TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 D D D D D D D D Ultrafast Operation . . . 7.6 ns (Typ) Low Positive Supply Current 10.6 mA (Typ) Operates From a Single 5-V Supply or From a Split ± 5-V Supply Complementary Outputs Low Offset Voltage No Minimum Slew Rate Requirement Output Latch Capability Functional Replacement to the LT1016 D AND PW PACKAGE (TOP VIEW) VCC+ IN + IN – VCC– 8 2 7 3 6 4 5 IN + The TL3016 is an ultrafast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ± 5-V supplies. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of this comparator. The TL3016 only requires 10.6 mA (typical) to achieve a propagation delay of 7.6 ns. AVAILABLE OPTIONS PACKAGED DEVICES SMALL OUTLINE† (D) TSSOP (PW) CHIP FORM‡ (Y) 0°C to 70°C TL3016CD TL3016CPWLE TL3016Y – 40°C to 85°C TL3016ID TL3016IPWLE — † The PW packages are available left-ended taped and reeled only. ‡ Chip forms are tested at TA = 25°C only. Q OUT Q OUT IN – POSITIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE 15 14 I CC – Positive Supply Current – mA The TL3016 is a pin-for-pin functional replacement for the LT1016 comparator, offering higher speed operation but consuming half the power. Q OUT Q OUT GND LATCH ENABLE symbol (each comparator) description TA 1 13 ÎÎÎÎÎ ÎÎÎÎÎ VCC = ± 5 V 12 11 10 9 8 7 6 5 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 Figure 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2000, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 TL3016Y chip information This chip displays characteristics similar to the TL3016C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS VCC+ (1) (5) LATCH ENABLE (1) (1) (8) IN+ (1) IN– (7) (2) + (3) – (8) Q OUT (7) Q OUT (4) (6) VCC – GND (2) 55 (6) CHIP THICKNESS: 10 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM (3) (6) TJ max = 150°C TOLERANCES ARE ± 10%. (5) (4) ALL DIMENSIONS ARE IN MILS. (6) TERMINALS 1 AND 6 CAN BE CONNECTED TO MULTIPLE PADS. 63 COMPONENT COUNT 2 Bipolars 53 MOSFETs 49 Resistors 46 Capacitors 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 7 V to 7 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Input voltage, VI (LATCH ENABLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at IN+ with respect to IN –. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING D 725 mW 5.8 mW/°C 464 mW PW 525 mW 4.2 mW/°C 336 mW DERATING FACTOR ABOVE TA = 25°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TA = 70°C POWER RATING 3 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 electrical characteristics at specified operating free-air temperature, VDD = ±5 V, VLE = 0 (unless otherwise noted) TEST CONDITIONS† PARAMETER TL3016C MIN TYP‡ MAX TA = 25°C TA = full range 0.5 VIO Input offset voltage αVIO Temperature coefficient of input offset voltage IIO Input offset current TA = 25°C TA = full range 0.1 IIB Input bias current TA = 25°C TA = full range 6 VICR Common-mode input voltage range VDD = ± 5 V VDD = 5 V CMRR Common-mode rejection ratio –3.75 ≤ VIC ≤ 3.5 V, kSVR y g rejection j Supply-voltage ratio VOL VOH IDD Low level output voltage Low-level High level output voltage High-level Positive supply current Negative supply current VIL Low-level input voltage (LATCH ENABLE) VIH High-level input voltage (LATCH ENABLE) IIL Low-level input current (LATCH ENABLE) 3 0.5 3.5 0.6 0.1 10 6 10 – 3.75 3.5 – 3.75 3.5 1.25 3.5 1.25 3.5 97 80 97 Positive supply: 4.6 V ≤ +VDD ≤ 5.4 V, TA = 25°C 60 72 60 72 Negative supply: – 7 V ≤ –VDD ≤ – 2 V, TA = 25°C 80 100 80 100 mV µA µA V dB dB I(sink) = 4 mA, TA = 25°C V+ ≤ 4.6 V, I(sink) = 10 mA, TA = 25°C V+ ≤ 4.6 V, V+ ≤ 4.6 V, TA = 25°C IO = 1 mA, 3.6 3.9 3.6 3.9 V+ ≤ 4.6 V, TA = 25°C IO = 10 mA, 3.4 3.7 3.4 3.7 500 600 500 600 mV 750 750 V 10.6 –1.8 12.5 –1.3 10.6 –2.4 2 VLE = 0 0.8 2 0 • DALLAS, TEXAS 75265 12.5 –1.3 0.8 POST OFFICE BOX 655303 0.6 10 80 UNIT µV/°C 1.3 10 TA = full range 3 – 4.5 0.9 TA = 25°C MAX 3.5 – 4.8 VLE = 2 V 24 † Full range for the TL3016C is TA = 0°C to 70°C. Full range for the TL3016I is TA = – 40°C to 85°C. ‡ All typical values are measures with TA = 25°C. 4 TL3016I MIN TYP‡ mA V V 1 0 1 39 24 45 µA TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 switching characteristics, VDD = ±5 V, VLE = 0 (unless otherwise noted) tpd1 d1 tsk(p) Propagation delay dela time‡ Pulse skew (|tpd+ – tpd–|) TL3016C TEST CONDITIONS† PARAMETER MIN TYP TL3016I MAX MIN TYP MAX ∆VI = 100 mV,, VOD = 5 mV TA = 25°C TA = full range 7.8 10 7.8 10 7.8 11.2 7.8 12.2 ∆VI = 100 mV,, VOD = 20 mV TA = 25°C TA = full range 7.6 10 7.6 10 7.6 11.2 7.6 12.2 ∆VI = 100 mV, TA = 25°C VOD = 5 mV, 0.5 0.5 UNIT ns ns tsu Setup time, LATCH ENABLE 2.5 2.5 ns † Full range for the TL3016C is 0°C to 70°C. Full range for the TL3016I is – 40°C to 85°C. ‡ tpd1 cannot be measured in automatic handling equipment with low values of overdrive. The TL3016 is 100% tested with a 1-V step and 500-mV overdrive at TA = 25°C only. Correlation tests have shown that tpd1 limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, VOS is added to the overdrive. TYPICAL CHARACTERISTICS Table of Graphs FIGURE ICC ICC tpd VIC Positive supply current Negative supply current Propagation delay time vs Input voltage 2 vs Frequency 3 vs Free-air temperature 4 vs Free-air temperature 5 vs Overdrive voltage 6 vs Supply voltage 7 vs Input impedance 8 vs Load capacitance 9 vs Free-air temperature 10 Common-mode input voltage vs Free-air temperature 11 Input threshold voltage (LATCH ENABLE) vs Free-air temperature 12 vs Output source current 13 vs Output sink current 14 vs Input voltage 15 VO Output voltage II Input current (LATCH ENABLE) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 TYPICAL CHARACTERISTICS POSITIVE SUPPLY CURRENT vs FREQUENCY POSITIVE SUPPLY CURRENT vs INPUT VOLTAGE ÎÎÎÎ ÎÎÎÎ ÎÎÎÎ 20 16 I CC – Positive Supply Current – mA 18 I CC – Positive Supply Current – mA 22 VCC = ± 5 V TA = 25°C TA = 85°C 14 TA = 25°C 12 10 8 TA = – 40°C 6 4 20 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ VCC = ± 5 V TA = 25°C 18 TA = 85°C 16 TA = 25°C 14 12 TA = – 40°C 10 2 0 8 1 2 3 4 5 6 7 8 101 0 f – Frequency – MHz VI – Input Voltage – V Figure 2 Figure 3 POSITIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE I CC – Positive Supply Current – mA 14 NEGATIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE ÎÎÎÎÎ 0 VCC = ± 5 V ÎÎÎÎÎ ÎÎÎÎÎ VCC = ± 5 V I CC – Negative Supply Current – mA 15 102 13 12 11 10 9 8 7 – 0.5 –1 – 1.5 –2 – 2.5 6 5 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 –3 – 50 75 100 – 25 0 25 50 TA – Free-Air Temperature – °C Figure 4 6 Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 TYPICAL CHARACTERISTICS PROPAGATION DELAY TIME vs OVERDRIVE VOLTAGE PROPAGATION DELAY TIME vs SUPPLY VOLTAGE ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 10 VCC = ± 5 V TA = 25°C t pd – Propagation Delay Time – ns t pd – Propagation Delay Time – ns 9 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 12 VCC = ± 5 V TA = 25°C 8 7 6 5 4 3 2 10 Falling Edge 8 Rising Edge 6 4 2 1 0 0 10 20 40 30 0 4.4 50 4.6 Overdrive Voltage – mV 5.2 4.8 5 VCC – Supply Voltage – V Figure 6 PROPAGATION DELAY TIME vs LOAD CAPACITANCE ÎÎÎÎÎ ÎÎÎÎÎ 20 t pd – Propagation Delay Time – ns t pd – Propagation Delay Time – ns VCC = ± 5 V TA = 25°C 9 16 14 5 mV 10 8 20 mV 6 4 tPDHL 8 tPDLH 7 6 5 4 3 2 1 2 0 ÎÎÎÎÎ ÎÎÎÎÎ 10 VCC = ± 5 V TA = 25°C 12 5.6 Figure 7 PROPAGATION DELAY TIME vs INPUT IMPEDANCE 18 5.4 0 0 50 200 100 150 ZO – Input Impedance – Ω 250 300 0 Figure 8 10 20 30 40 CL – Load Capacitance – pF 50 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 TYPICAL CHARACTERISTICS PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE 25 COMMON-MODE INPUT VOLTAGE vs FREE-AIR TEMPERATURE ÎÎÎÎÎ ÎÎÎÎÎ 6 20 VIC – Common-Mode Input Voltage – V t pd – Propagation Delay Time – ns VCC = ± 5 V 15 Rising Edge 10 Falling Edge 5 0 – 50 – 25 75 100 0 25 50 TA – Free-Air Temperature – °C 4 VCC = 5 V (Upper Limit) VCC = ± 5 V (Upper Limit) 2 ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ 0 VCC = 5 V (Lower Limit) –2 ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ –4 –6 – 50 125 ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ VCC = ± 5 V (Lower Limit) – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 10 Figure 11 OUTPUT VOLTAGE vs OUTPUT SOURCE CURRENT ÎÎÎÎ 1.8 VCC = ± 5 V TA = 25°C 4.8 4.6 1.6 1.4 1.2 1 0.8 0.6 4.4 3.6 3.2 3 150 TA = – 40°C 3.8 0.2 0 25 50 75 100 125 TA – Free-Air Temperature – °C 0 5 10 Figure 13 POST OFFICE BOX 655303 15 IO(source) – Output Source Current – mA Figure 12 8 TA = 25°C 4 3.4 –25 TA = 85°C 4.2 0.4 0 –50 ÎÎÎÎÎ ÎÎÎÎÎ 5 VCC = ± 5 V VO – Output Voltage – V VIT – Input Threshold Voltage (LATCH ENABLE) – V INPUT THRESHOLD VOLTAGE (LATCH ENABLE) vs FREE-AIR TEMPERATURE 2 125 • DALLAS, TEXAS 75265 20 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 TYPICAL CHARACTERISTICS OUTPUT VOLTAGE vs OUTPUT SINK CURRENT 1.8 VO – Output Voltage – V 1.6 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 1.4 1.2 TA = 25°C 1 TA = – 40°C 0.8 0.6 TA = 85°C 0.4 0.2 0 0 15 10 IO(sink) – Output Sink Current – mA 5 ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ 30 VCC = ± 5 V TA = 25°C I I – Input Current (LATCH ENABLE) – µ A 2 INPUT CURRENT (LATCH ENABLE) vs INPUT VOLTAGE 20 25 VCC = ± 5 V TA = 25°C 20 15 10 5 0 –5 – 10 – 15 – 20 – 0.5 Figure 14 0 0.5 1 VI – Input Voltage – V 1.5 2 Figure 15 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / B 03/95 NOTES: A. B. C. D. E. 10 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TL3016, TL3016Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS SLCS130D – MARCH 1997 – REVISED MARCH 2000 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,32 0,19 0,65 14 0,13 M 8 0,15 NOM 4,50 4,30 6,70 6,10 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 1,20 MAX 0,10 0,10 MIN PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / D 10/95 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 2000, Texas Instruments Incorporated