MITSUBISHI PM150RSD120_05

MITSUBISHI
MITSUBISHI
<INTELLIGENT
<INTELLIGENT
POWER
POWER
MODULES>
MODULES>
PM150RSD120
PM150RSD120
FLAT-BASE
FLAT-BASE
TYPE
TYPE
INSULATED
INSULATED
PACKAGE
PACKAGE
PM150RSD120
FEATURE
a) Adopting new 4th generation planar IGBT chip, which performance is improved by 1µm fine rule process.
b) Using new Diode which is designed to get soft reverse
recovery characteristics.
• 3φ 150A, 1200V Current-sense IGBT for 15kHz switching
• 50A, 1200V Current-sense regenerative brake IGBT
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for overcurrent, short-circuit, over-temperature & under-voltage
(P-Fo available from upper leg devices)
• Acoustic noise-less 30kW class inverter application
• UL Recognized
Yellow Card No.E80276(N)
File No.E80271
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
135 ±1
120.5 ±0.5
40.68
16.5
11
1234
9 11
10 12
5678
10
10
95.5 ±0.5
110 ±1
11.
12.
13.
14.
15.
16.
17.
18.
19.
WP
VWP1
VNC
VN1
Br
UN
VN
WN
FO
5
φ2.54
U
V
W
3.22
19-
0.5
4-R6
6-M5 NUTS
Screwing depth
Min9.0
3-2
0.5
10.6
2-φ2.54
26
11.6
A
26
33.7
34.7
B PPS
6-2
VUPC
UFO
UP
VUP1
VVPC
VFO
VP
VVP1
VWPC
WFO
10.5
51.5
+1.0
Terminal code
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
10
3-2
3-2
66.44
0.5 ±0.3
24.1 –0.5
23.1
7.7
4
24.1
13 15 17 19
14 16 18
21.3
N
3-2
13
20
P
20
3.22
39.5
4- φ5.5
MOUNTING
HOLES
LABEL
A : DETAIL
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Rfo=1.5kΩ
WP
Br
Fo
VNC W N
VN1
VN
UN
VWPC
Rfo
Gnd In
Gnd
VWP1
VP
VVP1
UP
VUP1
UFO
WFO
VFO
VVPC
VUPC
Rfo
Fo Vcc
Gnd In
Gnd
Si Out
Fo Vcc Gnd In
Si Out
Gnd
Fo Vcc
TEMP
Si Out
Gnd In
Gnd
Fo Vcc
Si Out
Gnd In
Gnd
Fo Vcc
Si Out
Rfo
Gnd In
Gnd
Rfo
Fo Vcc Gnd In
Si Out
Gnd
Fo Vcc
Si Out
Th
B
N
W
V
U
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
Ratings
1200
150
300
781
–20 ~ +150
Unit
V
A
A
W
°C
Condition
Ratings
1200
50
100
416
1200
50
–20 ~ +150
Unit
V
A
A
W
V
A
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
BRAKE PART
Symbol
VCES
IC
ICP
PC
VR(DC)
IF
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Rated DC Reverse Voltage
FWDi Forward Current
Junction Temperature
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC
VVP1-VVPC, VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC
WP-VWPC, UN • VN • WN • Br-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Parameter
Supply Voltage Protected by
VCC(PROT)
OC & SC
VCC(surge) Supply Voltage (Surge)
Module Case Operating
TC
Temperature
Storage Temperature
Tstg
Isolation Voltage
Viso
Symbol
Ratings
Condition
VD = 13.5 ~ 16.5V, Inverter Part,
Tj = 125°C Start
Unit
800
V
1000
V
(Note-1)
–20 ~ +100
°C
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
–40 ~ +125
2500
°C
Vrms
Applied between : P-N, Surge value or without switching
(Note-1) TC measurement point is as shown below. (Base plate depth 3mm)
P
Tc
N
B
63mm
U
V
W
THERMAL RESISTANCES
Symbol
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Rth(j-c’)Q
Rth(j-c’)F
Rth(j-c’)Q
Rth(j-c’)F
Rth(c-f)
Parameter
Junction to case Thermal
Resistances
Contact Thermal Resistance
Test Condition
Inverter IGBT part (per 1 element), (Note-1)
Inverter FWDi part (per 1 element), (Note-1)
Brake IGBT part (Note-1)
Brake FWDi part (Note-1)
Inverter IGBT part (per 1 element), (Note-2)
Inverter FWDi part (per 1 element), (Note-2)
Brake IGBT part (Note-2)
Brake FWDi part (Note-2)
Case to fin, Thermal grease applied (per 1 module)
Min.
—
—
—
—
—
—
—
—
—
Limits
Typ.
—
—
—
—
—
—
—
—
—
Max.
0.16
0.24
0.30
0.80
0.10
0.16
0.22
0.36
0.018
Min.
—
—
—
0.5
—
—
—
—
—
—
Limits
Typ.
2.4
2.1
2.5
1.0
0.15
0.4
2.5
0.7
—
—
Max.
3.2
2.8
3.5
2.5
0.3
1.0
3.5
1.2
1
10
Unit
°C/W
(Note-2) TC measurement point is just under the chips.
If you use this value, Rth(f-a) should be measured just under the chips.
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Test Condition
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
VD = 15V, IC = 150A
VCIN = 0V, Pulsed
(Fig. 1)
–IC = 150A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 15V↔0V
VCC = 600V, IC = 150A
Tj = 125°C
Inductive Load (upper and lower arm)
Collector-Emitter
Cutoff Current
VCE = VCES, VCIN = 15V
(Fig. 4)
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3)
Tj = 25°C
Tj = 125°C
Unit
V
V
µs
mA
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
BRAKE PART
Symbol
VCE(sat)
VFM
ICES
Test Condition
Parameter
Collector-Emitter
Saturation Voltage
FWDi Forward Voltage
Collector-Emitter
Cutoff Current
VD = 15V, IC = 50A
VCIN = 0V, Pulsed
IF = 50A
(Fig. 1)
VCE = VCES, VCIN = 15V
(Fig. 4)
Tj = 25°C
Tj = 125°C
(Fig. 2)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
—
—
Limits
Typ.
2.65
2.60
2.5
—
—
Max.
3.30
3.25
3.5
1
10
Min.
—
—
1.2
1.7
282
200
Limits
Typ.
60
15
1.5
2.0
410
—
Max.
82
20
1.8
2.3
—
—
—
—
—
—
—
111
—
11.5
—
—
—
540
144
10
118
100
12.0
12.5
—
10
—
—
—
125
—
12.5
—
0.01
15
1.0
1.8
—
Min.
2.5
2.5
—
Limits
Typ.
3.0
3.0
920
Unit
V
V
mA
CONTROL PART
Symbol
Parameter
Test Condition
VN1-VNC
VXP1-VXPC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(on)
Vth(off)
Input ON Threshold Voltage
Input OFF Threshold Voltage
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
OC
Over Current Trip Level
Inverter part
VD = 15V
Break part
–20 ≤ Tj ≤ 125°C, VD = 15V
SC
Short Circuit Trip Level
toff(OC)
OT
OTr
UV
UVr
IFO(H)
IFO(L)
Over Current Delay Time
tFO
Tj = 25°C
(Fig. 5,6) Tj = 125°C
(Fig. 5,6)
Inverter part
Brake part
(Fig. 5,6)
Trip level
Reset level
Trip level
Reset level
Over Temperature Protection
Base-plate
Temperature detection, VD = 15V
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VFO = 15V
(Note-3)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-3)
(Note-3) Fault
Fault
Fault
Fault
Fault
output
output
output
output
output
75
Unit
mA
V
A
A
µs
°C
V
mA
ms
is given only when the internal OC, SC, OT & UV protection.
of OC, SC and UV protection operate by upper and lower arms.
of OT protection operate by lower arm.
of OC, SC protection given pulse.
of OT, UV protection given pulse while over level.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
—
Test Condition
Parameter
Mounting torque
Mounting torque
Weight
Main terminal
Mounting part
screw : M5
screw : M5
—
Max.
3.5
3.5
—
Unit
N•m
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(on)
VCIN(off)
Input ON Voltage
Input OFF Voltage
fPWM
PWM Input Frequency
tdead
Arm Shoot-through
Blocking Time
Test Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-4)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Using Application Circuit input signal of IPM, 3φ
sinusoidal PWM VVVF inverter
(Fig. 8)
For IPM’s each input signals
(Fig. 7)
Recommended value
≤ 800
Unit
V
15 ± 1.5
V
≤ 0.8
≥ 4.0
V
≤ 20
kHz
≥ 3.0
µs
(Note-4) Allowable Ripple rating of Control Voltage : dv/dt ≤ ±5V/µs, 2Vp-p
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “OC” and “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not
be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
IN
Fo
VCIN
P, (U,V,W)
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
VD (all)
U,V,W, (N)
VD (all)
Fig. 1 VCE(sat) Test
U,V,W,B, (N)
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
VCIN
(15V)
Fo
Signal input
(Upper Arm)
trr
CS
VCIN
Signal input
(Lower Arm)
VCE
Irr
U,V,W
Ic
Vcc
Fo
90%
90%
N
b) Upper Arm Switching
VD (all)
Ic
10%
10%
10%
10%
P
VCIN
Fo
Signal input
(Upper Arm)
CS
VCIN
(15V)
Signal input
(Lower Arm)
tc (on)
VCIN
U,V,W
Vcc
td (on)
tr
tc (off)
td (off)
tf
Fo
(ton= td (on) + tr)
(toff= td (off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time Test circuit and waveform
P, (U,V,W)
A
VCIN
(15V)
VCIN
IN
Fo
Pulse VCE
VD (all)
Over Current
U,V,W, (N)
OC
IC
toff (OC)
Fig. 4 ICES Test
P, (U,V,W)
Constant Current
Short Circuit Current
IN
Fo
VCC
Constant Current
VCIN
SC
IC
VD (all)
U,V,W, (N)
IC
Fig. 5 OC and SC Test
Fig. 6 OC and SC Test waveform
P
VD
VCINP
U,V,W
Vcc
VD
VCINN
N
Ic
VCINP
0V
t
VCINN
0V
t
tdead
tdead
tdead
Fig. 7 Dead time measurement point example
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
P
≥10µ
20k
VUP1
→
VD
UFO
IF
Rfo
Vcc
Fo
UP
OUT
+
–
Si
In
VUPC
U
GND GND
≥0.1µ
VVP1
VFO
VD
Rfo
Vcc
Fo
VP
Si
In
VVPC
V
GND GND
VWP1
WFO
Rfo
Vcc
Fo
VD
OUT
WP
OUT
Si
In
VWPC
M
W
GND GND
20k
→
Vcc
≥10µ
IF
Fo
UN
OUT
Si
In
GND GND
≥0.1µ
N
TEMP
20k
→
Vcc
≥10µ
IF
Fo
VN
Th
OUT
Si
In
GND GND
≥0.1µ
20k
→
VD
VN1
Vcc
≥10µ
IF
Fo
WN
≥0.1µ
In
GND GND
VNC
4.7k
5V
B
Vcc
Fo
Br
1k
OUT
Si
Fo
In
Rfo
OUT
Si
GND GND
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Quick opto-couplers : TPLH, TPLH ≤ 0.8µs. Use High CMR type. The line between opto-coupler and intelligent module
should be shortened as much as possible to minimize the floating capacitance.
Slow switching opto-coupler : recommend to use at CTR = 100 ~ 200%, Input current = 8 ~ 10mA, to work in active.
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES (Inverter Part)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
200
160
15V
120
13V
80
40
0
0
0.5
1
1.5
2
2.5
3
VD = 15V
2
1.5
1
0.5
Tj = 25°C
Tj = 125°C
0
40
0
80
120
160
200
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
3
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
2.5
2
1.5
1
IC = 150A
Tj = 25°C
Tj = 125°C
0.5
0
12
13
14
15
16
17
101
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
2 Inductive load
7
5
4
3
100
7
5
4
3
tc(off)
tc(off)
tc(on)
tc(on)
2
10–1 1
10
18
2
3 4 5 7 102
2
3 4 5 7 103
CONTROL SUPPLY VOLTAGE VD (V)
COLLECTOR CURRENT IC (A)
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
101
SWITCHING TIME ton, toff (µs)
2.5
COLLECTOR-EMITTER VOLTAGE VCE (V)
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
VD = 17V
7
5
4
3
2
toff
100
ton
7
5
4
3
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–1 1
10
2
3 4 5 7 102
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse)
COLLECTOR CURRENT IC (A)
Tj = 25°C
102
7
5
4
3
2
ESW(off)
ESW(on)
ESW(off)
101
7
5
4
3
2
100
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
7
5
4
3
2
10–1 1
10
2
3 4 5 7 102
2
3 4 5 7 103
COLLECTOR CURRENT IC (A)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
103
2
102
7
5
4
3
2
101
0
0.5
1
1.5
2
7
5
4
3
2
2
trr
Irr
trr
Irr
10–1
7
5
4
3
102
VCC = 600V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–2 1
10
2.5
7
5
4
3
2
3 4 5 7 102
2
7
5
4
3
2
101
3 4 5 7 103
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR RECOVERY CURRENT –IC (A)
ID VS. fc CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
120
CIRCUIT CURRENT ID (mA)
REVERSE RECOVERY TIME trr (µs)
VD = 15V
Tj = 25°C
Tj = 125°C
7
5
4
3
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
100
103
101
VD = 15V
Tj = 25°C
N-side
100
80
60
40
P-side
20
0
0
5
REVERSE RECOVERY CURRENT lrr (A)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
10
15
20
25
CARRIER FREQUENCY fc (kHz)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
COLLECTOR RECOVERY CURRENT –IC (A)
FLAT-BASE TYPE
INSULATED PACKAGE
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)Q = 0.16°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
101
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)F = 0.24°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
Jul. 2005
MITSUBISHI <INTELLIGENT POWER MODULES>
PM150RSD120
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES (Brake Part)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
60
50
15V
13V
40
30
20
10
0
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE (sat) (V)
VD = 17V
0
0.5
1
1.5
2
2.5
3
2.5
2
1.5
1
VD = 15V
Tj = 25°C
Tj = 125°C
0.5
0
0
10
20
30
40
50
60
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
3
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
2.5
2
1.5
1
IC = 50A
Tj = 25°C
Tj = 125°C
0.5
0
12
13
14
15
16
17
18
102
VD = 15V
7
5
4
3
2
101
7
5
4
3
2
100
Tj = 25°C
Tj = 125°C
0
0.5
1
1.5
2
2.5
CONTROL SUPPLY VOLTAGE VD (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT PART)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi PART)
101
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)Q = 0.30°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
101
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth (j – c)
3
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR RECOVERY CURRENT –IC (A)
COLLECTOR CURRENT IC (A)
Tj = 25°C
7
5
3
2
100
7
5
3
2
10–1
7
5
3
2
10–2
7
5
3 Single Pulse
2 Per unit base = Rth(j – c)F = 0.80°C/W
10–3
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101
TIME (s)
Jul. 2005