MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE CM300DX-12A ¡IC ................................................................... 300A ¡VCES ............................................................ 600V ¡Dual ¡Flatbase Type / Insulated Package / Copper (non-plating) base plate ¡RoHS Directive compliant APPLICATION General purpose Inverters, Servo Amplifiers, Power supply, etc. OUTLINE DRAWING & CIRCUIT DIAGRAM (13.5) 17 4-M6 NUTS (7.4) 1.2 (3.81) (20.5) 7 0.8 (4.2) (13.5) 1.15 0.65 Dimensions in mm 152 137 121.7 110 ±0.5 99 94.5 TERMINAL t = 0.8 *58.4 (14) (14) 22 17 17 12 12 6 6 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 φ4.3 24 23 2 6.5 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A *95 (102.25) *68.34 *72.14 *41.66 *45.48 *15 *18.8 0 (7.75) 0 3.5 (3) 4-φ5.5 MOUNTING HOLES (21.14) LABEL E2(39) G2(38) Tr2 E1C2 (24) E2(47) *Pin positions with tolerance E1C2 (23) Di1 Tr1 Th NTC G1(15) TH2(2) C1(22) E1(16) φ0.5 Tolerance otherwise specified Division of Dimension Di2 C1(48) SECTION A 13 (5.4) 12.5 (SCREWING DEPTH) 17 +1 -0.5 1 TH1(1) φ2.5 φ2.1 12.5 48 1.5 39 50 ±0.5 57.5 62 47 Tolerance 3 ±0.2 to 6 ±0.3 to 30 ±0.5 30 to 120 ±0.8 over 120 to 400 ±1.2 0.5 to over 3 over 6 over CIRCUIT DIAGRAM Jan. 2009 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE ABSOLUTE MAXIMUM RATINGS INVERTER PART Symbol VCES VGES IC ICRM PC IE (Note.3) IERM(Note.3) Tj Tstg Viso — — — — (Tj = 25°C, unless otherwise specified) Parameter Collector-emitter voltage Gate-emitter voltage Conditions G-E Short C-E Short (Note. 1) DC, TC = 56°C Collector current (Note. 4) Pulse (Note. 1, 5) Maximum collector dissipation TC = 25°C (Note. 1) Emitter current TC = 25°C (Note. 4) (Free wheeling diode forward current) Pulse Junction temperature Storage temperature Isolation voltage Terminals to base plate, f = 60Hz, AC 1 minute (Note. 8) Base plate flatness On the centerilne X, Y Torque strength Main terminals M6 screw Torque strength Mounting M5 screw Weight (Typical) Rating 600 ±20 300 600 960 300 600 –40 ~ +150 –40 ~ +125 2500 ±0 ~ +100 3.5 ~ 4.5 2.5 ~ 3.5 330 Unit V A W A °C Vrms μm N·m g +:convex –:concave – Y + Heat sink side Note. 8: The base plate flatness measurement points are in the following figure. X – + Heat sink side Jan. 2009 2 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE ELECTRICAL CHARACTERISTICS INVERTER PART Symbol (Tj = 25°C, unless otherwise specified) Parameter Conditions ICES VGE(th) IGES VCE = VCES, VGE = 0V Collector cutoff current Gate-emitter threshold voltage IC = 30mA, VCE = 10V Gate leakage current ±VGE = VGES, VCE = 0V VCE(sat) Collector-emitter saturation voltage IC = 300A, VGE = 15V (Note. 6) IC = 300A, VGE = 15V Cies Coes Cres QG td(on) tr td(off) tf trr (Note.3) Qrr (Note.3) Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge VEC(Note.3) Emitter-collector voltage Rlead Rth(j-c)Q Rth(j-c)R Rth(c-f) RGint RG VCE = 10V VGE = 0V Tj = 25°C Tj = 125°C Chip (Note. 6) VCC = 300V, IC = 300A, VGE = 15V VCC = 300V, IC = 300A VGE = ±15V, RG = 5.1Ω Inductive load (IE = 300A) (Note. 6) IE = 300A, VGE = 0V IE = 300A, VGE = 0V Module lead resistance Main terminals-chip, per switch Thermal resistance per IGBT (Note. 1) per free wheeling diode (Junction to case) Contact thermal resistance Thermal grease applied (Case to heat sink) (Note. 1) per 1 module Internal gate resistance TC = 25°C External gate resistance Tj = 25°C Tj = 125°C Chip (Note. 2) Min. — 5 — — — — — — — — — — — — — — — — — — Limits Typ. — 6 — 1.7 1.9 1.6 — — — 800 — — — — — 9 2.0 1.95 1.9 1.1 — — Max. 1 7 0.5 2.1 — — 34 4 1.2 — 200 150 350 600 200 — 2.8 — — — 0.13 0.22 — 0.015 — — 2.0 0 — — 21 Min. 4.85 –7.3 — — Limits Typ. 5.00 — 3375 — Max. 5.15 +7.8 — 10 Unit mA V μA V nF nC ns μC V mΩ K/W Ω NTC THERMISTOR PART Symbol R ΔR/R B(25/50) P25 Parameter Zero power resistance Deviation of resistance B constant Power dissipation Conditions TC = 25°C TC = 100°C, R100 = 493Ω Approximate by equation TC = 25°C (Note. 7) Unit kΩ % K mW Note.1: 2: 3: 4: 5: 6: Case temperature (TC), heat sink temperature (Tf) measured point is just under the chips. (Refer to the figure of the chip location.) Typical value is measured by using thermally conductive grease of λ = 0.9W/(m·K). IE, IERM, VEC, trr and Qrr represent ratings and characteristics of the anti-parallel, emitter-collector free wheeling diode (FWDi). Pulse width and repetition rate should be such that the device junction temperature (Tj) dose not exceed Tjmax rating. Junction temperature (Tj) should not increase beyond 150°C. Pulse width and repetition rate should be such as to cause negligible temperature rise. (Refer to the figure of the test circuit for VCE(sat) and VEC) 1 7: B(25/50) = In( R25 )/( 1 ) T50 R50 T25 R25: resistance at absolute temperature T25 [K]; T25 = 25 [°C]+273.15 = 298.15 [K] R50: resistance at absolute temperature T50 [K]; T50 = 50 [°C]+273.15 = 323.15 [K] Jan. 2009 3 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE Dimensions in mm (tolerance: ±1mm) Chip Location (Top view) (152) (121.7) (110) 0 0 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 (50) Di 2 Tr2 47 24 Th 28.2 Di 1 Tr1 48 3 4 5 6 7 8 29.8 23 40.9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 76.9 2 31.2 39.8 42.3 1 0 (62) 18.6 LABEL SIDE Each mark points the center position of each chip. Tr*: IGBT, Di*: FWDi, Th: NTC thermistor Jan. 2009 4 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE C1 C1 C1(C1s) V C1(C1s) VGE = 15V VGE = 0V IC G1 G1 E1(E1s) E1(E1s) E1C2 E1C2 VGE = 0V VGE = 15V G2 G2 E2(E2s) IC V IE V E2 E2(E2s) E2 Tr1 Tr2 VCE(sat) test circuit C1 C1 C1(C1s) V C1(C1s) VGE = 0V VGE = 0V IE G1 G1 E1(E1s) E1(E1s) E1C2 E1C2 VGE = 0V VGE = 0V G2 G2 E2(E2s) E2 E2(E2s) E2 Di1 Di2 VEC test circuit Arm VGE IE IE 90% 0V 0% trr Load –VGE + VCC IC 0A 90% +VGE 0V RG VGE –VGE t VCE Irr IC 10% 0A td(on) tr td(off) Switching time test circuit and waveforms 1/2 ✕ Irr Qrr = 1/2 ✕ Irr ✕ trr tf trr, Qrr test waveform Jan. 2009 5 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) Inverter part 400 11 300 200 10 100 9 8 0 1 2 3 4 5 6 7 8 9 10 3.5 VGE = 15V 3 2.5 2 1.5 1 0.5 0 Tj = 25°C Tj = 125°C 0 100 200 300 400 500 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) Inverter part FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) Inverter part 10 8 6 4 IC = 300A IC = 600A 2 7 5 3 2 102 7 5 3 2 IC = 120A 0 6 8 10 12 14 16 18 101 20 0.5 1 1.5 2 EMITTER-COLLECTOR VOLTAGE VEC (V) CAPACITANCE CHARACTERISTICS (TYPICAL) Inverter part HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part 104 7 5 3 2 7 5 3 2 Cies 101 Coes 100 7 5 3 2 0 Tj = 25°C Tj = 125°C 2.5 3 3.5 4 GATE-EMITTER VOLTAGE VGE (V) 102 7 5 3 2 600 103 Tj = 25°C EMITTER CURRENT IE (A) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) Tj = 25°C 12 13 500 0 CAPACITANCE (nF) 15 VGE = 20V SWITCHING TIME (ns) COLLECTOR CURRENT IC (A) 600 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) Inverter part Cres VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 tf 103 7 5 3 2 td(off) 102 td(on) 7 5 3 2 tr 101 1 10 Conditions: VCC = 300V VGE = ±15V RG = 5.1Ω Tj = 125°C Inductive load 2 3 5 7 102 2 3 5 7 103 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER VOLTAGE VCE (V) Jan. 2009 6 MITSUBISHI IGBT MODULES CM300DX-12A HIGH POWER SWITCHING USE HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part 102 103 SWITCHING LOSS (mJ/pulse) 7 SWITCHING TIME (ns) 5 3 tf 2 td(off) 102 7 tr Conditions: VCC = 300V VGE = ±15V IC = 300A Tj = 125°C Inductive load 5 td(on) 3 2 101 0 10 2 3 5 7 101 2 7 5 3 2 Eon 101 7 5 3 2 Conditions: 100 VCC = 300V 7 5 VGE = ±15V 3 IC, IE = 300A 2 Tj = 125°C Inductive load 10–1 0 10 2 3 5 7 101 Err 5 7 102 2 3 5 7 103 7 5 3 2 2 101 1 10 5 7 102 3 GATE RESISTANCE RG (Ω) 3 5 7 102 2 3 5 7 103 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 100 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j–c) IC = 300A VCC = 200V 15 VCC = 300V 10 5 200 2 EMITTER CURRENT IE (A) GATE CHARGE CHARACTERISTICS (TYPICAL) Inverter part GATE-EMITTER VOLTAGE VGE (V) 3 REVERSE RECOVERY CHARACTERISTICS OF FREE WHEELING DIODE (TYPICAL) Inverter part 103 7 Conditions: VCC = 300V 5 VGE = ±15V 3 RG = 5.1Ω Tj = 25°C 2 Inductive load Irr trr 2 10 Eoff 0 2 HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) Inverter part lrr (A), trr (ns) SWITCHING LOSS (mJ/pulse) 100 COLLECTOR CURRENT IC (A) EMITTER CURRENT IE (A) 7 5 3 2 0 Err GATE RESISTANCE RG (Ω) 102 20 Eoff Eon 5 3 2 10–1 1 10 5 7 102 3 Conditions: VCC = 300V VGE = ±15V RG = 5.1Ω 101 Tj = 125°C 7 Inductive load 7 5 3 2 400 600 800 7 Single pulse 5 TC = 25°C 3 2 10–1 7 5 3 2 10–2 7 5 3 2 Inverter IGBT part : Per unit base = Rth(j–c) = 0.13K/W Inverter FWDi part : Per unit base = Rth(j–c) = 0.22K/W 10–3 10–52 3 5710–42 3 5710–32 3 5710–22 3 5710–12 3 57 100 2 3 57 101 1000 1200 GATE CHARGE QG (nC) TIME (s) Jan. 2009 7