75)
0
3.5
(3)
4-φ5.5 MOUNTING HOLES
(21.14)
LABEL
E2(39) G2(38)
Tr2
E1C2
(24)
E2(47)
*Pin positions
with tolerance
E1C2
(23)
Di1
Tr1
Th
NTC
G1(15)
TH2(2)
C1(22)
E1(16)
φ0.5
Tolerance otherwise specified
Division of Dimension
Di2
C1(48)
SECTION A
13
(5.4)
12.5
(SCREWING DEPTH)
17 +1
-0.5
1
TH1(1)
φ2.5
φ2.1
12.5
48
1.5
39
50 ±0.5
57.5
62
47
Tolerance
3
±0.2
to
6
±0.3
to
30
±0.5
30
to
120
±0.8
over 120
to
400
±1.2
0.5
to
over
3
over
6
over
CIRCUIT DIAGRAM
Jan. 2009
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
ABSOLUTE MAXIMUM RATINGS
INVERTER PART
Symbol
VCES
VGES
IC
ICRM
PC
IE (Note.3)
IERM(Note.3)
Tj
Tstg
Viso
—
—
—
—
(Tj = 25°C, unless otherwise specified)
Parameter
Collector-emitter voltage
Gate-emitter voltage
Conditions
G-E Short
C-E Short
(Note. 1)
DC, TC = 56°C
Collector current
(Note. 4)
Pulse
(Note. 1, 5)
Maximum collector dissipation TC = 25°C
(Note. 1)
Emitter current
TC = 25°C
(Note. 4)
(Free wheeling diode forward current) Pulse
Junction temperature
Storage temperature
Isolation voltage
Terminals to base plate, f = 60Hz, AC 1 minute
(Note. 8)
Base plate flatness
On the centerilne X, Y
Torque strength
Main terminals
M6 screw
Torque strength
Mounting
M5 screw
Weight
(Typical)
Rating
600
±20
300
600
960
300
600
–40 ~ +150
–40 ~ +125
2500
±0 ~ +100
3.5 ~ 4.5
2.5 ~ 3.5
330
Unit
V
A
W
A
°C
Vrms
μm
N·m
g
+:convex
–:concave
–
Y
+
Heat sink side
Note. 8: The base plate flatness measurement points are in the following figure.
X
–
+
Heat sink side
Jan. 2009
2
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
ELECTRICAL CHARACTERISTICS
INVERTER PART
Symbol
(Tj = 25°C, unless otherwise specified)
Parameter
Conditions
ICES
VGE(th)
IGES
VCE = VCES, VGE = 0V
Collector cutoff current
Gate-emitter threshold voltage IC = 30mA, VCE = 10V
Gate leakage current
±VGE = VGES, VCE = 0V
VCE(sat)
Collector-emitter saturation voltage
IC = 300A, VGE = 15V
(Note. 6)
IC = 300A, VGE = 15V
Cies
Coes
Cres
QG
td(on)
tr
td(off)
tf
trr (Note.3)
Qrr (Note.3)
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Reverse recovery time
Reverse recovery charge
VEC(Note.3) Emitter-collector voltage
Rlead
Rth(j-c)Q
Rth(j-c)R
Rth(c-f)
RGint
RG
VCE = 10V
VGE = 0V
Tj = 25°C
Tj = 125°C
Chip
(Note. 6)
VCC = 300V, IC = 300A, VGE = 15V
VCC = 300V, IC = 300A
VGE = ±15V, RG = 5.1Ω
Inductive load
(IE = 300A)
(Note. 6)
IE = 300A, VGE = 0V
IE = 300A, VGE = 0V
Module lead resistance
Main terminals-chip, per switch
Thermal resistance
per IGBT
(Note. 1) per free wheeling diode
(Junction to case)
Contact thermal resistance
Thermal grease applied
(Case to heat sink) (Note. 1) per 1 module
Internal gate resistance
TC = 25°C
External gate resistance
Tj = 25°C
Tj = 125°C
Chip
(Note. 2)
Min.
—
5
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Limits
Typ.
—
6
—
1.7
1.9
1.6
—
—
—
800
—
—
—
—
—
9
2.0
1.95
1.9
1.1
—
—
Max.
1
7
0.5
2.1
—
—
34
4
1.2
—
200
150
350
600
200
—
2.8
—
—
—
0.13
0.22
—
0.015
—
—
2.0
0
—
—
21
Min.
4.85
–7.3
—
—
Limits
Typ.
5.00
—
3375
—
Max.
5.15
+7.8
—
10
Unit
mA
V
μA
V
nF
nC
ns
μC
V
mΩ
K/W
Ω
NTC THERMISTOR PART
Symbol
R
ΔR/R
B(25/50)
P25
Parameter
Zero power resistance
Deviation of resistance
B constant
Power dissipation
Conditions
TC = 25°C
TC = 100°C, R100 = 493Ω
Approximate by equation
TC = 25°C
(Note. 7)
Unit
kΩ
%
K
mW
Note.1:
2:
3:
4:
5:
6:
Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.)
Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K).
IE, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi).
Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
(Refer to the figure of the test circuit for VCE(sat) and VEC)
1
7: B(25/50) = In( R25 )/( 1
)
T50
R50 T25
R25: resistance at absolute temperature T25 [K]; T25 = 25 [°C]+273.15 = 298.15 [K]
R50: resistance at absolute temperature T50 [K]; T50 = 50 [°C]+273.15 = 323.15 [K]
Jan. 2009
3
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
Dimensions in mm (tolerance: ±1mm)
Chip Location (Top view)
(152)
(121.7)
(110)
0
0
46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
(50)
Di 2 Tr2
47
24
Th
28.2
Di 1
Tr1
48
3
4
5
6
7
8
29.8
23
40.9
9 10 11 12 13 14 15 16 17 18 19 20 21 22
76.9
2
31.2
39.8
42.3
1
0
(62)
18.6
LABEL SIDE
Each mark points the center position of each chip. Tr*: IGBT, Di*: FWDi, Th: NTC thermistor
Jan. 2009
4
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
C1
C1
C1(C1s)
V
C1(C1s)
VGE = 15V
VGE = 0V
IC
G1
G1
E1(E1s)
E1(E1s)
E1C2
E1C2
VGE = 0V
VGE = 15V
G2
G2
E2(E2s)
IC
V
IE
V
E2
E2(E2s)
E2
Tr1
Tr2
VCE(sat) test circuit
C1
C1
C1(C1s)
V
C1(C1s)
VGE = 0V
VGE = 0V
IE
G1
G1
E1(E1s)
E1(E1s)
E1C2
E1C2
VGE = 0V
VGE = 0V
G2
G2
E2(E2s)
E2
E2(E2s)
E2
Di1
Di2
VEC test circuit
Arm
VGE
IE
IE
90%
0V
0%
trr
Load
–VGE
+
VCC
IC
0A
90%
+VGE
0V
RG
VGE
–VGE
t
VCE
Irr
IC
10%
0A
td(on)
tr
td(off)
Switching time test circuit and waveforms
1/2 ✕ Irr
Qrr = 1/2 ✕ Irr ✕ trr
tf
trr, Qrr test waveform
Jan. 2009
5
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
400
11
300
200
10
100
9
8
0
1
2
3
4
5
6
7
8
9 10
3.5
VGE = 15V
3
2.5
2
1.5
1
0.5
0
Tj = 25°C
Tj = 125°C
0
100
200
300
400
500
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL) Inverter part
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL) Inverter part
10
8
6
4
IC = 300A
IC = 600A
2
7
5
3
2
102
7
5
3
2
IC = 120A
0
6
8
10
12
14
16
18
101
20
0.5
1
1.5
2
EMITTER-COLLECTOR VOLTAGE VEC (V)
CAPACITANCE CHARACTERISTICS
(TYPICAL) Inverter part
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
104
7
5
3
2
7
5
3
2
Cies
101
Coes
100
7
5
3
2
0
Tj = 25°C
Tj = 125°C
2.5 3 3.5 4
GATE-EMITTER VOLTAGE VGE (V)
102
7
5
3
2
600
103
Tj = 25°C
EMITTER CURRENT IE (A)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
Tj = 25°C
12
13
500
0
CAPACITANCE (nF)
15
VGE =
20V
SWITCHING TIME (ns)
COLLECTOR CURRENT IC (A)
600
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL) Inverter part
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
tf
103
7
5
3
2
td(off)
102
td(on)
7
5
3
2
tr
101 1
10
Conditions:
VCC = 300V
VGE = ±15V
RG = 5.1Ω
Tj = 125°C
Inductive load
2
3
5 7 102
2
3
5 7 103
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER VOLTAGE VCE (V)
Jan. 2009
6
MITSUBISHI IGBT MODULES
CM300DX-12A
HIGH POWER SWITCHING USE
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
102
103
SWITCHING LOSS (mJ/pulse)
7
SWITCHING TIME (ns)
5
3
tf
2
td(off)
102
7
tr
Conditions:
VCC = 300V
VGE = ±15V
IC = 300A
Tj = 125°C
Inductive load
5 td(on)
3
2
101 0
10
2
3
5 7 101
2
7
5
3
2
Eon
101
7
5
3
2
Conditions:
100 VCC = 300V
7
5 VGE = ±15V
3 IC, IE = 300A
2 Tj = 125°C
Inductive load
10–1 0
10
2 3
5 7 101
Err
5 7 102
2
3
5 7 103
7
5
3
2
2
101 1
10
5 7 102
3
GATE RESISTANCE RG (Ω)
3
5 7 102
2
3
5 7 103
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
100
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j–c)
IC = 300A
VCC = 200V
15
VCC = 300V
10
5
200
2
EMITTER CURRENT IE (A)
GATE CHARGE CHARACTERISTICS
(TYPICAL) Inverter part
GATE-EMITTER VOLTAGE VGE (V)
3
REVERSE RECOVERY CHARACTERISTICS
OF FREE WHEELING DIODE
(TYPICAL) Inverter part
103
7 Conditions:
VCC = 300V
5
VGE = ±15V
3 RG = 5.1Ω
Tj = 25°C
2
Inductive load
Irr
trr
2
10
Eoff
0
2
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL) Inverter part
lrr (A), trr (ns)
SWITCHING LOSS (mJ/pulse)
100
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
7
5
3
2
0
Err
GATE RESISTANCE RG (Ω)
102
20
Eoff
Eon
5
3
2
10–1 1
10
5 7 102
3
Conditions:
VCC = 300V
VGE = ±15V
RG = 5.1Ω
101 Tj = 125°C
7 Inductive load
7
5
3
2
400
600
800
7 Single pulse
5 TC = 25°C
3
2
10–1
7
5
3
2
10–2
7
5
3
2 Inverter IGBT part : Per unit base = Rth(j–c) = 0.13K/W
Inverter FWDi part : Per unit base = Rth(j–c) = 0.22K/W
10–3
10–52 3 5710–42 3 5710–32 3 5710–22 3 5710–12 3 57 100 2 3 57 101
1000 1200
GATE CHARGE QG (nC)
TIME (s)
Jan. 2009
7