MITSUBISHI MITSUBISHI <INTELLIGENT <INTELLIGENT POWER POWER MODULES> MODULES> PM150RSD120 PM150RSD120 FLAT-BASE FLAT-BASE TYPE TYPE INSULATED INSULATED PACKAGE PACKAGE PM150RSD120 FEATURE a) Adopting new 4th generation planar IGBT chip, which performance is improved by 1µm fine rule process. b) Using new Diode which is designed to get soft reverse recovery characteristics. • 3φ 150A, 1200V Current-sense IGBT for 15kHz switching • 50A, 1200V Current-sense regenerative brake IGBT • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for overcurrent, short-circuit, over-temperature & under-voltage (P-Fo available from upper leg devices) • Acoustic noise-less 30kW class inverter application • UL Recognized Yellow Card No.E80276(N) File No.E80271 APPLICATION General purpose inverter, servo drives and other motor controls PACKAGE OUTLINES Dimensions in mm 135 ±1 120.5 ±0.5 40.68 16.5 11 1234 9 11 10 12 5678 10 10 95.5 ±0.5 110 ±1 11. 12. 13. 14. 15. 16. 17. 18. 19. WP VWP1 VNC VN1 Br UN VN WN FO 5 φ2.54 U V W 3.22 19- 0.5 4-R6 6-M5 NUTS Screwing depth Min9.0 3-2 0.5 10.6 2-φ2.54 26 11.6 A 26 33.7 34.7 B PPS 6-2 VUPC UFO UP VUP1 VVPC VFO VP VVP1 VWPC WFO 10.5 51.5 +1.0 Terminal code 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 10 3-2 3-2 66.44 0.5 ±0.3 24.1 –0.5 23.1 7.7 4 24.1 13 15 17 19 14 16 18 21.3 N 3-2 13 20 P 20 3.22 39.5 4- φ5.5 MOUNTING HOLES LABEL A : DETAIL Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM Rfo=1.5kΩ WP Br Fo VNC W N VN1 VN UN VWPC Rfo Gnd In Gnd VWP1 VP VVP1 UP VUP1 UFO WFO VFO VVPC VUPC Rfo Fo Vcc Gnd In Gnd Si Out Fo Vcc Gnd In Si Out Gnd Fo Vcc TEMP Si Out Gnd In Gnd Fo Vcc Si Out Gnd In Gnd Fo Vcc Si Out Rfo Gnd In Gnd Rfo Fo Vcc Gnd In Si Out Gnd Fo Vcc Si Out Th B N W V U P MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCES ±IC ±ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition Ratings 1200 150 300 781 –20 ~ +150 Unit V A A W °C Condition Ratings 1200 50 100 416 1200 50 –20 ~ +150 Unit V A A W V A °C Ratings Unit 20 V 20 V 20 V 20 mA VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C BRAKE PART Symbol VCES IC ICP PC VR(DC) IF Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation FWDi Rated DC Reverse Voltage FWDi Forward Current Junction Temperature VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C TC = 25°C TC = 25°C CONTROL PART Symbol Parameter VD Supply Voltage VCIN Input Voltage VFO Fault Output Supply Voltage IFO Fault Output Current Condition Applied between : VUP1-VUPC VVP1-VVPC, VWP1-VWPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC WP-VWPC, UN • VN • WN • Br-VNC Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC Sink current at UFO, VFO, WFO, FO terminals Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Parameter Supply Voltage Protected by VCC(PROT) OC & SC VCC(surge) Supply Voltage (Surge) Module Case Operating TC Temperature Storage Temperature Tstg Isolation Voltage Viso Symbol Ratings Condition VD = 13.5 ~ 16.5V, Inverter Part, Tj = 125°C Start Unit 800 V 1000 V (Note-1) –20 ~ +100 °C 60Hz, Sinusoidal, Charged part to Base, AC 1 min. –40 ~ +125 2500 °C Vrms Applied between : P-N, Surge value or without switching (Note-1) TC measurement point is as shown below. (Base plate depth 3mm) P Tc N B 63mm U V W THERMAL RESISTANCES Symbol Rth(j-c)Q Rth(j-c)F Rth(j-c)Q Rth(j-c)F Rth(j-c’)Q Rth(j-c’)F Rth(j-c’)Q Rth(j-c’)F Rth(c-f) Parameter Junction to case Thermal Resistances Contact Thermal Resistance Test Condition Inverter IGBT part (per 1 element), (Note-1) Inverter FWDi part (per 1 element), (Note-1) Brake IGBT part (Note-1) Brake FWDi part (Note-1) Inverter IGBT part (per 1 element), (Note-2) Inverter FWDi part (per 1 element), (Note-2) Brake IGBT part (Note-2) Brake FWDi part (Note-2) Case to fin, Thermal grease applied (per 1 module) Min. — — — — — — — — — Limits Typ. — — — — — — — — — Max. 0.16 0.24 0.30 0.80 0.10 0.16 0.22 0.36 0.018 Min. — — — 0.5 — — — — — — Limits Typ. 2.4 2.1 2.5 1.0 0.15 0.4 2.5 0.7 — — Max. 3.2 2.8 3.5 2.5 0.3 1.0 3.5 1.2 1 10 Unit °C/W (Note-2) TC measurement point is just under the chips. If you use this value, Rth(f-a) should be measured just under the chips. ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Parameter Test Condition Collector-Emitter Saturation Voltage FWDi Forward Voltage VD = 15V, IC = 150A VCIN = 0V, Pulsed (Fig. 1) –IC = 150A, VD = 15V, VCIN = 15V Switching Time VD = 15V, VCIN = 15V↔0V VCC = 600V, IC = 150A Tj = 125°C Inductive Load (upper and lower arm) Collector-Emitter Cutoff Current VCE = VCES, VCIN = 15V (Fig. 4) Tj = 25°C Tj = 125°C (Fig. 2) (Fig. 3) Tj = 25°C Tj = 125°C Unit V V µs mA Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE BRAKE PART Symbol VCE(sat) VFM ICES Test Condition Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage Collector-Emitter Cutoff Current VD = 15V, IC = 50A VCIN = 0V, Pulsed IF = 50A (Fig. 1) VCE = VCES, VCIN = 15V (Fig. 4) Tj = 25°C Tj = 125°C (Fig. 2) Tj = 25°C Tj = 125°C Min. — — — — — Limits Typ. 2.65 2.60 2.5 — — Max. 3.30 3.25 3.5 1 10 Min. — — 1.2 1.7 282 200 Limits Typ. 60 15 1.5 2.0 410 — Max. 82 20 1.8 2.3 — — — — — — — 111 — 11.5 — — — 540 144 10 118 100 12.0 12.5 — 10 — — — 125 — 12.5 — 0.01 15 1.0 1.8 — Min. 2.5 2.5 — Limits Typ. 3.0 3.0 920 Unit V V mA CONTROL PART Symbol Parameter Test Condition VN1-VNC VXP1-VXPC ID Circuit Current VD = 15V, VCIN = 15V Vth(on) Vth(off) Input ON Threshold Voltage Input OFF Threshold Voltage Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC OC Over Current Trip Level Inverter part VD = 15V Break part –20 ≤ Tj ≤ 125°C, VD = 15V SC Short Circuit Trip Level toff(OC) OT OTr UV UVr IFO(H) IFO(L) Over Current Delay Time tFO Tj = 25°C (Fig. 5,6) Tj = 125°C (Fig. 5,6) Inverter part Brake part (Fig. 5,6) Trip level Reset level Trip level Reset level Over Temperature Protection Base-plate Temperature detection, VD = 15V Supply Circuit Under-Voltage Protection –20 ≤ Tj ≤ 125°C Fault Output Current VD = 15V, VFO = 15V (Note-3) Minimum Fault Output Pulse Width VD = 15V (Note-3) (Note-3) Fault Fault Fault Fault Fault output output output output output 75 Unit mA V A A µs °C V mA ms is given only when the internal OC, SC, OT & UV protection. of OC, SC and UV protection operate by upper and lower arms. of OT protection operate by lower arm. of OC, SC protection given pulse. of OT, UV protection given pulse while over level. MECHANICAL RATINGS AND CHARACTERISTICS Symbol — — — Test Condition Parameter Mounting torque Mounting torque Weight Main terminal Mounting part screw : M5 screw : M5 — Max. 3.5 3.5 — Unit N•m N•m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(on) VCIN(off) Input ON Voltage Input OFF Voltage fPWM PWM Input Frequency tdead Arm Shoot-through Blocking Time Test Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC (Note-4) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Using Application Circuit input signal of IPM, 3φ sinusoidal PWM VVVF inverter (Fig. 8) For IPM’s each input signals (Fig. 7) Recommended value ≤ 800 Unit V 15 ± 1.5 V ≤ 0.8 ≥ 4.0 V ≤ 20 kHz ≥ 3.0 µs (Note-4) Allowable Ripple rating of Control Voltage : dv/dt ≤ ±5V/µs, 2Vp-p Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “OC” and “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) P, (U,V,W,B) IN Fo VCIN P, (U,V,W) Ic V IN Fo VCIN –Ic V (15V) (0V) VD (all) U,V,W, (N) VD (all) Fig. 1 VCE(sat) Test U,V,W,B, (N) Fig. 2 VEC, (VFM) Test a) Lower Arm Switching P VCIN (15V) Fo Signal input (Upper Arm) trr CS VCIN Signal input (Lower Arm) VCE Irr U,V,W Ic Vcc Fo 90% 90% N b) Upper Arm Switching VD (all) Ic 10% 10% 10% 10% P VCIN Fo Signal input (Upper Arm) CS VCIN (15V) Signal input (Lower Arm) tc (on) VCIN U,V,W Vcc td (on) tr tc (off) td (off) tf Fo (ton= td (on) + tr) (toff= td (off) + tf) N Ic VD (all) Fig. 3 Switching time Test circuit and waveform P, (U,V,W) A VCIN (15V) VCIN IN Fo Pulse VCE VD (all) Over Current U,V,W, (N) OC IC toff (OC) Fig. 4 ICES Test P, (U,V,W) Constant Current Short Circuit Current IN Fo VCC Constant Current VCIN SC IC VD (all) U,V,W, (N) IC Fig. 5 OC and SC Test Fig. 6 OC and SC Test waveform P VD VCINP U,V,W Vcc VD VCINN N Ic VCINP 0V t VCINN 0V t tdead tdead tdead Fig. 7 Dead time measurement point example Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE P ≥10µ 20k VUP1 → VD UFO IF Rfo Vcc Fo UP OUT + – Si In VUPC U GND GND ≥0.1µ VVP1 VFO VD Rfo Vcc Fo VP Si In VVPC V GND GND VWP1 WFO Rfo Vcc Fo VD OUT WP OUT Si In VWPC M W GND GND 20k → Vcc ≥10µ IF Fo UN OUT Si In GND GND ≥0.1µ N TEMP 20k → Vcc ≥10µ IF Fo VN Th OUT Si In GND GND ≥0.1µ 20k → VD VN1 Vcc ≥10µ IF Fo WN ≥0.1µ In GND GND VNC 4.7k 5V B Vcc Fo Br 1k OUT Si Fo In Rfo OUT Si GND GND : Interface which is the same as the U-phase Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Quick opto-couplers : TPLH, TPLH ≤ 0.8µs. Use High CMR type. The line between opto-coupler and intelligent module should be shortened as much as possible to minimize the floating capacitance. Slow switching opto-coupler : recommend to use at CTR = 100 ~ 200%, Input current = 8 ~ 10mA, to work in active. Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system. • • • • • • Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES (Inverter Part) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 200 160 15V 120 13V 80 40 0 0 0.5 1 1.5 2 2.5 3 VD = 15V 2 1.5 1 0.5 Tj = 25°C Tj = 125°C 0 40 0 80 120 160 200 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 3 SWITCHING TIME CHARACTERISTICS (TYPICAL) 2.5 2 1.5 1 IC = 150A Tj = 25°C Tj = 125°C 0.5 0 12 13 14 15 16 17 101 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C 2 Inductive load 7 5 4 3 100 7 5 4 3 tc(off) tc(off) tc(on) tc(on) 2 10–1 1 10 18 2 3 4 5 7 102 2 3 4 5 7 103 CONTROL SUPPLY VOLTAGE VD (V) COLLECTOR CURRENT IC (A) SWITCHING TIME CHARACTERISTICS (TYPICAL) SWITCHING LOSS CHARACTERISTICS (TYPICAL) 101 SWITCHING TIME ton, toff (µs) 2.5 COLLECTOR-EMITTER VOLTAGE VCE (V) SWITCHING TIME tc(on), tc(off) (µs) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) VD = 17V 7 5 4 3 2 toff 100 ton 7 5 4 3 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–1 1 10 2 3 4 5 7 102 2 3 4 5 7 103 COLLECTOR CURRENT IC (A) SWITCHING LOSS ESW(on), ESW(off) (mJ/pulse) COLLECTOR CURRENT IC (A) Tj = 25°C 102 7 5 4 3 2 ESW(off) ESW(on) ESW(off) 101 7 5 4 3 2 100 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 7 5 4 3 2 10–1 1 10 2 3 4 5 7 102 2 3 4 5 7 103 COLLECTOR CURRENT IC (A) Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 103 2 102 7 5 4 3 2 101 0 0.5 1 1.5 2 7 5 4 3 2 2 trr Irr trr Irr 10–1 7 5 4 3 102 VCC = 600V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–2 1 10 2.5 7 5 4 3 2 3 4 5 7 102 2 7 5 4 3 2 101 3 4 5 7 103 EMITTER-COLLECTOR VOLTAGE VEC (V) COLLECTOR RECOVERY CURRENT –IC (A) ID VS. fc CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) 120 CIRCUIT CURRENT ID (mA) REVERSE RECOVERY TIME trr (µs) VD = 15V Tj = 25°C Tj = 125°C 7 5 4 3 DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 100 103 101 VD = 15V Tj = 25°C N-side 100 80 60 40 P-side 20 0 0 5 REVERSE RECOVERY CURRENT lrr (A) DIODE FORWARD CHARACTERISTICS (TYPICAL) 10 15 20 25 CARRIER FREQUENCY fc (kHz) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) COLLECTOR RECOVERY CURRENT –IC (A) FLAT-BASE TYPE INSULATED PACKAGE 7 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)Q = 0.16°C/W 10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 101 7 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)F = 0.24°C/W 10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) Jul. 2005 MITSUBISHI <INTELLIGENT POWER MODULES> PM150RSD120 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES (Brake Part) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) 60 50 15V 13V 40 30 20 10 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) VD = 17V 0 0.5 1 1.5 2 2.5 3 2.5 2 1.5 1 VD = 15V Tj = 25°C Tj = 125°C 0.5 0 0 10 20 30 40 50 60 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 3 DIODE FORWARD CHARACTERISTICS (TYPICAL) 2.5 2 1.5 1 IC = 50A Tj = 25°C Tj = 125°C 0.5 0 12 13 14 15 16 17 18 102 VD = 15V 7 5 4 3 2 101 7 5 4 3 2 100 Tj = 25°C Tj = 125°C 0 0.5 1 1.5 2 2.5 CONTROL SUPPLY VOLTAGE VD (V) EMITTER-COLLECTOR VOLTAGE VEC (V) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT PART) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi PART) 101 7 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)Q = 0.30°C/W 10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 101 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j – c) 3 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR RECOVERY CURRENT –IC (A) COLLECTOR CURRENT IC (A) Tj = 25°C 7 5 3 2 100 7 5 3 2 10–1 7 5 3 2 10–2 7 5 3 Single Pulse 2 Per unit base = Rth(j – c)F = 0.80°C/W 10–3 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7100 2 3 5 7101 TIME (s) Jul. 2005