MICROCHIP 24LC21-I/SN

Not recommended for new designs –
Please use 24LCS21A.
24LC21
1K 2.5V Dual Mode I2C™ Serial EEPROM
Features:
PDIP
1
8
VCC
NC
2
7
VCLK
NC
3
6
SCL
VSS
4
5
SDA
NC
1
8
VCC
NC
2
7
VCLK
NC
3
5
SCL
VSS
4
5
SDA
SOIC
24LC21
Description:
The Microchip Technology Inc. 24LC21 is a 128 x 8 bit
Electrically Erasable PROM. This device is designed
for use in applications requiring storage and serial
transmission of configuration and control information.
Two modes of operation have been implemented:
Transmit-only mode and Bidirectional mode. Upon
power-up, the device will be in the Transmit-only mode,
sending a serial bit stream of the entire memory array
contents, clocked by the VCLK pin. A valid high-to-low
transition on the SCL pin will cause the device to enter
the Bidirectional mode, with byte selectable read/write
capability of the memory array. The 24LC21 is available
in a standard 8-pin PDIP and SOIC package, in both
commercial and industrial temperature ranges.
NC
24LC21
• Single supply with operation down to 2.5V
• Completely implements DDC1™/DDC2™ interface
for monitor identification
• Low-power CMOS technology:
- 1 mA active current typical
- 10 µA standby current typical at 5.5V
• 2-wire serial interface bus, I2C™ compatible
• Self-timed write cycle (including auto-erase)
• Page-write buffer for up to 8 bytes
• 100 kHz (2.5V) and 400 kHz (5V) compatibility
• Factory programming (QTP) available
• 1,000,000 erase/write cycles ensured
• Data retention > 200 years
• 8-pin PDIP and SOIC package
• Available for extended temperature ranges
Commercial (C):
0°C to +70°C
Industrial (I):
-40°C to +85°C
Package Types
Block Diagram
VCLK
HV Generator
I/O
Control
Logic
Memory
Control
Logic
XDEC
EEPROM
Array
Page Latches
SDA SCL
YDEC
VCC
VSS
Sense Amp
R/W Control
I2C is a trademark of Philips Corporation.
DDC is a trademark of the Video Electronics Standards Association.
 2004 Microchip Technology Inc.
DS21095J-page 1
24LC21
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings(†)
VCC .............................................................................................................................................................................7.0V
All inputs and outputs w.r.t. VSS ........................................................................................................ -0.6V to VCC + 1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied ................................................................................................-40°C to +125°C
Soldering temperature of leads (10 seconds) .......................................................................................................+300°C
ESD protection on all pins ......................................................................................................................................................≥ 4 kV
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any other conditions above those
indicated in the operational listings of this specification is not implied. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
TABLE 1-1:
DC CHARACTERISTICS
DC CHARACTERISTICS
Parameter
VCC = +2.5V to 5.5V
Commercial (C): TA = 0°C to +70°C
Industrial
(I): TA = -40°C to +85°C
Symbol
Min
Max
Units
Conditions
VIH
VIL
.7 VCC
—
—
.3 VCC
V
V
—
—
VIH
VIL
2.0
—
.8
.2 VCC
V
V
VCC ≥ 2.7V (Note 1)
VCC < 2.7V (Note 1)
VHYS
VOL1
VOL2
ILI
ILO
CIN, COUT
.05 VCC
—
—
-10
-10
—
—
.4
.6
10
10
10
V
V
V
µA
µA
pF
ICC Write
ICC Read
ICCS
—
—
—
—
3
1
30
100
mA
mA
µA
µA
(Note 1)
IOL = 3 mA, VCC = 2.5V (Note 1)
IOL = 6 mA, VCC = 2.5V
VIN = .1V to VCC
VOUT = .1V to VCC
VCC = 5.0V (Note1),
TA = 25°C, FCLK = 1 MHz
VCC = 5.5V, SCL = 400 kHz
SCL and SDA pins:
High-level input voltage
Low-level input voltage
Input levels on VCLK pin:
High-level input voltage
Low-level input voltage
Hysteresis of Schmitt Trigger inputs
Low-level output voltage
Low-level output voltage
Input leakage current
Output leakage current
Pin capacitance (all inputs/outputs)
Operating current
Standby current
Note 1:
2:
VCC = 3.0V, SDA = SCL = VCC
VCC = 5.5V, SDA = SCL = VCC
(Note 2)
This parameter is periodically sampled and not 100% tested.
VLCK must be grounded.
DS21095J-page 2
 2004 Microchip Technology Inc.
24LC21
TABLE 1-2:
AC CHARACTERISTICS
Standard Mode
Parameter
Symbol
Vcc= 4.5 - 5.5V
Fast Mode
Min
Max
Min
Max
Units
Remarks
Clock frequency
Clock high time
Clock low time
SDA and SCL rise time
SDA and SCL fall time
Start condition hold time
FCLK
THIGH
TLOW
TR
TF
THD:STA
—
4000
4700
—
—
4000
100
—
—
1000
300
—
—
600
1300
—
—
600
400
—
—
300
300
—
kHz
ns
ns
ns
ns
ns
Start condition setup time
TSU:STA
4700
—
600
—
ns
Data input hold time
Data input setup time
Stop condition setup time
Output valid from clock
Bus free time
THD:DAT
TSU:DAT
TSU:STO
TAA
TBUF
0
250
4000
—
4700
—
—
—
3500
—
0
100
600
—
1300
—
—
—
900
—
ns
ns
ns
ns
ns
—
250
250
ns
—
50
20 + .1
CB
—
—
—
—
(Note 1)
(Note 1)
After this period the first clock
pulse is generated
Only relevant for repeated
Start condition
(Note 2)
—
—
(Note 2)
Time the bus must be free
before a new transmission
can start
(Note 1), CB ≤ 100 pF
50
ns
(Note 3)
—
10
—
10
ms
Byte or Page mode
—
4000
4700
—
0
2000
—
—
500
—
—
600
1300
—
0
1000
—
—
500
—
ns
ns
ns
ns
ns
—
—
—
—
—
1M
—
1M
—
cycles
TOF
Output fall time from VIH
min. to VIL max.
Input filter spike suppresTSP
sion (SDA and SCL pins)
Write cycle time
TWR
Transmit-only Mode Parameters
Output valid from VCLK
TVAA
VCLK high time
TVHIGH
VCLK low time
TVLOW
Mode transition time
TVHZ
Transmit-only power-up
TVPU
time
Endurance
—
Note 1:
2:
3:
4:
25°C, VCC = 5.0V, Block
mode (Note 4)
Not 100% tested. CB = total capacitance of one bus line in pF.
As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
The combined TSP and VHYS specifications are due to new Schmitt Trigger inputs which provide improved
noise and spike suppression. This eliminates the need for a TI specification for standard operation.
This parameter is not tested but ensured by characterization. For endurance estimates in a specific
application, please consult the Total Endurance™ Model which can be obtained from Microchip’s web site
at: www.microchip.com
 2004 Microchip Technology Inc.
DS21095J-page 3
24LC21
2.0
FUNCTIONAL DESCRIPTION
The 24LC21 operates in two modes, the Transmit-only
mode and the Bidirectional mode. There is a separate
two wire protocol to support each mode, each having a
separate clock input and sharing a common data line
(SDA). The device enters the Transmit-only mode upon
power-up. In this mode, the device transmits data bits
on the SDA pin in response to a clock signal on the
VCLK pin. The device will remain in this mode until a
valid high-to-low transition is placed on the SCL input.
When a valid transition on SCL is recognized, the
device will switch into the Bidirectional mode. The only
way to switch the device back to the Transmit-only
mode is to remove power from the device.
2.1
Transmit-only Mode
The device will power-up in the Transmit-only mode.
This mode supports a unidirectional two wire protocol
for transmission of the contents of the memory array.
This device requires that it be initialized prior to valid
data being sent in the Transmit-only mode (see Initialization Procedure, below). In this mode, data is trans-
FIGURE 2-1:
mitted on the SDA pin in 8-bit bytes, each followed by
a ninth, null bit (see Figure 2-1). The clock source for
the Transmit-only mode is provided on the VCLK pin,
and a data bit is output on the rising edge on this pin.
The eight bits in each byte are transmitted Most Significant bit first. Each byte within the memory array will be
output in sequence. When the last byte in the memory
array is transmitted, the output will wrap around to the
first location and continue. The Bidirectional mode
Clock (SCL) pin must be held high for the device to
remain in the Transmit-only mode.
2.2
Initialization Procedure
After VCC has stabilized, the device will be in the Transmit-only mode. Nine clock cycles on the VCLK pin must
be given to the device for it to perform internal synchronization. During this period, the SDA pin will be in a
high-impedance state. On the rising edge of the tenth
clock cycle, the device will output the first valid data bit
which will be the Most Significant bit of a byte. The
device will power-up at an indeterminate byte address.
(Figure 2-2).
TRANSMIT-ONLY MODE
SCL
TVAA
TVAA
SDA
Null Bit
Bit 1 (LSB)
Bit 1 (MSB)
Bit 7
VCLK
TVHIGH
FIGURE 2-2:
TVLOW
DEVICE INITIALIZATION
VCC
SCL
SDA
TVAA
High-impedance for 9 clock cycles
TVAA
Bit 8
Bit 7
TVPU
VCLK
DS21095J-page 4
1
2
8
9
10
11
 2004 Microchip Technology Inc.
24LC21
3.0
BIDIRECTIONAL MODE
3.1
The 24LC21 can be switched into the Bidirectional
mode (see Figure 3-1) by applying a valid high-to-low
transition on the Bidirectional mode clock (SCL). When
the device has been switched into the Bidirectional
mode, the VCLK input is disregarded, with the exception
that a logic high level is required to enable write capability. This mode supports a two wire bidirectional data
transmission protocol. In this protocol, a device that
sends data on the bus is defined to be the transmitter,
and a device that receives data from the bus is defined
to be the receiver. The bus must be controlled by a
master device that generates the Bidirectional mode
clock (SCL), controls access to the bus and generates
the Start and Stop conditions, while the 24LC21 acts as
the slave. Both master and slave can operate as
transmitter or receiver, but the master device
determines which mode is activated.
Bidirectional Mode Bus
Characteristics
The following bus protocol has been defined:
• Data transfer may be initiated only when the bus
is not busy.
• During data transfer, the data line must remain
stable whenever the clock line is high. Changes in
the data line while the clock line is high will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (see Figure 3-2).
3.1.1
BUS NOT BUSY (A)
Both data and clock lines remain high.
3.1.2
START DATA TRANSFER (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
3.1.3
STOP DATA TRANSFER (C)
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.
FIGURE 3-1:
MODE TRANSITION
Transmit-only mode
Bidirectional mode
SCL
TVHZ
SDA
VCLK
FIGURE 3-2:
SCL
(A)
DATA TRANSFER SEQUENCE ON THE SERIAL BUS
(B)
(D)
Start
Condition
Address or
Acknowledge
Valid
(D)
(C)
(A)
SDA
 2004 Microchip Technology Inc.
Data
Allowed
to Change
Stop
Condition
DS21095J-page 5
24LC21
3.1.4
DATA VALID (D)
3.1.5
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. The master device must generate an extra clock
pulse which is associated with this Acknowledge bit.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Note:
Each data transfer is initiated with a Start condition and
terminated with a Stop condition. The number of the
data bytes transferred between the Start and Stop
conditions is determined by the master device and is
theoretically unlimited, although only the last eight will
be stored when doing a write operation. When an
overwrite does occur, it will replace data in a first in first
out fashion.
FIGURE 3-3:
ACKNOWLEDGE
The 24LC21 does not generate any
Acknowledge bits if an internal programming cycle is in progress.
The device that acknowledges has to pull down the
SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable low during the high
period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into
account. A master must signal an end of data to the
slave by not generating an Acknowledge bit on the last
byte that has been clocked out of the slave. In this
case, the slave must leave the data line high to enable
the master to generate the Stop condition.
BUS TIMING START/STOP
VHYS
SCL
THD:STA
TSU:STA
TSU:STO
SDA
Start
FIGURE 3-4:
Stop
BUS TIMING DATA
TR
TF
THIGH
TLOW
SCL
TSU:STA
THD:DAT
TSU:DAT
TSU:STO
THD:STA
SDA
IN
TSP
TAA
THD:STA
TAA
TBUF
SDA
OUT
DS21095J-page 6
 2004 Microchip Technology Inc.
24LC21
3.1.6
SLAVE ADDRESS
After generating a Start condition, the bus master transmits the slave address consisting of a 7-bit device code
‘1010’ for the 24LC21, followed by three “don’t care”
bits.
The eighth bit of slave address determines if the master
device wants to read or write to the 24LC21 (Figure 3-5).
The 24LC21 monitors the bus for its corresponding
slave address all the time. It generates an
Acknowledge bit if the slave address was true and it is
not in a programming mode.
Operation
Control Code
Chip Select
R/W
Read
1010
xxx
1
Write
1010
xxx
0
FIGURE 3-5:
CONTROL BYTE
ALLOCATION
Start
Read/Write
SLAVE ADDRESS
R/W
A
4.0
WRITE OPERATION
4.1
Byte Write
Following the Start signal from the master, the slave
address (4 bits), the “don’t care” bits (3 bits) and the
R/W bit which is a logic low, is placed onto the bus by
the master transmitter. This indicates to the
addressed slave receiver that a byte with a word
address will follow after it has generated an Acknowledge bit during the ninth clock cycle. Therefore, the
next byte transmitted by the master is the word
address and will be written into the address pointer of
the 24LC21. After receiving another Acknowledge
signal from the 24LC21 the master device will transmit
the data word to be written into the addressed memory location. The 24LC21 acknowledges again and
the master generates a Stop condition. This initiates
the internal write cycle, and during this time the
24LC21 will not generate Acknowledge signals
(Figure 4-1).
It is required that VCLK be held at a logic high level in
order to program the device. This applies to byte write
and page write operation. Note that VCLK can go low
while the device is in its self-timed program operation
and not affect programming.
4.2
1
0
1
0
x
x
Page Write
x
The write control byte, word address and the first data
byte are transmitted to the 24LC21 in the same way as
in a byte write. But instead of generating a Stop condition the master transmits up to eight data bytes to the
24LC21, which are temporarily stored in the on-chip
page buffer and will be written into the memory after the
master has transmitted a Stop condition. After the
receipt of each word, the three lower order address
pointer bits are internally incremented by one. The
higher order five bits of the word address remains
constant. If the master should transmit more than eight
words prior to generating the Stop condition, the
address counter will roll over and the previously
received data will be overwritten. As with the byte write
operation, once the Stop condition is received an
internal write cycle will begin (Figure 4-3).
 2004 Microchip Technology Inc.
DS21095J-page 7
24LC21
It is required that VCLK be held at a logic high level in
order to program the device. This applies to byte write
and page write operation. Note that VCLK can go low
while the device is in its self-timed program operation
and not affect programming.
Note:
Page write operations are limited to writing
bytes within a single physical page,
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page size’) and end at addresses that are
integer multiples of [page size - 1]. If a
page Write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being written to the next page as might be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
FIGURE 4-1:
BYTE WRITE
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
Control
Byte
Word
Address
S
T
O
P
Data
P
A
C
K
BUS ACTIVITY
A
C
K
A
C
K
VCLK
FIGURE 4-2:
BYTE WRITE
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
BUS ACTIVITY
Control
Byte
Word
Address
S
T
O
P
Data
P
A
C
K
A
C
K
A
C
K
VCLK
DS21095J-page 8
 2004 Microchip Technology Inc.
24LC21
FIGURE 4-3:
PAGE WRITE
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
Control
Byte
BUS ACTIVITY
Word
Address
Data (n + 1)
Data (n)
S
T
O
P
Data (n + 15)
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
VCLK
 2004 Microchip Technology Inc.
DS21095J-page 9
24LC21
5.0
ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a Write
command has been issued from the master, the device
initiates the internally timed write cycle. ACK polling
can be initiated immediately. This involves the master
sending a Start condition followed by the control byte
for a Write command (R/W = 0). If the device is still
busy with the write cycle, then no ACK will be returned.
If the cycle is complete, then the device will return the
ACK and the master can then proceed with the next
Read or Write command. See Figure 5-1 for the flow
diagram.
FIGURE 5-1:
6.0
WRITE PROTECTION
When using the 24LC21 in the Bidirectional mode, the
VCLK pin operates as the write-protect control pin.
Setting VCLK high allows normal write operations, while
setting VCLK low prevents writing to any location in the
array. Connecting the VCLK pin to VSS would allow the
24LC21 to operate as a serial ROM, although this
configuration would prevent using the device in the
Transmit-only mode.
ACKNOWLEDGE
POLLING FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
No
Yes
Next
Operation
DS21095J-page 10
 2004 Microchip Technology Inc.
24LC21
7.0
READ OPERATION
7.3
Sequential Read
Read operations are initiated in the same way as write
operations with the exception that the R/W bit of the
slave address is set to ‘1’. There are three basic types
of read operations: current address read, random read
and sequential read.
Sequential reads are initiated in the same way as a
random read except that after the 24LC21 transmits the
first data byte, the master issues an acknowledge as
opposed to a Stop condition in a random read. This
directs the 24LC21 to transmit the next sequentially
addressed 8-bit word (see Figure 7-3).
7.1
To provide sequential reads the 24LC21 contains an
internal address pointer which is incremented by one at
the completion of each operation. This address pointer
allows the entire memory contents to be serially read
during one operation.
Current Address Read
The 24LC21 contains an address counter that
maintains the address of the last word accessed, internally incremented by one. Therefore, if the previous
access (either a read or write operation) was to
address n, the next current address read operation
would access data from address n + 1. Upon receipt of
the slave address with R/W bit set to ‘1’, the 24LC21
issues an acknowledge and transmits the eight bit data
word. The master will not acknowledge the transfer but
does generate a Stop condition and the 24LC21
discontinues transmission (Figure 7-1).
7.2
Random Read
7.4
Noise Protection
The 24LC21 employs a VCC threshold detector circuit
which disables the internal erase/write logic if the VCC
is below 1.5 volts at nominal conditions.
The SCL and SDA inputs have Schmitt Trigger and
filter circuits which suppress noise spikes to assure
proper device operation even on a noisy bus.
Random read operations allow the master to access
any memory location in a random manner. To perform
this type of read operation, first the word address must
be set. This is done by sending the word address to the
24LC21 as part of a write operation. After the word
address is sent, the master generates a Start condition
following the acknowledge. This terminates the write
operation, but not before the internal address pointer is
set. Then the master issues the control byte again but
with the R/W bit set to a ‘1’. The 24LC21 will then issue
an acknowledge and transmits the eight bit data word.
The master will not acknowledge the transfer but does
generate a Stop condition and the 24LC21
discontinues transmission (Figure 7-2).
FIGURE 7-1:
CURRENT ADDRESS READ
BUS ACTIVITY
MASTER
S
T
A
R
T
SDA LINE
S
BUS ACTIVITY
 2004 Microchip Technology Inc.
Control
Byte
S
T
O
P
Data (n)
P
A
C
K
N
O
A
C
K
DS21095J-page 11
24LC21
FIGURE 7-2:
RANDOM READ
S
T
BUS ACTIVITY A
MASTER
R
T
Control
Byte
S
T
A
R
T
Word
Address
S
SDA LINE
Control
Byte
S
T
O
P
Data (n)
P
S
A
C
K
BUS ACTIVITY
A
C
K
A
C
K
N
O
A
C
K
FIGURE 7-3:
BUS ACTIVITY
MASTER
SEQUENTIAL READ
Control
Byte
Data (n)
Data (n + 1)
Data (n + 2)
S
T
O
P
Data (n + X)
P
SDA LINE
BUS ACTIVITY
A
C
K
A
C
K
A
C
K
A
C
K
N
O
A
C
K
DS21095J-page 12
 2004 Microchip Technology Inc.
24LC21
8.0
PIN DESCRIPTIONS
TABLE 8-1:
Name
Function
VSS
Ground
Serial Address/Data I/O
Serial Clock (Bidirectional mode)
Serial Clock (Transmit-only mode)
+2.5V to 5.5V Power Supply
No Connection
SDA
SCL
VCLK
VCC
NC
8.1
PIN FUNCTION TABLE
SDA
This pin is used to transfer addresses and data into and
out of the device, when the device is in the Bidirectional
mode. In the Transmit-only mode, which only allows
data to be read from the device, data is also transferred
on the SDA pin. This pin is an open drain terminal,
therefore the SDA bus requires a pull-up resistor to
VCC (typical 10KΩ for 100 kHz, 2KΩ for 400 kHz).
8.2
SCL
This pin is the clock input for the Bidirectional mode,
and is used to synchronize data transfer to and from the
device. It is also used as the signaling input to switch
the device from the Transmit-only mode to the
Bidirectional mode. It must remain high for the chip to
continue operation in the Transmit-only mode.
8.3
VCLK
This pin is the clock input for the Transmit-only mode.
In the Transmit-only mode, each bit is clocked out on
the rising edge of this signal. In the Bidirectional mode,
a high logic level is required on this pin to enable write
capability.
For normal data transfer in the Bidirectional mode, SDA
is allowed to change only during SCL low. Changes
during SCL high are reserved for indicating the Start
and Stop conditions.
 2004 Microchip Technology Inc.
DS21095J-page 13
24LC21
9.0
PACKAGING INFORMATION
9.1
Package Marking Information
8-Lead PDIP
XXXXXXXX
XXXXXNNN
YYWW
8-Lead SOIC (.150”)
XXXXXXXX
XXXXYYWW
NNN
DS21095J-page 14
Example
24LC21
017
0410
Example
24LC21
/SN0410
017
 2004 Microchip Technology Inc.
24LC21
8-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)
E1
D
2
n
1
α
E
A2
A
L
c
A1
β
B1
p
eB
B
Units
Dimension Limits
n
p
Number of Pins
Pitch
Top to Seating Plane
Molded Package Thickness
Base to Seating Plane
Shoulder to Shoulder Width
Molded Package Width
Overall Length
Tip to Seating Plane
Lead Thickness
Upper Lead Width
Lower Lead Width
Overall Row Spacing
Mold Draft Angle Top
Mold Draft Angle Bottom
* Controlling Parameter
§ Significant Characteristic
A
A2
A1
E
E1
D
L
c
§
B1
B
eB
α
β
MIN
.140
.115
.015
.300
.240
.360
.125
.008
.045
.014
.310
5
5
INCHES*
NOM
8
.100
.155
.130
.313
.250
.373
.130
.012
.058
.018
.370
10
10
MAX
.170
.145
.325
.260
.385
.135
.015
.070
.022
.430
15
15
MILLIMETERS
NOM
8
2.54
3.56
3.94
2.92
3.30
0.38
7.62
7.94
6.10
6.35
9.14
9.46
3.18
3.30
0.20
0.29
1.14
1.46
0.36
0.46
7.87
9.40
5
10
5
10
MIN
MAX
4.32
3.68
8.26
6.60
9.78
3.43
0.38
1.78
0.56
10.92
15
15
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018
 2004 Microchip Technology Inc.
DS21095J-page 15
24LC21
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil Body (SOIC)
E
E1
p
D
2
B
n
1
α
h
45°
c
A2
A
φ
β
L
Units
Dimension Limits
n
p
Number of Pins
Pitch
Overall Height
Molded Package Thickness
Standoff §
Overall Width
Molded Package Width
Overall Length
Chamfer Distance
Foot Length
Foot Angle
Lead Thickness
Lead Width
Mold Draft Angle Top
Mold Draft Angle Bottom
* Controlling Parameter
§ Significant Characteristic
A
A2
A1
E
E1
D
h
L
φ
c
B
α
β
MIN
.053
.052
.004
.228
.146
.189
.010
.019
0
.008
.013
0
0
A1
INCHES*
NOM
8
.050
.061
.056
.007
.237
.154
.193
.015
.025
4
.009
.017
12
12
MAX
.069
.061
.010
.244
.157
.197
.020
.030
8
.010
.020
15
15
MILLIMETERS
NOM
8
1.27
1.35
1.55
1.32
1.42
0.10
0.18
5.79
6.02
3.71
3.91
4.80
4.90
0.25
0.38
0.48
0.62
0
4
0.20
0.23
0.33
0.42
0
12
0
12
MIN
MAX
1.75
1.55
0.25
6.20
3.99
5.00
0.51
0.76
8
0.25
0.51
15
15
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057
DS21095J-page 16
 2004 Microchip Technology Inc.
24LC21
APPENDIX A:
REVISION HISTORY
Revision J
Added note to page 1 header (Not recommended for
new designs).
Added Section 9.0: Package Marking Information.
Added On-line Support page.
Updated document format.
 2004 Microchip Technology Inc.
DS21095J-page 17
24LC21
NOTES:
DS21095J-page 18
 2004 Microchip Technology Inc.
24LC21
ON-LINE SUPPORT
Microchip provides on-line support on the Microchip
World Wide Web site.
The web site is used by Microchip as a means to make
files and information easily available to customers. To
view the site, the user must have access to the Internet
and a web browser, such as Netscape® or Microsoft®
Internet Explorer. Files are also available for FTP
download from our FTP site.
Connecting to the Microchip Internet
Web Site
SYSTEMS INFORMATION AND
UPGRADE HOT LINE
The Systems Information and Upgrade Line provides
system users a listing of the latest versions of all of
Microchip's development systems software products.
Plus, this line provides information on how customers
can receive the most current upgrade kits. The Hot Line
Numbers are:
1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.
042003
The Microchip web site is available at the following
URL:
www.microchip.com
The file transfer site is available by using an FTP
service to connect to:
ftp://ftp.microchip.com
The web site and file transfer site provide a variety of
services. Users may download files for the latest
Development Tools, Data Sheets, Application Notes,
User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also
available, including listings of Microchip sales offices,
distributors and factory representatives. Other data
available for consideration is:
• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked
Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to
Microchip Products
• Conferences for products, Development Systems,
technical information and more
• Listing of seminars and events
 2004 Microchip Technology Inc.
DS21095J-page 15
24LC21
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To:
Technical Publications Manager
RE:
Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
FAX: (______) _________ - _________
Application (optional):
Would you like a reply?
Device: 24LC21
Y
N
Literature Number: DS21095J
Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS21095J-page 16
 2004 Microchip Technology Inc.
24LC21
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
X
/XX
XXX
Device
Temperature
Range
Package
Pattern
Device
24LC21: Dual Mode I2C™ Serial EEPROM
24LC21T: Dual Mode I2C™ Serial EEPROM (Tape and Reel)
Temperature Range
Blank
I
=
0°C to
= -40°C to
Package
P
SN
=
=
+70°C
+85°C
Plastic DIP (300 mil Body), 8-lead
Plastic SOIC (150 mil Body), 8-lead
Sales and Support
Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1.
2.
3.
Your local Microchip sales office
The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.
New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
 2004 Microchip Technology Inc.
DS21095J-page 17
24LC21
NOTES:
DS21095J-page 18
 2004 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
 2004 Microchip Technology Inc.
DS21095J-page 19
WORLDWIDE SALES AND SERVICE
AMERICAS
China - Beijing
Korea
Corporate Office
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
China - Chengdu
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
Boston
China - Fuzhou
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
Atlanta
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338
San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509
ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Singapore
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
EUROPE
China - Shanghai
Austria
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
China - Shenzhen
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820
05/28/04
DS21095J-page 20
 2004 Microchip Technology Inc.