MITSUBISHI PM75B4L1C060

MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PM75B4L1C060
FEATURE
a) Adopting new 5th generation Full-Gate
CSTBTTM chip
b) Error output signal is possible from all
each protection upper and lower IGBT
c) The mounting surface is 90mm×50mm
about 30% less than B4LA type
• Monolithic gate drive & protection logic
• Detection, protection & status indication
circuits for, short-circuit, over-temperature
& under-voltage.
APPLICATION
Photo voltaic power conditioner
PACKAGE OUTLINES
Dimensions in mm
Terminal code
1. VUPC
8. VVP1
2. UFo
9. NC
3. UP
10. NC
4. VUP1
11. NC
5. VVPC
12. NC
6. VFo
13. VNC
7. VP
14. VN1
1
15. NC
16. UN
17. VN
18. NC
19. Fo
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
VNC NC
NC Fo
VN
VN1
UN
NC NC NC
NC
VP
VVP1
VVPC
VFo
1.5k
UP
VUP1
VUPC
UFo
1.5k
1.5k
GND IN
Fo
Vcc
GND SC OT OUT
B
GND IN
Fo
Vcc
GND IN
GND SC OT OUT
N
Fo
Vcc
GND SC OT OUT
W
V
GND IN
Fo
Vcc
GND SC OT OUT
U
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
IC
ICRM
Ptot
IE
IERM
Tj
Parameter
Collector-Emitter Voltage
Conditions
Collector Current
Total Power Dissipation
Emitter Current
(Free wheeling Diode Forward current)
VD=15V, VCIN=15V
TC=25°C
Pulse
TC=25°C
TC=25°C
Pulse
Junction Temperature
Ratings
600
75
150
201
75
150
-20 ~ +150
Unit
V
Ratings
20
20
20
20
Unit
V
V
V
mA
A
W
A
°C
*: Tc measurement point is just under the chip.
CONTROL PART
Symbol
VD
VCIN
VFO
IFO
Parameter
Supply Voltage
Input Voltage
Fault Output Supply Voltage
Fault Output Current
Conditions
Applied between : VUP1-VUPC, VVP1-VVPC,VN1-VNC
Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC
Applied between : UFo-VUPC, VFo-VVPC, Fo-VNC
Sink current at UFo, VFo, Fo terminals
2
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Symbol
VCC(PROT)
VCC(surge)
Tstg
Visol
Parameter
Supply Voltage Protected by
SC
Supply Voltage (Surge)
Storage Temperature
Isolation Voltage
Conditions
VD =13.5V ~ 16.5V
Inverter Part, Tj =+125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, RMS, Charged part to Base, AC 1min.
Ratings
Unit
450
V
500
-40 ~ +125
2500
V
°C
V
*: TC measurement point is just under the chip.
THERMAL RESISTANCE
Symbol
Parameter
Rth(j-c)Q
Rth(j-c)D
Thermal Resistance
Rth(c-s)
Contact Thermal Resistance
Conditions
Junction to case, IGBT (per 1 element)
Junction to case, FWDi (per 1 element)
Case to heat sink, (per 1 module)
Thermal grease applied
(Note.1)
(Note.1)
(Note.1)
Min.
-
Limits
Typ.
-
Max.
0.62
1.06
-
0.06
-
Min.
0.1
-
Limits
Typ.
2.2
2.2
2.4
0.5
0.1
0.15
1.1
0.2
-
Max.
2.7
2.7
3.3
1.2
0.2
0.3
2.0
0.4
1
10
Unit
K/W
Note.1: If you use this value, Rth(s-a) should be measured just under the chips.
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCEsat
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Parameter
Conditions
Collector-Emitter Saturation
Voltage
VD=15V, IC=75A
VCIN=0V, Pulsed
Emitter-Collector Voltage
IE=75A, VD=15V, VCIN= 15V
Switching Time
VD=15V, VCIN=0V←
→15V
VCC=300V, IC=75A
Tj=125°C
Inductive Load
Collector-Emitter Cut-off
Current
(Fig. 1)
VCE=VCES, VD=15V , VCIN=15V (Fig. 5)
3
Tj=25°C
Tj=125°C
(Fig. 2)
(Fig. 3,4)
Tj=25°C
Tj=125°C
Unit
V
V
μs
mA
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
CONTROL PART
Symbol
Parameter
ID
Circuit Current
Vth(ON)
Vth(OFF)
SC
Input ON Threshold Voltage
Input OFF Threshold Voltage
Short Circuit Trip Level
Short Circuit Current Delay
Time
toff(SC)
Conditions
-20≤Tj≤125°C, VD=15V
(Fig. 3, 6)
Min.
1.2
1.7
112
VD=15V
(Fig. 3, 6)
-
VN1-VNC
V*P1-V*PC
Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC
VD=15V, VCIN=15V
Limits
Typ.
6.5
1.6
1.5
2.0
-
Max.
12
4.0
1.8
2.3
-
0.2
-
OT
Trip level
135
Over Temperature Protection Detect Temperature of IGBT chip
OT(hys)
Hysteresis
20
UVt
Trip level
11.5
12.0
12.5
Supply Circuit Under-Voltage
-20≤Tj≤125°C
Protection
Reset level
12.5
UVr
IFO(H)
0.01
(Note.2)
Fault Output Current
VD=15V, VFO=15V
10
15
IFO(L)
tFO
Fault Output Pulse Width
VD=15V
(Note.2)
1.0
1.8
Note.2: Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it.
Unit
mA
V
A
μs
°C
V
mA
ms
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
Mt
m
Parameter
Mounting Torque
Weight
Conditions
Mounting part
screw : M4
-
Min.
1.4
-
Limits
Typ.
1.65
135
Max.
1.9
-
Unit
N・m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through Blocking
Time
Module Operating Current
tdead
IO
Conditions
Applied across P-N terminals
Applied between : VUP1-VUPC,
VVP1-VVPC,VN1-VNC
(Note.3)
Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
RMS
(Fig. 7)
Recommended value
≤ 450
Unit
V
15.0±1.5
V
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 2.0
μs
≤ 30
A
V
Note.3: With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/μs, Variation ≤ 2V peak to peak
4
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their
corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be
allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P,(U,V)
Vcc
Fo
Fo
VD(all)
P,(U,V)
Vcc
V
VD(all)
Ic
Vcin IN GND
Fo
Vcin IN
U,V,(N)
Vcin
P
Vcc
Fo
VD(all)
Fo
IN
Vcin
GND
Fo
IN
GND
U,V
Vcc
U,V
Vcc
VD(all)
Fo
Vcin
IE
Fig. 2 VEC Test
P
Vcc
Fo
V
GND
U,V,(N)
Fig. 1 VCEsat Test
VD(all)
Fo
Vcc
Vcc
Fo
VD(all)
Fo
IN
Vcin
GND
N
Fo
IN
GND
N
Ic
Ic
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
P,(U,V)
A
Vcc
VD(all)
Fo
Vcin
V CE
Fo
pulse
IN
GND
U,V,(N)
Fig. 5 ICES Test
Fig. 6 SC test waveform
Fig. 7 Dead time measurement point example
5
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
20k
P
VUP1
Vcc
U Fo 1.5k
VD1
UP
≥0.1µ ≥10µ
IN
VUPC
20k
VVP1
VP
≥0.1µ ≥10µ
Fo
IN
VVPC
OT
SC
GND GND
Vcc
VFo 1.5k
VD2
Fo
OUT
U
OUT
OT
AC Output
SC
GND GND
V
NC
NC
NC
NC
20k
Vcc
Fo
UN
IN
≥0.1µ ≥10µ
OUT
OT
SC
GND GND
20k
Vcc
Fo
VN
≥0.1µ ≥10µ
IN
N
OUT
OT
SC
GND GND
VN1
VD3
NC
VNC
B
Fo 1.5k
NC
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
• Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
• Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
• Fast switching opto-couplers: tPLH, tPHL ≤ 0.8μs, Use High CMR type.
• Slow switching opto-coupler: CTR > 100%
• Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
• Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
6
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
INVERTER PART
OUTPUT CHARACTERISTICS
(TYPICAL)
INVERTER PART
80
2.5
COLLECTOR-EMITTER
SATURATION VOLTAGE VCEsat (V)
COLLECTOR CURRENT IC (A)
70
60
50
40
30
20
10
0
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5
0
10
20
30
40
50
60
COLLECTOR CURRENT IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
INVERTER PART
FREE WHEELING DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
INVERTER PART
80
COLLECTO R-EMITTER
SATURATION VOLTAGE VCEsat (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
70
7
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
SWITCHING TIME (ton, toff) CHARACTERISTICS
(TYPICAL)
INVERTER PART
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS
(TYPICAL)
INVERTER PART
10
1
Vcc=300V
tc(off)
SWITCHING TIME tc(on), tc(off) (μs)
Tj=25°C
Tj=125°C
Inductive Load
toff
1
ton
0.1
Vcc=300V
VD=15V
Tj=25°C
Tj=125°C
Inductive Load
0.01
1
10
100
1
10
100
COLLECTOR CURRENT IC (A)
COLLECTOR CURRENT IC (A)
SWITCHING ENERGY CHARACTERISTICS
(TYPICAL)
INVERTER PART
FREE WHEELING DIODE
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
INVERTER PART
1.6
0.20
80
Vcc=300V
Vcc=300V
1.4
VD=15V
Tj=25°C
1.2
REVERSE RECOVERY TIME trr (μs)
SWITCHING ENERGY Eon, Eoff (mJ/pulse)
tc(on)
0.1
Eoff
Tj=125°C
Inductive Load
1.0
0.8
0.6
0.4
Eon
0.2
0.0
VD=15V
0.18
70
Tj=25°C
Irr
Tj=125°C
0.16
60
Inductive Load
0.14
50
0.12
40
0.10
30
trr
0.08
20
0.06
0
20
40
60
80
10
0
COLLECTOR CURRENT IC (A)
20
40
60
REVERSE RECOVERY CURRENT Irr (A)
SWITCHING TIME ton, toff (μs)
VD=15V
80
EMITTER CURRENT IE (A)
8
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
ID VS. fc CHARACTERISTICS
(TYPICAL)
30
1.4
Vcc=300V
1.2
VD=15V
VD=15V
25
1.0
Tj=125°C
Tj=125°C
20
Inductive Load
N side
0.8
0.6
15
10
0.4
P side
0.2
5
0.0
0
20
40
60
0
80
0
5
10
15
20
25
EMITTER CURRENT IE (A)
fc (kHz)
UV TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
SC TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
INVERTER PART
20
2.0
UVt
18
1.8
VD=15V
UVr
SC
(SC of Tj=25°C is normalized 1)
16
14
UVt / UVr (V)
Tj=25°C
Tj=25°C
ID (mA)
REVESE RECOVERY ENERGY Err (mJ/pulse)
FREE WHEELING DIODE
REVERSE RECOVERY ENERGY CHARACTERISTICS
(TYPICAL)
INVERTER PART
12
10
8
6
4
2
0
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
-50
0
50
100
150
-50
Tj (°C)
0
50
100
150
Tj (°C)
9
Jan. 2011
MITSUBISHI <INTELLIGENT POWER MODULES>
PM75B4L1C060
FLAT-BASE TYPE
INSULATED PACKAGE
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
INVERTER PART
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j-c)
1
0.1
0.01
Single Pulse
IGBT Part;
Per unit base: Rth(j-c)Q=0.62 K/W
FWDi Part;
Per unit base: Rth(j-c)D=1.06K/W
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
TIME t (sec)
10
Jan. 2011