MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE PM75B4L1C060 FEATURE a) Adopting new 5th generation Full-Gate CSTBTTM chip b) Error output signal is possible from all each protection upper and lower IGBT c) The mounting surface is 90mm×50mm about 30% less than B4LA type • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for, short-circuit, over-temperature & under-voltage. APPLICATION Photo voltaic power conditioner PACKAGE OUTLINES Dimensions in mm Terminal code 1. VUPC 8. VVP1 2. UFo 9. NC 3. UP 10. NC 4. VUP1 11. NC 5. VVPC 12. NC 6. VFo 13. VNC 7. VP 14. VN1 1 15. NC 16. UN 17. VN 18. NC 19. Fo Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM VNC NC NC Fo VN VN1 UN NC NC NC NC VP VVP1 VVPC VFo 1.5k UP VUP1 VUPC UFo 1.5k 1.5k GND IN Fo Vcc GND SC OT OUT B GND IN Fo Vcc GND IN GND SC OT OUT N Fo Vcc GND SC OT OUT W V GND IN Fo Vcc GND SC OT OUT U P MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCES IC ICRM Ptot IE IERM Tj Parameter Collector-Emitter Voltage Conditions Collector Current Total Power Dissipation Emitter Current (Free wheeling Diode Forward current) VD=15V, VCIN=15V TC=25°C Pulse TC=25°C TC=25°C Pulse Junction Temperature Ratings 600 75 150 201 75 150 -20 ~ +150 Unit V Ratings 20 20 20 20 Unit V V V mA A W A °C *: Tc measurement point is just under the chip. CONTROL PART Symbol VD VCIN VFO IFO Parameter Supply Voltage Input Voltage Fault Output Supply Voltage Fault Output Current Conditions Applied between : VUP1-VUPC, VVP1-VVPC,VN1-VNC Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC Applied between : UFo-VUPC, VFo-VVPC, Fo-VNC Sink current at UFo, VFo, Fo terminals 2 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Symbol VCC(PROT) VCC(surge) Tstg Visol Parameter Supply Voltage Protected by SC Supply Voltage (Surge) Storage Temperature Isolation Voltage Conditions VD =13.5V ~ 16.5V Inverter Part, Tj =+125°C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, RMS, Charged part to Base, AC 1min. Ratings Unit 450 V 500 -40 ~ +125 2500 V °C V *: TC measurement point is just under the chip. THERMAL RESISTANCE Symbol Parameter Rth(j-c)Q Rth(j-c)D Thermal Resistance Rth(c-s) Contact Thermal Resistance Conditions Junction to case, IGBT (per 1 element) Junction to case, FWDi (per 1 element) Case to heat sink, (per 1 module) Thermal grease applied (Note.1) (Note.1) (Note.1) Min. - Limits Typ. - Max. 0.62 1.06 - 0.06 - Min. 0.1 - Limits Typ. 2.2 2.2 2.4 0.5 0.1 0.15 1.1 0.2 - Max. 2.7 2.7 3.3 1.2 0.2 0.3 2.0 0.4 1 10 Unit K/W Note.1: If you use this value, Rth(s-a) should be measured just under the chips. ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCEsat VEC ton trr tc(on) toff tc(off) ICES Parameter Conditions Collector-Emitter Saturation Voltage VD=15V, IC=75A VCIN=0V, Pulsed Emitter-Collector Voltage IE=75A, VD=15V, VCIN= 15V Switching Time VD=15V, VCIN=0V← →15V VCC=300V, IC=75A Tj=125°C Inductive Load Collector-Emitter Cut-off Current (Fig. 1) VCE=VCES, VD=15V , VCIN=15V (Fig. 5) 3 Tj=25°C Tj=125°C (Fig. 2) (Fig. 3,4) Tj=25°C Tj=125°C Unit V V μs mA Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE CONTROL PART Symbol Parameter ID Circuit Current Vth(ON) Vth(OFF) SC Input ON Threshold Voltage Input OFF Threshold Voltage Short Circuit Trip Level Short Circuit Current Delay Time toff(SC) Conditions -20≤Tj≤125°C, VD=15V (Fig. 3, 6) Min. 1.2 1.7 112 VD=15V (Fig. 3, 6) - VN1-VNC V*P1-V*PC Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC VD=15V, VCIN=15V Limits Typ. 6.5 1.6 1.5 2.0 - Max. 12 4.0 1.8 2.3 - 0.2 - OT Trip level 135 Over Temperature Protection Detect Temperature of IGBT chip OT(hys) Hysteresis 20 UVt Trip level 11.5 12.0 12.5 Supply Circuit Under-Voltage -20≤Tj≤125°C Protection Reset level 12.5 UVr IFO(H) 0.01 (Note.2) Fault Output Current VD=15V, VFO=15V 10 15 IFO(L) tFO Fault Output Pulse Width VD=15V (Note.2) 1.0 1.8 Note.2: Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it. Unit mA V A μs °C V mA ms MECHANICAL RATINGS AND CHARACTERISTICS Symbol Mt m Parameter Mounting Torque Weight Conditions Mounting part screw : M4 - Min. 1.4 - Limits Typ. 1.65 135 Max. 1.9 - Unit N・m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(ON) VCIN(OFF) fPWM Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time Module Operating Current tdead IO Conditions Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC,VN1-VNC (Note.3) Applied between : UP-VUPC, VP-VVPC, UN・VN-VNC Using Application Circuit of Fig. 8 For IPM’s each input signals RMS (Fig. 7) Recommended value ≤ 450 Unit V 15.0±1.5 V ≤ 0.8 ≥ 9.0 ≤ 20 kHz ≥ 2.0 μs ≤ 30 A V Note.3: With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/μs, Variation ≤ 2V peak to peak 4 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) P,(U,V) Vcc Fo Fo VD(all) P,(U,V) Vcc V VD(all) Ic Vcin IN GND Fo Vcin IN U,V,(N) Vcin P Vcc Fo VD(all) Fo IN Vcin GND Fo IN GND U,V Vcc U,V Vcc VD(all) Fo Vcin IE Fig. 2 VEC Test P Vcc Fo V GND U,V,(N) Fig. 1 VCEsat Test VD(all) Fo Vcc Vcc Fo VD(all) Fo IN Vcin GND N Fo IN GND N Ic Ic Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform P,(U,V) A Vcc VD(all) Fo Vcin V CE Fo pulse IN GND U,V,(N) Fig. 5 ICES Test Fig. 6 SC test waveform Fig. 7 Dead time measurement point example 5 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE 20k P VUP1 Vcc U Fo 1.5k VD1 UP ≥0.1µ ≥10µ IN VUPC 20k VVP1 VP ≥0.1µ ≥10µ Fo IN VVPC OT SC GND GND Vcc VFo 1.5k VD2 Fo OUT U OUT OT AC Output SC GND GND V NC NC NC NC 20k Vcc Fo UN IN ≥0.1µ ≥10µ OUT OT SC GND GND 20k Vcc Fo VN ≥0.1µ ≥10µ IN N OUT OT SC GND GND VN1 VD3 NC VNC B Fo 1.5k NC Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; • Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. • Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. • Fast switching opto-couplers: tPLH, tPHL ≤ 0.8μs, Use High CMR type. • Slow switching opto-coupler: CTR > 100% • Use 3 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. • Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. 6 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) INVERTER PART OUTPUT CHARACTERISTICS (TYPICAL) INVERTER PART 80 2.5 COLLECTOR-EMITTER SATURATION VOLTAGE VCEsat (V) COLLECTOR CURRENT IC (A) 70 60 50 40 30 20 10 0 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 10 20 30 40 50 60 COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) INVERTER PART FREE WHEELING DIODE FORWARD CHARACTERISTICS (TYPICAL) INVERTER PART 80 COLLECTO R-EMITTER SATURATION VOLTAGE VCEsat (V) COLLECTOR-EMITTER VOLTAGE VCE (V) 70 7 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE SWITCHING TIME (ton, toff) CHARACTERISTICS (TYPICAL) INVERTER PART SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS (TYPICAL) INVERTER PART 10 1 Vcc=300V tc(off) SWITCHING TIME tc(on), tc(off) (μs) Tj=25°C Tj=125°C Inductive Load toff 1 ton 0.1 Vcc=300V VD=15V Tj=25°C Tj=125°C Inductive Load 0.01 1 10 100 1 10 100 COLLECTOR CURRENT IC (A) COLLECTOR CURRENT IC (A) SWITCHING ENERGY CHARACTERISTICS (TYPICAL) INVERTER PART FREE WHEELING DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) INVERTER PART 1.6 0.20 80 Vcc=300V Vcc=300V 1.4 VD=15V Tj=25°C 1.2 REVERSE RECOVERY TIME trr (μs) SWITCHING ENERGY Eon, Eoff (mJ/pulse) tc(on) 0.1 Eoff Tj=125°C Inductive Load 1.0 0.8 0.6 0.4 Eon 0.2 0.0 VD=15V 0.18 70 Tj=25°C Irr Tj=125°C 0.16 60 Inductive Load 0.14 50 0.12 40 0.10 30 trr 0.08 20 0.06 0 20 40 60 80 10 0 COLLECTOR CURRENT IC (A) 20 40 60 REVERSE RECOVERY CURRENT Irr (A) SWITCHING TIME ton, toff (μs) VD=15V 80 EMITTER CURRENT IE (A) 8 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE ID VS. fc CHARACTERISTICS (TYPICAL) 30 1.4 Vcc=300V 1.2 VD=15V VD=15V 25 1.0 Tj=125°C Tj=125°C 20 Inductive Load N side 0.8 0.6 15 10 0.4 P side 0.2 5 0.0 0 20 40 60 0 80 0 5 10 15 20 25 EMITTER CURRENT IE (A) fc (kHz) UV TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) SC TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) INVERTER PART 20 2.0 UVt 18 1.8 VD=15V UVr SC (SC of Tj=25°C is normalized 1) 16 14 UVt / UVr (V) Tj=25°C Tj=25°C ID (mA) REVESE RECOVERY ENERGY Err (mJ/pulse) FREE WHEELING DIODE REVERSE RECOVERY ENERGY CHARACTERISTICS (TYPICAL) INVERTER PART 12 10 8 6 4 2 0 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -50 0 50 100 150 -50 Tj (°C) 0 50 100 150 Tj (°C) 9 Jan. 2011 MITSUBISHI <INTELLIGENT POWER MODULES> PM75B4L1C060 FLAT-BASE TYPE INSULATED PACKAGE TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS INVERTER PART NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j-c) 1 0.1 0.01 Single Pulse IGBT Part; Per unit base: Rth(j-c)Q=0.62 K/W FWDi Part; Per unit base: Rth(j-c)D=1.06K/W 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 TIME t (sec) 10 Jan. 2011