SLAS508 − APRIL 2006 D D D D D D D D D D D D − Active Mode: 350 µA at 1 MHz, 2.2 V − Standby Mode: 1.1 µA − Off Mode (RAM Retention): 0.3 µA Five Power Saving Modes Wake-Up From Standby Mode in less than 6 µs 16-Bit RISC Architecture, Extended Memory, 125-ns Instruction Cycle Time Three Channel Internal DMA 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature Three Configurable Operational Amplifiers Dual 12-Bit D/A Converters With Synchronization 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers On-Chip Comparator Supply Voltage Supervisor/Monitor With Programmable Level Detection Serial Communication Interface (USART1), Select Asynchronous UART or Synchronous SPI by Software D Universal Serial Communication Interface D D D D D D − Enhanced UART supporting auto-baudrate detection − IrDA Encoder and Decoder − Synchronous SPI − I2CTM Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse Brownout Detector Basic Timer with Real Time Clock Feature Integrated LCD Driver up to 160 Segments With Regulated Charge Pump Family Members Include: − MSP430FG4616: 92KB+256B Flash Memory, 4KB RAM − MSP430FG4617: 92KB+256B Flash Memory, 8KB RAM − MSP430FG4618: 116KB+256B Flash Memory, 8KB RAM − MSP430FG4619: 120KB+256B Flash Memory, 4KB RAM For Complete Module Descriptions, Refer to the MSP430x4xx Family User’s Guide description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs. The MSP430FG461x series are microcontroller configurations with two 16-bit timers, a high performance 12-bit A/D converter, dual 12-bit D/A converters, three configurable operational amplifiers, one universal serial communication interface (USCI), one universal synchronous/asynchronous communication interface (USART), DMA, 80 I/O pins, and a liquid crystal display (LCD) driver with regulated charge pump. Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, hand-held meters, etc. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2006, Texas Instruments Incorporated !" ##$% &'(#"% ")$ !"*$ '$%+ &)!%$ '$*$,&$"- )!!#"$%"# '!"! !' ")$ %&$##!"% !$ '$%+ +!,%- $!% %"($"% $%$*$% ")$ +)" " #)!+$ '%#"($ ")$%$ &'(#"% .")(" "#$- POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 PRODUCT PREVIEW D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: SLAS508 − APRIL 2006 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 100-PIN TQFP (PZ) MSP430FG4616IPZ MSP430FG4617IPZ −40°C to 85°C MSP430FG4618IPZ PRODUCT PREVIEW MSP430FG4619IPZ 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.4/UCA0TXD P2.5/UCA0RXD P2.6/CAOUT P2.7/ADC12CLK/DMAE0 P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DVSS2 DVCC2 LCDCAP/R33 P5.7/R23 P5.6/LCDREF/R13 P5.5/R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39 P8.1/S24 P8.0/S25 P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29 P7.3/UCA0CLK/S30 P7.2/UCA0SOMI/S31 P7.1/UCA0SIMO/S32 P7.0/UCA0STE/S33 P4.7/UCA0RXD/S34 P4.6/UCA0TXD/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 P4.3/SIMO1/S38 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 MSP430FG4616IPZ MSP430FG4617IPZ MSP430FG4618IPZ MSP430FG4619IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 PRODUCT PREVIEW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P9.3/S14 P9,2/S15 P9.1/S16 P9.0/S17 P8.7/S18 P8.6/S19 DVCC1 P6.3/A3/OA1O P6.4/A4/OA1I0 P6.5/A5/OA2O P6.6/A6/DAC0/OA2I0 P6.7/A7/DAC1/SVSIN VREF+ XIN XOUT VeREF+/DAC0 VREF−/VeREF− P5.1/S0/A12/DAC1 P5.0/S1/A13/OA1I1 P10.7/S2/A14/OA2I1 P10.6/S3/A15 P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9 P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 82 81 80 79 78 77 76 TDI/TCLK TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P6.2/A2/OA0I1 P6.1/A1/OA0O P6.0/A0/OA0I0 RST/NMI TCK TMS 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 AVCC DV SS1 AVSS pin designation, MSP430FG461xIPZ SLAS508 − APRIL 2006 MSP430FG461x functional block diagram XIN / XT2 IN XOUT / XT2OUT 2 2 Oscillators FLL + DVCC 1/2 ACLK SMCLK Flash RAM 120kB 116 kB 92kB 92kB 4kB 8kB 8kB 4kB PRODUCT PREVIEW AVSS P1. x/P2 .x ADC 12 12−Bit DAC 12 12−Bit 12 Channels 2 Channels Voltage out OA0, OA 1, OA 2 Ports P 1/P 2 Comparator _A 3 Op Amps P 7.x/ P8. x P 9.x/P 10.x 4x8/2 x16 Ports P3 /P4 P5 /P6 Ports P7/ P8 P 9/P 10 4x8 I/O 4x8/2x16 I/O DMA Controller MDB 3 Channels Brownout Protection SVS/ SVM Hardware Multiplier MPY , MPYS, MAC , MACS Watchdog WDT+ Timer_ A3 Timer_B 7 3 CC Registers 7 CC Registers Shadow Reg 15/16−Bit Basic Timer & Real −Time Clock RST/NMI 4 2x8 I/O Interrupt capability P3. x/P4 .x P5. x/P6 .x 4x8 MAB Enhanced Emulation JTAG Interface AVCC 2x8 MCLK 8MHz CPUX incl. 16 Registers DVSS1/2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCD_A 160 Segments 1, 2,3,4 Mux USCI _A 0: UART, IrDA, SPI USCI _B 0: SPI, I2 C USART 1 UART , SPI SLAS508 − APRIL 2006 MSP430FG461x Terminal Functions NAME NO. I/O DESCRIPTION DVCC1 1 P6.3/A3/OA1O 2 I/O Digital supply voltage, positive terminal. General-purpose digital I/O / analog input a3—12-bit ADC / OA1 output P6.4/A4/OA1I0 3 I/O General-purpose digital I/O / analog input a4—12-bit ADC / OA1 input multiplexer on +terminal and −terminal P6.5/A5/OA2O 4 I/O General-purpose digital I/O / analog input a5—12-bit ADC / OA2 output P6.6/A6/DAC0/OA2I0 5 I/O General-purpose digital I/O / analog input a6—12-bit ADC / DAC12.0 output / OA2 input multiplexer on +terminal and −terminal P6.7/A7/DAC1/SVSIN 6 I/O General-purpose digital I/O / analog input a7—12-bit ADC / DAC12.1 output / analog input to brownout, supply voltage supervisor VREF+ XIN 7 O Output of positive terminal of the reference voltage in the ADC 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 VeREF+/DAC0 10 I/O Input for an external reference voltage to the ADC / DAC12.0 output VREF−/VeREF− 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage P5.1/S0/A12/DAC1 (see Note 1) 12 I/O General-purpose digital I/O / LCD segment output 0 / analog input a12 − 12−bit ADC / DAC12.1 output P5.0/S1/A13/OA1I1 (see Note 1) 13 I/O General-purpose digital I/O / LCD segment output 1 / analog input a13 − 12−bit ADC/OA1 input multiplexer on +terminal and −terminal P10.7/S2/A14/OA2I1 (see Note 1) 14 I/O General-purpose digital I/O / LCD segment output 2 / analog input a14 − 12−bit ADC/OA2 input multiplexer on +terminal and −terminal P10.6/S3/A15 (see Note 1) 15 I/O General-purpose digital I/O / LCD segment output 3 / analog input a15 − 12−bit ADC P10.5/S4 16 I/O General-purpose digital I/O / LCD segment output 4 P10.4/S5 17 I/O General-purpose digital I/O / LCD segment output 5 P10.3/S6 18 I/O General-purpose digital I/O / LCD segment output 6 P10.2/S7 19 I/O General-purpose digital I/O / LCD segment output 7 P10.1/S8 20 I/O General-purpose digital I/O / LCD segment output 8 P10.0/S9 21 I/O General-purpose digital I/O / LCD segment output 9 P9.7/S10 22 I/O General-purpose digital I/O / LCD segment output 10 P9.6/S11 23 I/O General-purpose digital I/O / LCD segment output 11 P9.5/S12 24 I/O General-purpose digital I/O / LCD segment output 12 P9.4/S13 25 I/O General-purpose digital I/O / LCD segment output 13 P9.3/S14 26 I/O General-purpose digital I/O / LCD segment output 14 P9.2/S15 27 I/O General-purpose digital I/O / LCD segment output 15 P9.1/S16 28 I/O General-purpose digital I/O / LCD segment output 16 P9.0/S17 29 I/O General-purpose digital I/O / LCD segment output 17 P8.7/S18 30 I/O General-purpose digital I/O / LCD segment output 18 P8.6/S19 31 I/O General-purpose digital I/O / LCD segment output 19 P8.5/S20 32 I/O General-purpose digital I/O / LCD segment output 20 P8.4/S21 33 I/O General-purpose digital I/O / LCD segment output 21 P8.3/S22 34 I/O General-purpose digital I/O / LCD segment output 22 PRODUCT PREVIEW TERMINAL NOTES: 1. Segments S0 through S3 must be disabled and cannot be used when the LCD charge pump feature is enabled. In addition, when using segments S0 through S3 with an external LCD voltage supply, VLCD ≤ AVCC. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLAS508 − APRIL 2006 MSP430FG461x Terminal Functions (Continued) TERMINAL PRODUCT PREVIEW NAME NO. I/O DESCRIPTION P8.2/S23 35 I/O General-purpose digital I/O / LCD segment output 23 P8.1/S24 36 I/O General-purpose digital I/O / LCD segment output 24 P8.0/S25 37 I/O General-purpose digital I/O / LCD segment output 25 P7.7/S26 38 I/O General-purpose digital I/O / LCD segment output 26 P7.6/S27 39 I/O General-purpose digital I/O / LCD segment output 27 P7.5/S28 40 I/O General-purpose digital I/O / LCD segment output 28 P7.4/S29 41 I/O General-purpose digital I/O / LCD segment output 29 P7.3/UCA0CLK/S30 42 I/O General-purpose digital I/O / external clock input—USCI_A0/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 30 P7.2/UCA0SOMI/S31 43 I/O General-purpose digital I/O / slave out/master in of USCI_A0/SPI mode / LCD segment output 31 P7.1/UCA0SIMO/S32 44 I/O General-purpose digital I/O / slave in/master out of USCI_A0/SPI mode / LCD segment output 32 P7.0/UCA0STE/S33 45 I/O General-purpose digital I/O / slave transmit enable—USCI_A0/SPI mode / LCD segment output 33 P4.7/UCA0RXD/S34 46 I/O General-purpose digital I/O / receive data in − USCI_A0/UART or IrDA mode / LCD segment output 34 P4.6/UCA0TXD/S35 47 I/O General-purpose digital I/O / transmit data in − USCI_A0/UART or IrDA mode / LCD segment output 35 P4.5/UCLK1/S36 48 I/O General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36 P4.4/SOMI1/S37 49 I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37 P4.3/SIMO1/S38 50 I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38 P4.2/STE1/S39 51 I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39 COM0 52 O COM0−3 are used for LCD backplanes. P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0−3 are used for LCD backplanes. P5.5/R03 56 I/O General-purpose digital I/O / Input port of lowest analog LCD level (V5) P5.6/LCDREF/R13 57 I/O General-purpose digital I/O / External reference voltage input for regulated LCD voltage / Input port of third most positive analog LCD level (V4 or V3) P5.7/R23 58 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) LCDCAP/R33 59 I DVCC2 60 Digital supply voltage, positive terminal. DVSS2 61 Digital supply voltage, negative terminal. P4.1/URXD1 62 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 I/O General-purpose digital I/O / transmit data out—USART1/UART mode P3.7/TB6 64 I/O General-purpose digital I/O / Timer_B7 CCR6. Capture: CCI6A/CCI6B input, compare: Out6 output P3.6/TB5 65 I/O General-purpose digital I/O / Timer_B7 CCR5. Capture: CCI5A/CCI5B input, compare: Out5 output P3.5/TB4 66 I/O General-purpose digital I/O / Timer_B7 CCR4. Capture: CCI4A/CCI4B input, compare: Out4 output 6 LCD Capacitor connection / Input/output port of most positive analog LCD level (V1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 TERMINAL NAME NO. I/O DESCRIPTION P3.4/TB3 67 I/O General-purpose digital I/O / Timer_B7 CCR3. Capture: CCI3A/CCI3B input, compare: Out3 output P3.3/UCB0CLK 68 I/O General-purpose digital I/O / external clock input—USCI_B0/UART or SPI mode, clock output—USCI_B0/SPI mode P3.2/UCB0SOMI/ UCB0SCL 69 I/O General-purpose digital I/O / slave out/master in of USCI_B0/SPI mode /I2C clock USCI_B0/I2C mode P3.1/UCB0SIMO/ UCB0SDA 70 I/O General-purpose digital I/O / slave in/master out of USCI_B0/SPI mode, I2C data − USCI_B0/I2C mode P3.0/UCB0STE 71 I/O General-purpose digital I/O / slave transmit enable—USCI_B0/SPI mode P2.7/ADC12CLK/ DMAE0 72 I/O General-purpose digital I/O / conversion clock—12-bit ADC / DMA Channel 0 external trigger P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/UCA0RXD 74 I/O General-purpose digital I/O / receive data in—USCI_A0/UART or IrDA mode P2.4/UCA0TXD 75 I/O General-purpose digital I/O / transmit data out—USCI_A0/UART or IrDA mode P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input P1.5/TACLK/ACLK 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output P1.3/TBOUTH/SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A input, compare: Out1 output P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B input / MCLK output. Note: TA0 is only an input on this pin / BSL receive P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output / BSL transmit XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 I/O TDI/TCLK 91 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 I Reset input or nonmaskable interrupt input port P6.0/A0/OA0I0 95 I/O General-purpose digital I/O / analog input a0 − 12-bit ADC / OA0 input multiplexer on +terminal and − terminal P6.1/A1/OA0O 96 I/O General-purpose digital I/O / analog input a1 − 12-bit ADC / OA0 output P6.2/A2/OA0I1 97 I/O General-purpose digital I/O / analog input a2 − 12-bit ADC / OA0 input multiplexer on + terminal and − terminal AVSS 98 Analog supply voltage, negative terminal. Supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1 DVSS1 99 Digital supply voltage, negative terminal. AVCC 100 Analog supply voltage, positive terminal. Supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1; must not power up prior to DVCC1/DVCC2. PRODUCT PREVIEW MSP430FG461x Terminal Functions (Continued) Test data output port. TDO/TDI data output or programming data input terminal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS508 − APRIL 2006 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. PRODUCT PREVIEW Stack Pointer SP/R1 Constant Generator Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The MSP430FG461x device family utilizes the MSP430X CPU and is completely backwards compatible with the MSP430 CPU. For a complete description of the MSP430X CPU, refer to the MSP430x4xx Family User’s Guide. instruction set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. POST OFFICE BOX 655303 PC/R0 Status Register The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. 8 Program Counter • DALLAS, TEXAS 75265 SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 SLAS508 − APRIL 2006 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX EXAMPLE Register F F MOV Rs,Rd MOV R10,R11 OPERATION Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI M(EDE) —> M(TONI) Absolute F F MOV & MEM, & TCDAT M(MEM) —> M(TCDAT) R10 —> R11 M(2+R5)—> M(6+R6) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) —> R11 R10 + 2—> R10 F MOV #X,TONI MOV #45,TONI #45 —> M(TONI) D = destination PRODUCT PREVIEW Immediate NOTE: S = source POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS508 − APRIL 2006 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled FLL+ Loop control remains active D Low-power mode 1 (LPM1); PRODUCT PREVIEW − CPU is disabled FLL+ Loop control is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 2 (LPM2); − CPU is disabled MCLK and FLL+ loop control and DCOCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − 10 CPU is disabled ACLK is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 interrupt vector addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh − 0FFC0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 3. Interrupt Sources, Flags, and Vectors of MSP430FG461x Configurations INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 31, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 30 Timer_B7 TBCCR0 CCIFG0 (see Note 2) Maskable 0FFFAh 29 Timer_B7 TBCCR1 CCIFG1 ... TBCCR6 CCIFG6, TBIFG (see Notes 1 and 2) Maskable 0FFF8h 28 Comparator_A CAIFG Maskable 0FFF6h 27 Watchdog Timer+ WDTIFG Maskable 0FFF4h 26 USCI_A0/USCI_B0 Receive UCA0RXIFG, UCB0RXIFG (see Notes 1) Maskable 0FFF2h 25 USCI_A0/USCI_B0 Transmit UCA0TXIFG, UCB0TXIFG (see Notes 1) Maskable 0FFF0h 24 ADC12 ADC12IFG (see Notes 1 and 2) Maskable 0FFEEh 23 Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0FFECh 22 Timer_A3 TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (see Notes 1 and 2) Maskable 0FFEAh 21 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 20 USART1 receive URXIFG1 Maskable 0FFE6h 19 USART1 transmit UTXIFG1 Maskable 0FFE4h 18 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 17 Basic Timer1/RTC BTIFG Maskable 0FFE0h 16 DMA DMA0IFG, DMA1IFG, DMA2IFG (see Notes 1 and 2) Maskable 0FFDEh 15 DAC12 DAC12.0IFG, DAC12.1IFG (see Notes 1 and 2) Maskable 0FFDCh 14 0FFDAh 13 Reserved Reserved (see Note 4) PRODUCT PREVIEW INTERRUPT SOURCE ... ... 0FFC0h 0, lowest NOTES: 1. 2. 3. . Multiple source flags Interrupt flags are located in the module. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h−01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. 4. The interrupt vectors at addresses 0FFDAh to 0FFC0h are not used in this device and can be used for regular program code if necessary. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS508 − APRIL 2006 special function registers The MSP430 special function registers(SFR) are located in the lowest address space, and are organized as byte mode registers. SFRs should be accessed with byte instructions. interrupt enable 1 and 2 7 Address 6 0h 5 4 ACCVIE NMIIE rw–0 1 OFIE rw–0 rw–0 OFIE Oscillator-fault-interrupt enable NMIIE Nonmaskable-interrupt enable ACCVIE Flash access violation interrupt enable 7 BTIE rw–0 6 5 4 3 2 1 UTXIE1 URXIE1 UCB0TXIE UCB0RXIE UCA0TXIE rw–0 rw–0 rw–0 UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable URXIE1 USART1 UART and SPI receive-interrupt enable UTXIE1 USART1 UART and SPI transmit-interrupt enable BTIE Basic timer interrupt enable POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 rw–0 rw–0 0 WDTIE rw–0 Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a general-purpose timer. 01h 12 2 WDTIE Address PRODUCT PREVIEW 3 0 UCA0RXIE rw–0 SLAS508 − APRIL 2006 interrupt flag register 1 and 2 6 5 02h 4 3 2 NMIIFG 1 0 OFIFG rw–0 rw–1 WDTIFG rw–(0) WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin 7 Address 03h 6 BTIFG 5 4 UTXIFG1 URXIFG1 rw–1 rw–0 3 2 1 UCB0TXIFG UCB0RXIFG UCA0TXIFG rw–0 rw–0 rw–0 UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag URXIFG0: USART1: UART and SPI receive flag UTXIFG0: USART1: UART and SPI transmit flag BTIFG: Basic timer flag rw–0 0 UCA0RXIFG rw–0 PRODUCT PREVIEW 7 Address module enable registers 1 and 2 Address 7 6 5 4 3 2 1 0 7 6 5 UTXE1 4 URXE1 USPIE1 3 2 1 0 04h Address 05h rw–0 rw–0 URXE1: USART1: UART mode receive enable UTXE1: USART1: UART mode transmit enable USPIE1: USART1: SPI mode transmit and receive enable Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS508 − APRIL 2006 memory organization MSP430FG4616 MSP430FG4617 MSP430FG4618 MSP430FG4619 Size Flash Flash 92KB 0FFFFh − 0FFC0h 018FFFh − 002100h 92KB 0FFFFh − 0FFC0h 019FFFh − 003100h 116KB 0FFFFh − 0FFC0h 01FFFFh − 003100h 120KB 0FFFFh − 0FFC0h 01FFFFh − 002100h Size 4KB 020FFh − 01100h 8KB 030FFh − 01100h 8KB 030FFh − 01100h 4KB 020FFh − 01100h Extended Size 2KB 020FFh − 01900h 6KB 030FFh − 01900h 6KB 030FFh − 01900h 2KB 020FFh − 01900h Mirrored Size 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h 2KB 018FFh − 01100h Information memory Size Flash 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size ROM 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h Memory Main: interrupt vector Main: code memory RAM (Total) PRODUCT PREVIEW RAM (mirrored at 018FFh − 01100h) Peripherals 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. A bootstrap loader security key is provided at address 0FFBEh to disable the BSL completely or to disable the erasure of the flash if an invalid password is supplied. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSLKEY Description 00000h Erasure of flash disabled if an invalid password is supplied 0AA55h BSL disabled any other value BSL enabled BSL Function PZ Package Pins Data Transmit 87 − P1.0 Data Receive 86 − P1.1 The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0−n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 PRODUCT PREVIEW flash memory SLAS508 − APRIL 2006 peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x4xx Family User’s Guide. DMA controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. PRODUCT PREVIEW oscillator and system clock The clock system in the MSP430FG461x family of devices is supported by the FLL+ module that includes support for a 32768 Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low-power consumption. The FLL+ features digital frequency locked loop (FLL) hardware which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768 Hz watch crystal or a high frequency crystal. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8. brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are ten 8-bit I/O ports implemented—ports P1 through P10: D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Ports P7/P8 and P9/P10 can be accessed word−wise as ports PA and PB respectively. Basic Timer1 and Real−Time Clock The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated Real−Time Clock (RTC). An internal calendar compensates for months with less than 31 days and includes leap year correction. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 LCD_A drive with regulated charge pump The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and thus contrast by software. WDT+ watchdog timer The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. The universal serial communication interface (USCI) modules are used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection, and IrDA. The USCI_A0 module provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. The USCI_B0 module provides support for SPI (3 or 4 pin) and I2C. USART1 The hardware universal synchronous/asynchronous receive transmit (USART) peripheral module is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 PRODUCT PREVIEW USCI SLAS508 − APRIL 2006 timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number PZ Device Input Signal Module Input Name 82- P1.5 TACLK TACLK ACLK ACLK SMCLK SMCLK 82 - P1.5 TACLK INCLK 87 - P1.0 TA0 CCI0A TA0 CCI0B DVSS DVCC GND PRODUCT PREVIEW 86 - P1.1 85 - P1.2 79 - P2.0 18 Module Block Module Output Signal Timer NA Output Pin Number PZ 87 - P1.0 CCR0 TA0 TA1 VCC CCI1A 85 - P1.2 CAOUT (internal) CCI1B ADC12 (internal) DVSS DVCC GND TA2 VCC CCI2A ACLK (internal) CCI2B DVSS DVCC GND CCR1 79 - P2.0 CCR2 VCC POST OFFICE BOX 655303 TA1 • DALLAS, TEXAS 75265 TA2 SLAS508 − APRIL 2006 timer_B7 Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B7 Signal Connections PZ Device Input Signal Module Input Name 83 - P1.4 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 83 - P1.4 TBCLK INCLK 78 - P2.1 TB0 CCI0A TB0 CCI0B DVSS DVCC GND 78 - P2.1 77 - P2.2 TB1 VCC CCI1A 77 - P2.2 TB1 CCI1B DVSS DVCC GND 76 - P2.3 TB2 VCC CCI2A 76 - P2.3 TB2 CCI2B DVSS DVCC GND 67 - P3.4 TB3 VCC CCI3A 67 - P3.4 TB3 CCI3B DVSS DVCC GND 66 - P3.5 TB4 VCC CCI4A 66 - P3.5 TB4 CCI4B DVSS DVCC GND 65 - P3.6 65 - P3.6 64 - P3.7 TB5 VCC CCI5A TB5 CCI5B DVSS DVCC GND TB6 VCC CCI6A ACLK (internal) CCI6B DVSS DVCC GND Module Block Module Output Signal Timer NA Output Pin Number PZ 78 - P2.1 ADC12 (internal) CCR0 CCR1 TB0 77 - P2.2 ADC12 (internal) PRODUCT PREVIEW Input Pin Number TB1 76 - P2.3 CCR2 TB2 67 - P3.4 CCR3 TB3 66 - P3.5 CCR4 TB4 65 - P3.6 CCR5 TB5 64 - P3.7 CCR6 TB6 VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLAS508 − APRIL 2006 comparator_A The primary function of the comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. DAC12 The DAC12 module is a 12-bit, R-ladder, voltage output DAC. The DAC12 may be used in 8- or 12-bit mode, and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. OA PRODUCT PREVIEW The MSP430FG461x has three configurable low-current general-purpose operational amplifiers. Each OA input and output terminal is software-selectable and offer a flexible choice of connections for various applications. The OA op amps primarily support front-end analog signal conditioning prior to analog-to-digital conversion. OA Signal Connections Input Pin Number PZ 95 - P6.0 97 - P6.2 3 - P6.4 13 - P5.0 20 Device Output Signal Output Pin Number OA0I0 OA0O 96 - P6.1 OA0O ADC12 (internal) Device Input Signal Module Input Name OA0I0 Module Block Module Output Signal PZ OA0I1 OA0I1 DAC12_0OUT (internal) DAC12_0OUT DAC12_1OUT (internal) DAC12_1OUT OA1I0 OA1I0 OA1O 2 - P6.3 OA1O 13- P5.0 OA1O ADC12 (internal) OA0 OA0OUT OA1I1 OA1I1 DAC12_0OUT (internal) DAC12_0OUT DAC12_1OUT (internal) DAC12_1OUT 5 - P6.6 OA2I0 OA2I0 OA2O 4 - P6.5 14- P10.7 OA2I1 OA2I1 OA2O 14- P10.7 DAC12_0OUT (internal) DAC12_0OUT OA2O ADC12 (internal) DAC12_1OUT (internal) DAC12_1OUT POST OFFICE BOX 655303 OA1 OA2 OA1OUT OA2OUT • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 peripheral file map Watchdog+ Watchdog timer control WDTCTL 0120h Timer_B7 Capture/compare register 6 TBCCR6 019Eh Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h Timer_A3 Hardware Multiplier Flash POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PRODUCT PREVIEW PERIPHERALS WITH WORD ACCESS 21 SLAS508 − APRIL 2006 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) DMA DMA Channel 0 DMA Channel 1 PRODUCT PREVIEW DMA Channel 2 22 DMA module control 0 DMACTL0 0122h DMA module control 1 DMACTL1 0124h DMA interrupt vector DMAIV 0126h DMA channel 0 control DMA0CTL 01D0h DMA channel 0 source address DMA0SA 01D2h DMA channel 0 destination address DMA0DA 01D6h DMA channel 0 transfer size DMA0SZ 01DAh DMA channel 1 control DMA1CTL 01DCh DMA channel 1 source address DMA1SA 01DEh DMA channel 1 destination address DMA1DA 01E2h DMA channel 1 transfer size DMA1SZ 01E6h DMA channel 2 control DMA2CTL 01E8h DMA channel 2 source address DMA2SA 01EAh DMA channel 2 destination address DMA2DA 01EEh DMA channel 2 transfer size DMA2SZ 01F2h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 peripheral file map (continued) ADC12 Conversion memory 15 ADC12MEM15 015Eh See also Peripherals with Byte Access Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h DAC12_1 data DAC12_1DAT 01CAh DAC12_1 control DAC12_1CTL 01C2h DAC12_0 data DAC12_0DAT 01C8h DAC12_0 control DAC12_0CTL 01C0h Port PA selection PASEL 03Eh Port PA direction PADIR 03Ch Port PA output PAOUT 03Ah Port PA input PAIN 038h Port PB selection PBSEL 00Eh Port PB direction PBDIR 00Ch Port PB output PBOUT 00Ah Port PB input PBIN 008h DAC12 Port PA Port PB POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PRODUCT PREVIEW PERIPHERALS WITH WORD ACCESS (CONTINUED) 23 SLAS508 − APRIL 2006 peripheral file map (continued) PRODUCT PREVIEW PERIPHERALS WITH BYTE ACCESS OA2 Operational Amplifier 2 control register 1 Operational Amplifier 2 control register 0 OA2CTL1 OA2CTL0 0C5h 0C4h OA1 Operational Amplifier 1 control register 1 Operational Amplifier 1 control register 0 OA1CTL1 OA1CTL0 0C3h 0C2h OA0 Operational Amplifier 0 control register 1 Operational Amplifier 0 control register 0 OA0CTL1 OA0CTL0 0C1h 0C0h LCD_A LCD Voltage Control 1 LCD Voltage Control 0 LCD Voltage Port Control 1 LCD Voltage Port Control 0 LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 LCDAPCTL0 LCDM20 : LCDM16 LCDM15 : LCDM1 LCDCTL 0AFh 0AEh 0ADh 0ACh 0A4h : 0A0h 09Fh : 091h 090h ADC12 ADC memory-control register 15 (Memory control ADC memory-control register 14 registers require byte ADC memory-control register 13 access) ADC memory-control register 12 ADC12MCTL15 08Fh ADC12MCTL14 08Eh ADC12MCTL13 08Dh ADC12MCTL12 08Ch ADC memory-control register 11 ADC12MCTL11 08Bh ADC memory-control register 10 ADC12MCTL10 08Ah ADC memory-control register 9 ADC12MCTL9 089h ADC memory-control register 8 ADC12MCTL8 088h ADC memory-control register 7 ADC12MCTL7 087h ADC memory-control register 6 ADC12MCTL6 086h ADC memory-control register 5 ADC12MCTL5 085h ADC memory-control register 4 ADC12MCTL4 084h ADC memory-control register 3 ADC12MCTL3 083h ADC memory-control register 2 ADC12MCTL2 082h ADC memory-control register 1 ADC12MCTL1 081h ADC memory-control register 0 ADC12MCTL0 080h Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h USART1 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 peripheral file map (continued) USCI I2C Slave Address UCBSA 011Ah USCI I2C Own Address UCBOA 0118h USCI Synchronous Transmit Buffer UCBTXBUF 06Fh USCI Synchronous Receive Buffer UCBRXBUF 06Eh USCI Synchronous Status UCBSTAT 06Dh USCI Synchronous Bit Rate 1 UCBBR1 06Bh USCI Synchronous Bit Rate 0 UCBBR0 06Ah USCI Synchronous Control 1 UCBCTL1 069h USCI Synchronous Control 0 UCBCTL0 068h USCI Transmit Buffer UCATXBUF 067h USCI Receive Buffer UCARXBUF 066h USCI Status UCASTAT 065h USCI Modulation Control UCAMCTL 064h USCI Baud Rate 1 UCABR1 063h USCI Baud Rate 0 UCABR0 062h USCI Control 1 UCACTL1 061h USCI Control 0 UCACTL0 060h USCI IrDA Receive Control UCAIRRCTL 05Fh USCI IrDA Transmit Control UCAIRTCTL 05Eh USCI LIN Control UCAABCTL 05Dh Comparator_A port disable CAPD 05Bh Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+Clock FLL+ Control 1 FLL_CTL1 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Real Time Clock Year High Byte RTCYEARH 04Fh Real Time Clock Year Low Byte RTCYEARL 04Eh Real Time Clock Month RTCMON 04Dh Real Time Clock Day of Month RTCDAY 04Ch Basic Timer1 Counter 2 BTCNT2 047h Basic Timer1 Counter 1 BTCNT1 046h Real Time Counter 4 (Real Time Clock Day of Week) RTCNT4 (RTCDOW) 045h Real Time Counter 3 (Real Time Clock Hour) RTCNT3 (RTCHOUR) 044h Real Time Counter 2 (Real Time Clock Minute) RTCNT2 (RTCMIN) 043h Real Time Counter 1 (Real Time Clock Second) RTCNT1 (RTCSEC) 042h Real Time Clock Control RTCCTL 041h Basic Timer1 Control BTCTL 040h Comparator_A RTC (Basic Timer 1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PRODUCT PREVIEW PERIPHERALS WITH BYTE ACCESS (CONTINUED) USCI 25 SLAS508 − APRIL 2006 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P10 Port P9 Port P8 PRODUCT PREVIEW Port P7 Port P6 Port P5 Port P4 Port P3 Port P2 Port P1 26 Port P10 selection P10SEL 00Fh Port P10 direction P10DIR 00Dh Port P10 output P10OUT 00Bh Port P10 input P10IN 009h Port P9 selection P9SEL 00Eh Port P9 direction P9DIR 00Ch Port P9 output P9OUT 00Ah Port P9 input P9IN 008h Port P8 selection P8SEL 03Fh Port P8 direction P8DIR 03Dh Port P8 output P8OUT 03Bh Port P8 input P8IN 039h Port P7 selection P7SEL 03Eh Port P7 direction P7DIR 03Ch Port P7 output P7OUT 03Ah Port P7 input P7IN 038h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h PRODUCT PREVIEW Special functions POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS508 − APRIL 2006 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg: (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. recommended operating conditions PRODUCT PREVIEW MIN NOM MAX UNITS Supply voltage during program execution, VCC (AVCC = DVCC1/2 = VCC) 1.8 3.6 V Supply voltage during flash memory programming, VCC (AVCC = DVCC1/2 = VCC) 2.7 3.6 V 2 3.6 V Supply voltage during program execution, SVS enabled and PORON = 1 (see Note 1), VCC (AVCC = DVCC1/2 = VCC) Supply voltage, VSS (AVSS = DVSS1/2 = VSS) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 2) LF selected, XTS_FLL=0 Watch crystal XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal Ceramic resonator XT2 crystal frequency, f(XT2) Crystal Processor frequency (signal MCLK), f(System) VCC = 1.8 V VCC = 2.0 V 0 0 V −40 85 °C 32.768 kHz 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 DC 3.0 DC 4.6 kHz MHz VCC = 3.6 V DC 8.0 MHz NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry. 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. fSystem (MHz) 8.0 MHz ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ ÇÇÇÇÇ Supply voltage range, MSP430FG461x, during program execution 4.6 MHz 3.0 MHz 1.8 2.0 2.7 3 Supply Voltage − V Supply voltage range, MSP430FG461x, during flash memory programming 3.6 Figure 1. Frequency vs Supply Voltage, typical characteristic 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current TEST CONDITIONS TA = −40°C to 85°C I(LPM0) Low-power mode, (LPM0) (see Note 1 and Note 4) TA = −40°C to 85°C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2 and Note 4) TA = −40°C to 85°C I(AM) I(LPM3) Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled, ACLK selected LCD_A enabled, LCDCPEN = 0; (static mode; fLCD = f(ACLK) /32) (see Note 2 and Note 3 and Note 4) TA = −40°C TA = 25°C TA = 60°C TA = 85°C TA = −40°C TA = 25°C TA = 60°C TA = 85°C I(LPM3) Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 Basic Timer1 enabled, ACLK selected LCD_A enabled, LCDCPEN = 0; (4−mux mode; fLCD = f(ACLK) /32) (see Note 2 and Note 3 and Note 4) TA = −40°C TA = 25°C TA = 60°C TA = 85°C TA = −40°C TA = 25°C TA = 60°C TA = 85°C TA = −40°C TA = 25°C I(LPM4) Low-power mode, (LPM4) f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 (see Note 2 and Note 4) TA = 60°C TA = 85°C TA = −40°C TA = 25°C TA = 60°C TA = 85°C NOTES: 1. 2. 3. 4. MIN NOM MAX VCC = 2.2 V 350 450 VCC = 3 V 550 700 UNIT A µA VCC = 2.2 V VCC = 3 V 55 70 85 110 VCC = 2.2 V 13 22 VCC = 3 V 18 30 1.0 2.0 1.1 2.0 2.0 5.0 7.0 15.0 1.8 2.8 1.6 2.7 2.5 7.0 8.5 21.0 2.5 3.5 2.5 3.5 3.0 6.0 8.0 16.0 2.9 4.0 2.9 4.0 4.0 8.0 10.0 22.0 0.1 0.5 0.3 0.7 1.7 5.0 7.0 15.0 0.1 0.8 0.4 0.9 2.0 7.0 8.0 21.0 µA A A µA VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC = 3 V µA A PRODUCT PREVIEW PARAMETER Active mode, (see Note 1 and Note 4) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) A µA µA A µA A µA A µA A Timer_B is clocked by f(DCOCLK) = f(DCO) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The LPM3 currents are characterized with a Micro Crystal CC4V−T1A (9 pF) crystal and OSCCAPx = 1h. Current for brownout included. Current consumption of active mode versus system frequency, F-version: I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage, F-version: I(AM) = I(AM) [3 V] + 200 µA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SCHMITT-trigger inputs − Ports P1 to P10; RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT− Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.55 1.5 1.98 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.9 1.3 0.3 1.1 VCC = 3 V 0.5 1 UNIT V V V inputs Px.x, TAx, TBx PRODUCT PREVIEW PARAMETER TEST CONDITIONS t(int) External interrupt timing t(cap) Timer_A, Timer_B capture timing f(TAext) f(TBext) f(TAint) Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1) TA0, TA1, TA2 TB0, TB1, TB2, TB3, TB4, TB5, TB6 Timer_A, Timer_B clock frequency externally applied to pin TACLK, TBCLK, INCLK: t(H) = t(L) Timer_A, Timer_B clock frequency SMCLK or ACLK signal selected VCC 2.2 V MIN TYP MAX UNIT 62 3V 50 2.2 V 62 3V 50 ns ns 2.2 V 8 3V 10 2.2 V 8 MHz MHz f(TBint) 3V 10 NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int). leakage current − Ports P1 to P10 (see Note 1) PARAMETER Ilkg(Px.y) Leakage current TEST CONDITIONS Port Px V(Px.y) (see Note 2) (1 ≤ x ≤ 10, 0 ≤ y ≤ 7) MIN TYP VCC = 2.2 V/3 V NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input. 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT ±50 nA SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1 to P10 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS MIN IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = −1.5 mA, IOH(max) = −6 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 TYP MAX VCC−0.25 VCC−0.6 VCC VCC VCC−0.25 VCC−0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 See Note 2 See Note 2 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. PARAMETER f(Px.y) (1 ≤ x ≤ 10, 0 ≤ y ≤ 7) f(MCLK) f(SMCLK) P1.1/TA0/MCLK, f(ACLK) P1.5/TACLK/ACLK P1.4/TBCLK/SMCLK, TEST CONDITIONS MIN MAX UNIT VCC = 2.2 V VCC = 3 V DC 10 MHz DC 12 MHz 10 MHz DC 12 MHz 40% 60% CL = 20 pF, IL = ±1.5 mA CL = 20 pF P1.5/TACLK/ACLK, CL = 20 pF VCC = 2.2 V / 3 V t(Xdc) Duty cycle of output frequency VCC = 2.2 V VCC = 3 V f(ACLK) = f(LFXT1) = f(XT1) f(ACLK) = f(LFXT1) = f(LF) f(ACLK) = f(LFXT1) 30% P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(MCLK) = f(XT1) 40% P1.4/TBCLK/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V f(SMCLK) = f(XT2) POST OFFICE BOX 655303 TYP f(MCLK) = f(DCOCLK) f(SMCLK) = f(DCOCLK) • DALLAS, TEXAS 75265 PRODUCT PREVIEW output frequency 70% 50% 50%− 15 ns 60% 50% 50%+ 15 ns 40% 60% 50%− 15 ns 50% 50%+ 15 ns 31 SLAS508 − APRIL 2006 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics − outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA TA = 25°C VCC = 2.2 V P2.0 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 0.5 1.0 3.0 3.5 0.0 I OH − Typical High-Level Output Current − mA VCC = 2.2 V P2.0 −5.0 −10.0 −15.0 TA = 85°C TA = 25°C 1.0 1.5 2.0 2.5 VCC = 3 V P2.0 −10.0 −20.0 −30.0 −40.0 TA = 85°C −50.0 0.0 VOH − High-Level Output Voltage − V TA = 25°C 0.5 1.0 1.5 Figure 5 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH − High-Level Output Voltage − V Figure 4 32 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 0.5 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −25.0 0.0 1.5 VOL − Low-Level Output Voltage − V Figure 2 −20.0 TA = 25°C 40.0 VOL − Low-Level Output Voltage − V I OH − Typical High-Level Output Current − mA PRODUCT PREVIEW 25.0 • DALLAS, TEXAS 75265 3.5 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP f = 1 MHz td(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz µs 6 RAM PARAMETER VRAMh TEST CONDITIONS CPU halted (see Note 1) MIN 1.6 TYP MAX UNIT V PRODUCT PREVIEW NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) LCD_A PARAMETER Supply Voltage Range (see Note 2) Charge pump enabled (LCDCPEN = 1; VLCDx > 0000) ICC(LCD) Supply Current (see Note 2 ) VLCD(typ)=3V; LCDCPEN = 1; VLCDx= 1000; all segments on. fLCD = fACLK/32 no LCD connected (see Note 4) TA = 25°C CLCD Capacitor on LCDCAP (see Note 1 and Note 3) Charge pump enabled (LCDCPEN = 1; VLCDx > 0000) VCC(LCD) PRODUCT PREVIEW TEST CONDITIONS VCC MIN TYP 2.2 2.2 V MAX 3.6 UNIT V µA 3 µF 4.7 fLCD VLCD LCD frequency 1.1 LCD voltage (see Note 3) VLCDx = 0000 LCD voltage (see Note 3) VLCDx = 0001 VCC 2.60 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 0010 2.66 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 0011 2.72 V LCD voltage (see Note 3) VLCDx = 0100 2.78 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 0101 2.84 V LCD voltage (see Note 3) VLCDx = 0110 2.90 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 0111 2.96 V LCD voltage (see Note 3) VLCDx = 1000 3.02 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 1001 3.08 V LCD voltage (see Note 3) VLCDx = 1010 3.14 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 1011 3.20 V LCD voltage (see Note 3) VLCDx = 1100 3.26 V VLCD VLCD LCD voltage (see Note 3) VLCDx = 1101 3.32 V LCD voltage (see Note 3) VLCDx = 1110 3.38 VLCD LCD voltage (see Note 3) VLCDx = 1111 3.44 RLCD LCD Driver Output Impedance VLCD=3V; CPEN = 1; VLCDx = 1000, ILOAD = 10 µΑ 2.2 V kHz V V 3.60 10 V kΩ NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. 2. Refer to the supply current specifications I(LPM3) for additional current specifications with the LCD_A module active. 3. Segments S0 through S3 must be disabled and cannot be used when the LCD charge pump feature is enabled. In addition, when using segments S0 through S3 with an external LCD voltage supply, VLCD ≤ AVCC. 4. Connecting an actual display will increase the current consumption depending on the size of the LCD. 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) TEST CONDITIONS I(CC) CAON=1, CARSEL=0, CAREF=0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF=1/2/3, No load at P1.6/CA0 and P1.7/CA1 V(Ref025) Voltage @ 0.25 V MAX VCC = 2.2 V VCC = 3 V 25 40 45 60 VCC = 2.2 V 30 50 VCC = 3 V 45 71 UNIT µA A µA A PCA0=1, CARSEL=1, CAREF=1, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2 V / 3 V 0.23 0.24 0.25 node PCA0=1, CARSEL=1, CAREF=2, No load at P1.6/CA0 and P1.7/CA1 VCC = 2.2V / 3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, No load at P1.6/CA0 and P1.7/CA1; TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 Common-mode input voltage range CAON=1 VCC = 2.2 V / 3 V 0 VCC−1 Offset voltage See Note 2 VCC = 2.2 V / 3 V −30 30 mV Input hysteresis CAON = 1 VCC = 2.2 V / 3 V VCC = 2.2 V 0 0.7 1.4 mV 160 210 300 80 150 240 1.4 1.9 3.4 0.9 1.5 2.6 130 210 300 80 150 240 1.4 1.9 3.4 CC V V(Ref050) V CC CC V(RefVT) Vp−VS Vhys TYP node CC Voltage @ 0.5 V VIC MIN TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 t(response LH) TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 TA = 25 25°C C Overdrive 10 mV, without filter: CAF = 0 t(response HL) 25°C, TA = 25 C, Overdrive 10 mV, with filter: CAF = 1 mV VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V V ns µss ns µss VCC = 3 V 0.9 1.5 2.6 NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 PRODUCT PREVIEW PARAMETER SLAS508 − APRIL 2006 typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 PRODUCT PREVIEW VCC = 2.2 V 600 VREF − Reference Voltage − mV VREF − Reference Voltage − mV VCC = 3 V Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 TA − Free-Air Temperature − °C −5 15 35 55 Figure 6. V(RefVT) vs Temperature Figure 7. V(RefVT) vs Temperature 0 V VCC 0 1 CAF CAON Low-Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 36 75 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 95 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS td(BOR) VCC(start) MIN dVCC/dt ≤ 3 V/s (see Figure 10) V(B_IT−) Vhys(B_IT−) MAX UNIT 2000 µs 0.7 × V(B_IT−) dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12) dVCC/dt ≤ 3 V/s (see Figure 10) Brownout (see Note 2) TYP 70 130 V 1.71 V 180 mV Pulse length needed at RST/NMI pin to accepted reset internally, 2 µs VCC = 2.2 V/3 V NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT−) + Vhys(B_IT−) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT−) + Vhys(B_IT−). The default FLL+ settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide for more information on the brownout/SVS circuit. t(reset) typical characteristics PRODUCT PREVIEW VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 SLAS508 − APRIL 2006 typical characteristics VCC 2 VCC(drop) − V 1.5 t pw 3V VCC = 3 V Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal electrical characteristics over recommended operating free-air temperature (unless otherwise noted) PRODUCT PREVIEW SVS (supply voltage supervisor/monitor) (see Note 1) PARAMETER TEST CONDITIONS MIN t(SVSR) dVCC/dt > 30 V/ms (see Figure 13) dVCC/dt ≤ 30 V/ms 5 td(SVSon) tsettle SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V VLD ≠ 0‡ 20 V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) NOM 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) VLD = 2 .. 14 Vhys(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 13) V(SVS_IT−) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VLD = 15 70 120 V(SVS_IT−) x 0.001 MAX UNIT 150 µs 2000 µs 150 µs 12 µs 1.7 V 155 mV V(SVS_IT−) x 0.016 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.23 VLD = 3 2.05 2.2 2.35 VLD = 4 2.14 2.3 2.46 VLD = 5 2.24 2.4 2.58 VLD = 6 2.33 2.5 2.69 VLD = 7 2.46 2.65 2.84 VLD = 8 2.58 2.8 2.97 VLD = 9 2.69 2.9 3.10 VLD = 10 2.83 3.05 3.26 VLD = 11 2.94 3.2 VLD = 12 3.11 3.35 VLD = 13 3.24 VLD = 14 3.43 3.5 3.7† 3.39 3.58† 3.73† VLD = 15 1.1 1.2 mV V 3.96† 1.3 ICC(SVS) VLD ≠ 0, VCC = 2.2 V/3 V 10 15 µA (see Note 1) † The recommended operating voltage range is limited to 3.6 V. ‡ tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 typical characteristics Software Sets VLD>0: SVS is Active VCC V(SVS_IT−) V(SVSstart) Vhys(SVS_IT−) Vhys(B_IT−) V(B_IT−) VCC(start) BrownOut Region Brownout Region Brownout 1 0 td(BOR) t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT−) 0 td(SVSon) Set POR 1 PRODUCT PREVIEW SVSOut 1 td(SVSR) undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(drop) VCC(drop) − V 1.5 Triangular Drop 1 1 ns 1 ns 0.5 VCC t pw 3V 0 1 10 100 1000 tpw − Pulse Width − µs VCC(drop) tf = tr tf tr t − Pulse Width − µs Figure 14. VCC(drop) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER PRODUCT PREVIEW f(DCOCLK) TEST CONDITIONS VCC 2.2 V/3 V MIN TYP 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 2.2 V 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 1 < TAP ≤ 20 1.06 TAP = 27 1.07 2.2 V –0.2 –0.3 –0.4 3V –0.2 –0.3 –0.4 0 5 15 N(DCO)=01E0h, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0 f(DCO2) FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1 f(DCO27) FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1 f(DCO27) FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1, (see Note 1) f(DCO2) FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1 f(DCO27) FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1, (see Note 1) Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 16 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0 DV Drift with VCC variation, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0 MAX 1 UNIT MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz 1.11 1.17 %/_C %/V NOTES: 1. Do not exceed the maximum system frequency. f f f (DCO) f (DCO3V) (DCO) (DCO205C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC − V −40 −20 0 20 40 60 Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA − °C SLAS508 − APRIL 2006 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎ Max 1.11 1.07 1.06 1 20 PRODUCT PREVIEW Min 27 DCO Tap Figure 16. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 17. Five Overlapping DCO Ranges Controlled by FN_x Bits POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER CXIN CXOUT Integrated input capacitance (see Note 4) Integrated output capacitance (see Note 4) TEST CONDITIONS MIN 0 OSCCAPx = 1h, VCC = 2.2 V / 3 V 10 OSCCAPx = 2h, VCC = 2.2 V / 3 V 14 OSCCAPx = 3h, VCC = 2.2 V / 3 V 18 OSCCAPx = 0h, VCC = 2.2 V / 3 V 0 OSCCAPx = 1h, VCC = 2.2 V / 3 V 10 OSCCAPx = 2h, VCC = 2.2 V / 3 V 14 OSCCAPx = 3h, VCC = 2.2 V / 3 V PRODUCT PREVIEW VIL VIH Input levels at XIN TYP OSCCAPx = 0h, VCC = 2.2 V / 3 V VCC = 2.2 V/3 V (see Note 3) MAX UNIT pF pF 18 VSS 0.8×VCC 0.2×VCC VCC V NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (CXIN x CXOUT) / (CXIN + CXOUT). This is independent of XTS_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed. − Keep as short of a trace as possible between the ’FG461x and the crystal. − Design a good ground plane around the oscillator pins. − Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. − Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. − Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. − If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. − Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. 3. Applies only when using an external logic-level clock source. XTS_FLL must be set. Not applicable when using a crystal or resonator. 4. External capacitance is recommended for precision real-time clock applications; OSCCAPx = 0h. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER CXT2IN Integrated input capacitance CXT2OUT Integrated output capacitance VIL VIH Input levels at XT2IN TEST CONDITIONS MIN VCC = 2.2 V/3 V VCC = 2.2 V/3 V NOM MAX 2 pF 2 VCC = 2.2 V/3 V (see Note 2) VSS 0.8 × VCC pF 0.2 × VCC V VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) USCI (UART Mode) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals Baudrate in MBaud) tτ UART receive deglitch time (see Note 1) TEST CONDITIONS VCC MIN Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% TYP MAX UNIT fSYSTEM MHz 1 MHz 2.2 V /3.0 V 2.2 V 50 150 600 ns 3.0 V 50 100 600 ns NOTES: 1. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI tVALID,MO TEST CONDITIONS VCC MIN SMCLK, ACLK Duty Cycle = 50% ± 10% SOMI input data hold time UCLK edge to SIMO valid; CL = 20 pF SIMO output data valid time TYP MAX UNIT fSYSTEM MHz 2.2 V TBD ns 3.0 V TBD ns 2.2 V 0 ns 3.0 V 0 ns 2.2 V 30 TBD ns 3.0 V 30 TBD ns TYP MAX UNIT USCI (SPI Slave Mode, see Figure 20 and Figure 21) PARAMETER TEST CONDITIONS VCC tSTE,LEAD STE lead time STE low to clock 2.2 V/3.0 V tSTE,LAG STE lag time Last clock to STE high 2.2 V/3.0 V tSTE,ACC STE access time STE low to SOMI data out tSTE,DIS STE disable time STE high to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time CL = 20 pF UCLK edge to SOMI valid; CL = 20 pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN 50 ns 10 ns 2.2 V/3.0 V 50 ns 2.2 V/3.0 V 50 ns 2.2 V TBD ns 3.0 V TBD ns 2.2 V 0 ns 3.0 V 0 ns 2.2 V 50 TBD ns 3.0 V 50 TBD ns 43 PRODUCT PREVIEW USCI (SPI Master Mode, see Figure 18 and Figure 19) SLAS508 − APRIL 2006 tSTE ,LEAD tSTE ,LAG STE 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW /HIGH tLOW /HIGH tSU ,MI tHD,MI SOMI tACC tVALID ,MO tDIS PRODUCT PREVIEW SIMO Figure 18. SPI Master Mode, CKPH = 0 tSTE ,LAG tSTE ,LEAD STE 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW /HIGH tLOW /HIGH tSU,MI tHD,MI SOMI tACC tVALID ,MO SIMO Figure 19. SPI Master Mode, CKPH = 1 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tDIS SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) tSTE ,LEAD tSTE ,LAG STE 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW /HIGH tLOW /HIGH tSU ,SI tHD,SI SIMO tVALID ,SO tDIS PRODUCT PREVIEW tACC SOMI Figure 20. SPI Slave Mode, CKPH = 0 tSTE ,LAG tSTE ,LEAD STE 1/f UCxCLK CKPL=0 UCLK CKPL=1 tLOW /HIGH tLOW /HIGH tSU ,SI tHD,SI SIMO tACC tVALID ,SO tDIS SOMI Figure 21. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) USCI (I2C Mode, see Figure 22) PRODUCT PREVIEW PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3.0 V 0 2.2 V/3.0 V 4.0 us 2.2 V/3.0 V 0.6 us 2.2 V/3.0 V 4.7 us 2.2 V/3.0 V 0.6 us tHD,STA Hold time (repeated) START fSCL ≤ 100kHz fSCL > 100kHz tSU,STA Set−up time for a repeated START fSCL ≤ 100kHz fSCL > 100kHz tHD,DAT tSU,DAT Data hold time 2.2 V/3.0 V 0 ns Data set−up time 2.2 V/3.0 V 250 ns tSU,STO Set−up time for STOP 2.2 V/3.0 V 4.0 us Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 ns tSP 3.0 V 50 100 600 ns tHD , STA tSU , STA tHD , STA tBUF SDA t tHIGH LOW tSP SCL tSU ,DAT tSU , STO tHD ,DAT Figure 22. I2C Mode Timing USART1 (see Note 1) PARAMETER t(τ) ( ) USART1: deglitch time TEST CONDITIONS VCC = 2.2 V VCC = 3 V MIN NOM MAX 200 430 800 150 280 500 UNIT ns NOTES: 1. The signal applied to the USART1 receive signal/terminal (URXD1) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD1 line. 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) TEST CONDITIONS MIN AVCC Analog supply voltage AVCC and DVCC are connected together AVSS and DVSS are connected together V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (see Note 2) All external Ax terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1 V(AVSS) ≤ VAx ≤ V(AVCC) IADC12 Operating supply current into AVCC terminal (see Note 3) fADC12CLK = 5.0 MHz ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0 Operating supply current into AVCC terminal (see Note 4) IREF+ CI RI NOTES: 1. 2. 3. 4. Input capacitance NOM MAX UNIT 2.2 3.6 V 0 VAVCC V VCC = 2.2 V 0.65 1.3 VCC = 3 V 0.8 1.6 VCC = 3 V 0.5 0.8 VCC = 2.2 V 0.5 0.8 VCC = 3 V 0.5 0.8 mA fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 0 mA mA Only one terminal can be selected at one time, Ax VCC = 2.2 V 40 pF VCC = 3 V 2000 Ω The leakage current is defined in the leakage current table with Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Input MUX ON resistance 0V ≤ VAx ≤ VAVCC 12-bit ADC, external reference (see Note 1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF−/VeREF− (see Note 2) 1.4 VAVCC V VREF− /VeREF− Negative external reference voltage input VeREF+ > VREF−/VeREF− (see Note 3) 0 1.2 V (VeREF+ − VREF−/VeREF−) Differential external reference voltage input VeREF+ > VREF−/VeREF− (see Note 4) 1.4 VAVCC V IVeREF+ IVREF−/VeREF− Input leakage current 0V ≤VeREF+ ≤ VAVCC ±1 µA Input leakage current 0V ≤ VeREF− ≤ VAVCC ±1 µA VCC = 2.2 V/3 V VCC = 2.2 V/3 V NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 PRODUCT PREVIEW PARAMETER SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, built-in reference PARAMETER Positive built-in reference voltage output VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active IVREF+ Load current out of VREF+ terminal Load-current regulation VREF+ terminal PRODUCT PREVIEW IL(VREF)+ TEST CONDITIONS REF2_5V = 1 for 2.5 V IVREF+max ≤ IVREF+≤ IVREF+min VCC = 3 V REF2_5V = 0 for 1.5 V IVREF+max ≤ IVREF+≤ IVREF+min VCC = 2.2 V/3 V MIN NOM MAX 2.4 2.5 2.6 1.44 1.5 1.56 V REF2_5V = 0, IVREF+max ≤ IVREF+≤ IVREF+min 2.2 REF2_5V = 1, IVREF+min ≥ IVREF+≥ −0.5mA 2.8 REF2_5V = 1, IVREF+min ≥ IVREF+≥ −1mA V 2.9 VCC = 2.2 V VCC = 3 V IVREF+ = 500 µA +/− 100 µA Analog input voltage ~0.75 V; REF2_5V = 0 UNIT 0.01 −0.5 0.01 −1 mA VCC = 2.2 V ±2 VCC = 3 V ±2 IVREF+ = 500 µA ± 100 µA Analog input voltage ~1.25 V; REF2_5V = 1 VCC = 3 V ±2 LSB 20 ns IDL(VREF) + Load current regulation VREF+ terminal IVREF+ =100 µA → 900 µA, CVREF+=5 µF, ax ~0.5 x VREF+ Error of conversion result ≤ 1 LSB VCC = 3 V CVREF+ Capacitance at pin VREF+ (see Note 1) REFON =1, 0 mA ≤ IVREF+ ≤ IVREF+max VCC = 2.2 V/3 V TREF+ Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA VCC = 2.2 V/3 V tREFON Settle time of internal reference voltage (see Figure 23 and Note 2) IVREF+ = 0.5 mA, CVREF+ = 10 µF, VREF+ = 1.5 V, VAVCC = 2.2 V 5 LSB µF 10 ±100 ppm/°C 17 ms NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 µF tantalum and 100 nF ceramic. 2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 µF tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms tREFON Figure 23. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 DVCC1/2 From Power Supply + − 10 µ F DVSS1/2 100 nF AVCC + − 10 µ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 100 nF VREF+ or VeREF+ + − Apply External Reference 10 µ F 100 nF VREF−/VeREF− + − 10 µ F MSP430FG461x AVSS 100 nF From Power Supply DVCC1/2 + − 10 µ F DVSS1/2 100 nF AVCC + − Apply External Reference [VeREF+] or Use Internal Reference [VREF+] PRODUCT PREVIEW Figure 24. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply 10 µ F 100 nF VREF+ or VeREF+ + − 10 µ F MSP430FG461x AVSS 100 nF Reference Is Internally Switched to AVSS VREF−/VeREF− Figure 25. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, timing parameters PARAMETER TEST CONDITIONS fADC12CLK PRODUCT PREVIEW fADC12OSC Internal ADC12 oscillator MIN NOM MAX UNIT For specified performance of ADC12 linearity parameters VCC = 2.2V/3 V 0.45 5 6.3 MHz ADC12DIV=0, fADC12CLK=fADC12OSC VCC = 2.2 V/ 3 V 3.7 5 6.3 MHz CVREF+ ≥ 5 µF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz VCC = 2.2 V/ 3 V 2.06 3.51 µs tCONVERT Conversion time tADC12ON Turn on settling time of the ADC (see Note 1) tSample Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, τ = [RS + RI] x CI (see Note 2) External fADC12CLK from ACLK, MCLK or SMCLK: ADC12SSEL ≠ 0 13×ADC12DIV× 1/fADC12CLK µs 100 VCC = 3 V VCC = 2.2 V ns 1220 ns 1400 NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-bit ADC, linearity parameters PARAMETER EI Integral linearity error ED Differential linearity error EO Offset error EG Gain error ET Total unadjusted error 50 TEST CONDITIONS 1.4 V ≤ (VeREF+ − VREF−/VeREF−) min ≤ 1.6 V 1.6 V < (VeREF+ − VREF−/VeREF−) min ≤ [VAVCC] (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN NOM MAX ±2 UNIT VCC = 2.2 V/3 V ±1.7 LSB VCC = 2.2 V/3 V ±1 LSB VCC = 2.2 V/3 V ±2 ±4 LSB VCC = 2.2 V/3 V ±1.1 ±2 LSB VCC = 2.2 V/3 V ±2 ±5 LSB SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, temperature sensor and built-in VMID TEST CONDITIONS VCC 2.2 V MIN NOM MAX 40 120 60 160 ISENSOR Operating supply current into AVCC terminal (see Note 1) REFON = 0, INCH = 0Ah, ADC12ON=NA, TA = 25_C VSENSOR (see Note 2) ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V/ 3V 986 ADC12ON = 1, INCH = 0Ah 2.2 V/ 3V 3.55±3% TCSENSOR 3V mV/°C Sample time required if channel 10 is selected (see Note 3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (see Note 4) ADC12ON = 1, INCH = 0Bh, 1.1 1.1±0.04 AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V VMID 3V 1.5 1.50±0.04 Sample time required if channel 11 is selected (see Note 5) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 tVMID(sample) 3V 1220 30 3V 30 µA A mV tSENSOR(sample) 2.2 V UNIT µss 2.2 V NA 3V NA µA A V ns NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. 2. The temperature sensor offset can be as much as ±20_C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. 3. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on) 4. No additional current is needed. The VMID is used during sampling. 5. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 12-bit DAC, supply specifications PARAMETER AVCC IDD PSRR Analog supply voltage Supply Current: Single DAC Channel (see Notes 1 and 2) Power supply rejection ratio (see Notes 3 and 4) TEST CONDITIONS VCC AVCC = DVCC, AVSS = DVSS =0 V MIN TYP 2.20 MAX UNIT 3.60 V DAC12AMPx=2, DAC12IR=0, DAC12_xDAT=0800h 2.2V/3V 50 110 DAC12AMPx=2, DAC12IR=1, DAC12_xDAT=0800h , VeREF+=VREF+= AVCC 2.2V/3V 50 110 DAC12AMPx=5, DAC12IR=1, DAC12_xDAT=0800h, VeREF+=VREF+= AVCC 2.2V/3V 200 440 DAC12AMPx=7, DAC12IR=1, DAC12_xDAT=0800h, VeREF+=VREF+= AVCC 2.2V/3V 700 1500 DAC12_xDAT = 800h, VREF = 1.5 V ∆AVCC = 100mV DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V ∆AVCC = 100mV µA A 2.2V 70 dB 3V NOTES: 1. No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. 2. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. 3. PSRR = 20*log{∆AVCC/∆VDAC12_xOUT}. 4. VREF is applied externally. The internal reference is not used. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 PRODUCT PREVIEW PARAMETER SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (see Figure 26) PARAMETER TEST CONDITIONS Resolution Differential nonlinearity (see Note 1) DNL Offset voltage w/o calibration (see Notes 1, 2) PRODUCT PREVIEW EO MIN (12-bit Monotonic) Integral nonlinearity (see Note 1) INL VCC Offset voltage with calibration (see Notes 1, 2) dE(O)/dT Offset error temperature coefficient (see Note 1) EG Gain error (see Note 1) dE(G)/dT Gain temperature coefficient (see Note 1) tOffset_Cal Time for offset calibration (see Note 3) TYP MAX 12 Vref = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2V Vref = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2V Vref = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2V Vref = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V Vref = 1.5 V DAC12AMPx = 7, DAC12IR = 1 2.2V Vref = 2.5 V DAC12AMPx = 7, DAC12IR = 1 3V UNIT bits ±2.0 ±8.0 LSB ±0.4 ±1.0 LSB ±21 mV ±2.5 ±30 2.2V/3V VREF = 1.5 V VREF = 2.5 V 2.2V µV/C ±3.50 3V 2.2V/3V % FSR ppm of FSR/°C 10 DAC12AMPx=2 2.2V/3V 100 DAC12AMPx=3,5 2.2V/3V 32 DAC12AMPx=4,6,7 2.2V/3V 6 ms NOTES: 1. Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first order equation: y = a + b*x. VDAC12_xOUT = EO + (1 + EG) * (VeREF+/4095) * DAC12_xDAT, DAC12IR = 1. 2. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON 3. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx ={0, 1}. It is recommended that the DAC12 module be configured prior to initiating calibration. Port activity during calibration may effect accuracy and is not recommended. DAC V OUT DAC Output VR+ RLoad = Ideal transfer function AV CC 2 CLoad = 100pF Offset Error Positive Negative Gain Error DAC Code Figure 26. Linearity Test Load Conditions and Gain/Offset Definition 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, linearity specifications (continued) TYPICAL INL ERROR vs DIGITAL INPUT DATA VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 3 2 1 0 −1 PRODUCT PREVIEW INL − Integral Nonlinearity Error − LSB 4 −2 −3 −4 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT − Digital Code TYPICAL DNL ERROR vs DIGITAL INPUT DATA DNL − Differential Nonlinearity Error − LSB 2.0 VCC = 2.2 V, VREF = 1.5V DAC12AMPx = 7 DAC12IR = 1 1.5 1.0 0.5 0.0 −0.5 −1.0 −1.5 −2.0 0 512 1024 1536 2048 2560 3072 3584 4095 DAC12_xDAT − Digital Code POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit DAC, output specifications PARAMETER PRODUCT PREVIEW VO TEST CONDITIONS Output voltage range (see Note 1, Figure 29) CL(DAC12) Max DAC12 load capacitance IL(DAC12) Max DAC12 load current RO/P(DAC12) Output Resistance (see Figure 29) VCC MIN TYP MAX No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 2.2V/3V 0 0.005 No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 2.2V/3V AVCC−0.05 AVCC UNIT V RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 2.2V/3V 0 0.1 RLoad= 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 2.2V/3V AVCC−0.13 AVCC 2.2V/3V 100 2.2V −0.5 +0.5 3V −1.0 +1.0 RLoad= 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h 2.2V/3V 150 250 RLoad= 3 kΩ, VO/P(DAC12) > AVCC−0.3 V DAC12_xDAT = 0FFFh 2.2V/3V 150 250 RLoad= 3 kΩ, 0.3V ≤ VO/P(DAC12) ≤ AVCC − 0.3V 2.2V/3V 1 4 pF mA Ω NOTES: 1. Data is valid after the offset calibration of the output amplifier. ILoad RO/P(DAC12_x) Max RLoad AV CC DAC12 2 O/P(DAC12_x) CLoad= 100pF Min 0.3 AV CC−0.3V VOUT AV CC Figure 29. DAC12_x Output Resistance Tests 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 12-bit DAC, reference input specifications PARAMETER TEST CONDITIONS Reference input voltage range VeREF+ Ri(VREF+), Ri(VeREF+) NOTES: 1. 2. 3. 4. 5. Reference input resistance DAC12IR=0, (see Notes 1 and 2) VCC 2.2V/3V DAC12IR=1, (see Notes 3 and 4) 2.2V/3V DAC12_0 IR=DAC12_1 IR =0 2.2V/3V DAC12_0 IR=1, DAC12_1 IR = 0 2.2V/3V DAC12_0 IR=0, DAC12_1 IR = 1 2.2V/3V MIN TYP MAX AVCC/3 AVcc AVCC+0.2 AVcc+0.2 20 UNIT V MΩ 40 48 56 kΩ DAC12_0 IR=DAC12_1 IR =1 DAC12_0 SREFx = DAC12_1 SREFx 2.2V/3V 20 24 28 kΩ (see Note 5) For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / [3*(1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC − VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. PARAMETER tON tS(FS) tS(C-C) SR TEST CONDITIONS TYP MAX 60 120 2.2V/3V 15 30 DAC12AMPx=0 → 7 2.2V/3V 6 12 DAC12AMPx=2 2.2V/3V 100 200 DAC12AMPx=3,5 2.2V/3V 40 80 DAC12AMPx=4,6,7 2.2V/3V 15 30 DAC12_xDAT = 3F8h→ 408h→ 3F8h DAC12AMPx=2 2.2V/3V 5 DAC12AMPx=3,5 2.2V/3V 2 BF8h→ C08h→ BF8h DAC12AMPx=4,6,7 2.2V/3V 1 DAC12_xDAT = 80h→ F7Fh→ 80h (see Note 2) DAC12AMPx=2 2.2V/3V 0.05 0.12 DAC12AMPx=3,5 2.2V/3V 0.35 0.7 DAC12AMPx=4,6,7 2.2V/3V 1.5 2.7 DAC12AMPx=2 2.2V/3V 600 DAC12AMPx=3,5 2.2V/3V 150 DAC12AMPx=4,6,7 2.2V/3V 30 DAC12 ontime DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (see Note 1,Figure 30) Settling time,full-scale DAC12_xDAT = 80h→ F7Fh→ 80h Settling time, code to code Slew Rate Glitch energy: full-scale DAC12_xDAT = 80h→ F7Fh→ 80h DAC12AMPx=0 → {2, 3, 4} VCC 2.2V/3V DAC12AMPx=0 → {5, 6} MIN PRODUCT PREVIEW 12-bit DAC, dynamic specifications; Vref = VCC, DAC12IR = 1 (see Figure 30 and Figure 31) UNIT µs µs µs V/µs nV-s NOTES: 1. RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 30. 2. Slew rate applies to output voltage steps >= 200mV. Conversion 1 VOUT DAC Output ILoad RLoad = 3 kΩ Glitch Energy Conversion 2 Conversion 3 +/− 1/2 LSB AV CC 2 RO/P(DAC12.x) +/− 1/2 LSB CLoad = 100pF tsettleLH tsettleHL Figure 30. Settling Time and Glitch Energy Testing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 31. Slew Rate Testing 12-bit DAC, dynamic specifications continued (TA = 25°C unless otherwise noted) PRODUCT PREVIEW PARAMETER BW−3dB TEST CONDITIONS 3-dB bandwidth, VDC=1.5V, VAC=0.1VPP (see Figure 32) Channel-to-channel crosstalk (see Note 1 and Figure 33) VCC MIN DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2V/3V 40 DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2V/3V 180 DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 2.2V/3V 550 DAC12_0DAT = 800h, No Load, DAC12_1DAT = 80h<−>F7Fh, RLoad = 3kΩ fDAC12_1OUT = 10kHz @ 50/50 duty cycle 2.2V/3V DAC12_0DAT = 80h<−>F7Fh, RLoad = 3kΩ, DAC12_1DAT = 800h, No Load fDAC12_0OUT = 10kHz @ 50/50 duty cycle 2.2V/3V TYP MAX UNIT kHz −80 dB −80 NOTES: 1. RLOAD = 3 kΩ, CLOAD = 100 pF ILoad Ve REF+ RLoad = 3 kΩ AV CC DAC12_x 2 DACx AC CLoad = 100pF DC Figure 32. Test Conditions for 3-dB Bandwidth Specification ILoad RLoad AV CC DAC12_0 DAC12_xDAT 080h 2 DAC0 7F7h 080h V OUT CLoad= 100pF VREF+ ILoad Ve V DAC12_yOUT RLoad AV CC DAC12_1 V DAC12_xOUT 2 DAC1 fToggle CLoad= 100pF Figure 33. Crosstalk Test Conditions 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7F7h 080h SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) operational amplifier OA, supply specifications PARAMETER VCC ICC PSRR TEST CONDITIONS Supply voltage Supply current (see Note 1) Power supply rejection ratio VCC — MIN TYP MAX 2.2 UNIT 3.6 Fast Mode, OARRIP OFF 2.2 V/3 V 180 290 Medium Mode, OARRIP OFF 2.2 V/3 V 110 190 Slow Mode, OARRIP OFF 2.2 V/3 V 50 80 Fast Mode, OARRIP ON 2.2 V/3 V 300 490 Medium Mode, OARRIP ON 2.2 V/3 V 190 350 Slow Mode, OARRIP ON 2.2 V/3 V 90 190 Non-inverting 2.2 V/3 V 70 V µA A dB NOTES: 1. P6SEL.x = 1 for each corresponding pin when used in OA input or OA output mode. operational amplifier OA, input/output specifications VI/P Voltage supply, I/P IIkg Input leakage current, I/P (see Notes 1 and 2) TEST CONDITIONS OARRIP OFF VCC — OARRIP ON — TA = −40 to +55_C TA = +55 to +85_C — −5 — −20 Fast Mode — Medium Mode Vn Voltage noise density, I/P — 50 — 65 0.3V ≤ VIN ≤ VCC−0.3V ∆VCC≤ ± 10%, TA = 25°C 2.2 V/3 V Fast Mode, ISOURCE ≤ −500µA 2.2 V Slow Mode,ISOURCE ≤ −150µA 3V Fast Mode, ISOURCE ≤ +500µA 2.2 V Slow Mode,ISOURCE ≤ +150µA 3V CMRR Output Resistance (see Figure 34 and Note 4) Common-mode rejection ratio NOTES: 1. 2. 3. 4. RLoad= 3 kΩ, CLoad = 50pF, OARRIP ON, VO/P(OAx) > AVCC − 0.2 V RLoad= 3 kΩ, CLoad = 50pF, OARRIP ON, 0.2 V ≤ VO/P(OAx) ≤ AVCC − 0.2 V Non-inverting V nV/√Hz ±10 2.2 V/3 V RLoad= 3 kΩ, CLoad = 50pF, OARRIP ON, VO/P(OAx) < 0.2 V RO/P (OAx) nA 30 Offset voltage drift with supply, I/P V 50 — 2.2 V/3 V Low-level output voltage, O/P 20 Fast Mode see Note 3 VOL nA ±5 80 Offset temperature drift, I/P UNIT ±0.5 140 fV(I/P) = 10 kHz MAX VCC−1.2 VCC+0.1 5 −0.1 — Offset voltage, I/P High-level output voltage, O/P −0.1 — fV(I/P) = 1 kHz Slow Mode VOH TYP Slow Mode Medium Mode VIO MIN ±10 mV µV/°C ±1.5 mV/V VCC−0.2 VCC−0.1 VCC VCC V VSS VSS 0.2 0.1 2.2 V/3 V 150 250 2.2 V/3 V 150 250 2.2 V/3 V 0.1 4 2.2 V/3 V 70 V Ω dB ESD damage can degrade input current leakage. The input bias current is overridden by the input leakage current. Calculated using the box method. Specification valid for voltage-follower OAx configuration. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 PRODUCT PREVIEW PARAMETER SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) RO/P(OAx) Max RLoad ILoad AV CC OAx 2 CLoad O/P(OAx) Min 0.2V AV CC −0.2VAV V CC OUT Figure 34. OAx Output Resistance Tests operational amplifier OA, dynamic specifications PARAMETER TEST CONDITIONS VCC — Fast Mode Slew rate φm GBW TYP MAX UNIT 1.2 Medium Mode — 0.8 Slow Mode — 0.3 — 100 dB Open-loop voltage gain V/µs Phase margin CL = 50 pF — 60 deg Gain margin CL = 50 pF — 20 dB Gain-Bandwidth Product (see Figure 35 and Figure 36) Non−inverting, Fast Mode, RL = 47kΩ, CL = 50pF 2.2 V/3 V 2.2 Non−inverting, Medium Mode, RL =300kΩ, CL = 50pF 2.2 V/3 V 1.4 Non−inverting, Slow Mode, RL =300kΩ, CL = 50pF 2.2 V/3 V 0.5 ton, non-inverting, Gain = 1 2.2 V/3 V 10 ten(on) Enable time on ten(off) Enable time off MHz 2.2 V/3 V 20 µs 1 µs TYPICAL PHASE vs FREQUENCY TYPICAL OPEN-LOOP GAIN vs FREQUENCY 0 140 120 Fast Mode 100 −50 Medium Mode 60 40 20 Slow Mode 0 Phase − degrees 80 Gain − dB PRODUCT PREVIEW SR MIN Fast Mode −100 Medium Mode −150 −20 Slow Mode −40 −200 −60 −80 0.001 0.01 0.1 1 10 100 Input Frequency − kHz 1000 10000 −250 1 100 Figure 36 Figure 35 58 10 Input Frequency − kHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1000 10000 SLAS508 − APRIL 2006 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) Flash Memory VCC(PGM/ ERASE) VCC Program and Erase supply voltage fFTG IPGM Flash Timing Generator frequency IERASE Supply current from DVCC during erase IGMERASE Supply current from DVCC during global mass erase Cumulative program time 257 tWord tBlock, 0 Word or byte program time Block program time for 1st byte or word tBlock, 1-63 Block program time for each additional byte or word UNIT 3.6 V 476 kHz 3 5 mA see Note 3 2.7 V/ 3.6 V 3 7 mA see Note 4 2.7 V/ 3.6 V 6 14 mA see Note 1 2.7 V/ 3.6 V 10 ms 2.7 V/ 3.6 V Program/Erase endurance Data retention duration MAX 2.7 V/ 3.6 V Cumulative mass erase time tRetention TYP 2.7 Supply current from DVCC during program tCPT tCMErase MIN TJ = 25°C 20 104 ms 105 cycles 100 years 30 25 18 see Note 2 tBlock, End tMass Erase Block program end-sequence wait time Mass erase time 10593 tGlobal Mass Erase tSeg Erase Global mass erase time 10593 tFTG 6 Segment erase time 4819 NOTES: 1. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if the block write feature is used. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). 3. Lower 64-KB or upper 64-KB Flash memory erased. 4. All Flash memory erased. JTAG Interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 0 TYP MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 60 90 kΩ MIN TYP MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG Fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) VFB Supply voltage during fuse-blow condition IFB tFB Supply current into TDI/TCLK during fuse blow TA = 25°C Voltage level on TDI/TCLK for fuse-blow: F versions VCC 2.5 6 Time to blow fuse UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 PRODUCT PREVIEW TEST CONDITIONS PARAMETER SLAS508 − APRIL 2006 input/output schematic Port P1, P1.0 to P1.5, input/output with Schmitt-trigger Pad Logic DVSS DVSS DVSS P1DIR.x 0 Direction 0: Input 1: Output 1 0 Module X OUT 1 PRODUCT PREVIEW P1OUT.x Bus Keeper P1SEL.x EN P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Note: x = 0,1,2,3,4,5 Port P1 (P1.0 to P1.5) pin functions PIN NAME (P1.X) P1.0/TA0 P1.1/TA0/MCLK 60 CONTROL BITS / SIGNALS X 0 1 FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0B 0 1 MCLK 1 1 P1.0 (I/O) P1.1 (I/O) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P1 (P1.0 to P1.5) pin functions (continued) P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK CONTROL BITS / SIGNALS X 2 3 4 5 FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 Timer_A3.CCI1A 0 1 Timer_A3.TA1 1 1 I: 0; O: 1 0 Timer_B7.TBOUTH 0 1 SVSOUT 1 1 P1.4 (I/O) I: 0; O: 1 0 Timer_B7.TBCLK 0 1 SMCLK 1 1 I: 0; O: 1 0 Timer_A3.TACLK 0 1 ACLK 1 1 P1.2 (I/O) P1.3 (I/O) P1.5 (I/O) PRODUCT PREVIEW PIN NAME (P1.X) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 SLAS508 − APRIL 2006 input/output schematic (continued) Port P1, P1.6, P1.7, input/output with Schmitt-trigger Pad Logic DVSS DVSS CAPD.x P1DIR.x 0 Direction 0: Input 1: Output 1 0 Module X OUT 1 PRODUCT PREVIEW P1OUT.x P1.6/CA0 P1.7/CA1 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P2CA0 P1IE.x P1IRQ.x EN Comp_A Q P1IFG.x P1SEL.x P1IES.x 0 1 CA0 Set + Interrupt Edge Select − 0 1 CA1 Note: x = 6,7 P2CA1 Port P1 (P1.6 and P1.7) pin functions PIN NAME (P1.X) CONTROL BITS / SIGNALS X P1.6/CA0 6 P1.7/CA1 7 FUNCTION CAPD.x P1DIR.x P1SEL.x P1.6 (I/O) 0 I: 0; O: 1 0 CA0 1 X X P1.6 (I/O) 0 I: 0; O: 1 0 CA0 1 X X NOTES: 1. X: Don’t care. 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 input/output schematic (continued) port P2, P2.0 to P2.3, P2.6 to P2.7, input/output with Schmitt-trigger Pad Logic DVSS DVSS TBOUTH 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 Bus Keeper P2SEL.x EN P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.6/CAOUT P2.7/ADC12CLK/DMAE0 PRODUCT PREVIEW P2DIR.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Note: x = 0,1,2,3,6,7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 SLAS508 − APRIL 2006 Port P2 (P2.0, P2.1, P2.2, P2.3, P2.6 and P2.7) pin functions PIN NAME (P2.X) P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB3 CONTROL BITS / SIGNALS X 0 1 2 3 P2.6/CAOUT 6 P2.7/ADC12CLK/DMAE0 7 FUNCTION P2DIR.x P2SEL.x I: 0; O: 1 0 Timer_A3.CCI2A 0 1 Timer_A3.TA2 1 1 I: 0; O: 1 0 Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI1A and Timer_B7.CCI1B 0 1 Timer_B7.TB1 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI2A and Timer_B7.CCI2B 0 1 Timer_B7.TB3 (see Note 1) 1 1 I: 0; O: 1 0 P2.0 (I/O) P2.1 (I/O) P2.2 (I/O) P2.3 (I/O) P2.6 (I/O) PRODUCT PREVIEW CAOUT 1 1 I: 0; O: 1 0 ADC12CLK 1 1 DMAE0 0 1 P2.7 (I/O) NOTES: 1. Setting TBOUTH causes all Timer_B outputs to be set to high impedance. 64 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 input/output schematic (continued) port P2, P2.4 to P2.5, input/output with Schmitt-trigger Pad Logic DVSS DVSS DVSS Direction control from Module X P2OUT.x Module X OUT 0 Direction 0: Input 1: Output 1 0 1 Bus Keeper P2SEL.x P2.4/UCA0TXD P2.5/UCA0RXD EN P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Note: x = 4,5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 65 PRODUCT PREVIEW P2DIR.x SLAS508 − APRIL 2006 Port P2 (P2.4 and P2.5) pin functions PIN NAME (P2.X) CONTROL BITS / SIGNALS X P2.4/UCA0TXD 4 P2.5/UCA0RXD 5 FUNCTION P2.4 (I/O) USCI_A0.UCA0TXD (see Note 1, 2) P2.5 (I/O) USCI_A0.UCA0RXD (see Note 1, 2) PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. When in USCI mode, P2.4 is set to output, P2.5 is set to input. 66 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2DIR.x P2SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 SLAS508 − APRIL 2006 input/output schematic (continued) port P3, P3.0 to P3.3, input/output with Schmitt-trigger Pad Logic DVSS DVSS DVSS 0 Direction 0: Input 1: Output 1 P3OUT.x 0 Module X OUT 1 Bus Keeper P3SEL.x P3.0/UCB0STE P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK PRODUCT PREVIEW P3DIR.x EN P3IN.x EN Module X IN D Note: x = 0,1,2,3 Port P3 (P3.0 to P3.3) pin functions PIN NAME (P3.X) P3.0/UCB0STE CONTROL BITS / SIGNALS X 0 FUNCTION P3.0 (I/O) UCB0STE (see Notes 1, 2) P3.1/UCB0SIMO/ UCB0SDA 1 P3.2/UCB0SOMI/ UCB0SCL 2 P3.3/UCB0CLK 3 P3.1 (I/O) UCB0SIMO/UCB0SDA (see Notes 1, 2, 3) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Notes 1, 2, 3) P3.3 (I/O) UCB0CLK (see Notes 1, 2) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 67 SLAS508 − APRIL 2006 input/output schematic (continued) port P3, P3.4 to P3.7, input/output with Schmitt-trigger Pad Logic DVSS DVSS TBOUTH P3DIR.x 0 Direction 0: Input 1: Output PRODUCT PREVIEW 1 P3OUT.x 0 Module X OUT 1 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 Bus Keeper P3SEL.x EN P3IN.x EN Module X IN D Note: x = 4,5,6,7 Port P3 (P3.4 to P3.7) pin functions PIN NAME (P3.X) P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 CONTROL BITS / SIGNALS X 4 5 6 7 FUNCTION P3DIR.x P3SEL.x I: 0; O: 1 0 Timer_B7.CCI3A and Timer_B7.CCI3B 0 1 Timer_B7.TB3 (see Note 1) 1 1 I: 0; O: 1 0 Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4 (see Note 1) 1 1 P3.4 (I/O) P3.5 (I/O) P3.6 (I/O) I: 0; O: 1 0 Timer_B7.CCI5A and Timer_B7.CCI5B 0 1 Timer_B7.TB5 (see Note 1) 1 1 P3.7 (I/O) I: 0; O: 1 0 Timer_B7.CCI6A and Timer_B7.CCI6B 0 1 Timer_B7.TB6 (see Note 1) 1 1 NOTES: 1. Setting TBOUTH causes all Timer_B outputs to be set to high impedance. 68 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 input/output schematic (continued) port P4, P4.0 to P4.1, input/output with Schmitt-trigger Pad Logic DVSS DVSS DVSS P4DIR.x 0 Direction control from Module X Direction 0: Input 1: Output 1 0 1 Module X OUT P4.1/URXD1 P4.0/UTXD1 Bus Keeper P4SEL.x PRODUCT PREVIEW P4OUT.x EN P4IN.x EN Module X IN D Note: x = 0,1 Port P4 (P4.0 to P4.1) pin functions PIN NAME (P4.X) P4.0/UTXD1 CONTROL BITS / SIGNALS X 0 FUNCTION P4.0 (I/O) USART1.UTXD1 (see Notes 1, 2) P4.1/URXD1 1 P4.1 (I/O) USART1.URXD1 (see Notes 1, 2) P4DIR.x P4SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care. 2. When in USART1 mode, P4.0 is set to output, P4.1 is set to input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 69 SLAS508 − APRIL 2006 input/output schematic (continued) port P4, P4.2 to P4.7, input/output with Schmitt-trigger Pad Logic LCDS32/36 Segment Sy DVSS P4DIR.x Direction control from Module X P4OUT.x PRODUCT PREVIEW Module X OUT 0 Direction 0: Input 1: Output 1 0 1 P4.7/UCA0RXD/S34 P4.6/UCA0TXD/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 P4.3/SIMO1/S38 P4.2/STE1/S39 Bus Keeper P4SEL.x EN P4IN.x EN Module X IN D Note : x = 2,3,4,5,6,7 y = 34,35,36,37,38,39 Port P4 (P4.2 to P4.5) pin functions PIN NAME (P4.X) P4.2/STE1/S39 CONTROL BITS / SIGNALS X 2 FUNCTION P4.2 (I/O) USART1.STE1 S39 (see Note 1) P4.3/SIMO/S38 P4.4/SOMI/S37 P4.5/SOMI/S36 3 4 5 P4.3 (I/O) P4SEL.x LCDS36 0 0 0 1 0 X X 1 I: 0; O: 1 0 0 USART1.SIMO1 (see Notes 1, 2) 0 1 0 S38 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.4 (I/O) USART1.SOMI1 (see Notes 1, 2) 0 1 0 S37 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.5 (I/O) USART1.UCLK1 (see Notes 1, 2) 0 1 0 S36 (see Note 1) X X 1 NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USART1 module. 70 P4DIR.x I: 0; O: 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P4 (P4.6 to P4.7) pin functions (continued) CONTROL BITS / SIGNALS PIN NAME (P4.X) X P4.6/UCA0TXD/S35 6 P4.7/UCA0RXD/S34 7 FUNCTION P4.6 (I/O) P4DIR.x P4SEL.x LCDS32 I: 0; O: 1 0 0 USCI_A0.UCA0TXD (see Notes 1, 2) X 1 0 S35 (see Note 1) X X 1 I: 0; O: 1 0 0 P4.7 (I/O) USCI_A0.UCA0RXD (see Notes 1, 2) 0 1 0 S34 (see Note 1) X X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. When in USCI mode, P4.6 is set to output, P4.7 is set to input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 71 SLAS508 − APRIL 2006 input/output schematic (continued) port P5, P5.0, input/output with Schmitt-trigger INCH=13# Pad Logic A13# LCDS0 PRODUCT PREVIEW Segment Sy P5DIR.x 0 1 P5OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P5SEL.x EN P5IN.x Note: x = 0 y=1 + OA1 − 72 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.0/S1/A13/OA1I1 SLAS508 − APRIL 2006 Port P5 (P5.0) pin functions CONTROL BITS / SIGNALS PIN NAME (P5.X) X P5.0/S1/A13/OA1I1 0 FUNCTION P5DIR.x P5SEL.x INCHx OANx(OA1) LCDS0 I: 0; O: 1 0 X X 0 OAI11 (see Note 1) X X X 1 0 A13 (see Notes 1, 3) X 1 13 X X S1 enabled (see Note 1) X 0 X X 1 S1 disabled (see Note 1) X 1 X X 1 P5.0 (I/O) (see Note 1) PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. N/A: Not available or not applicable. 3. Setting the P5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 73 SLAS508 − APRIL 2006 input/output schematic (continued) port P5, P5.1, input/output with Schmitt-trigger INCH=12# Pad Logic A12# LCDS0 Segment Sy PRODUCT PREVIEW DAC12.1OPS P5DIR.x 0 1 P5OUT.x DVSS Direction 0: Input 1: Output 0 1 P5.1/S0/A12/DAC1 Bus Keeper P5SEL.x EN P5IN.x Note: x = 1 y= 0 DVSS DAC1 0 1 2 0 if DAC12.1AMPx = 0 and DAC12.1OPS = 1 1 if DAC12.1AMPx = 1 and DAC12.1OPS = 1 2 if DAC12.1AMPx > 1 and DAC12.1OPS = 1 74 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P5 (P5.1) pin functions CONTROL BITS / SIGNALS PIN NAME (P5.X) X P5.0/S0/A12/DAC1 1 FUNCTION P5DIR.x P5SEL.x INCHx DAC12.1OPS P5.0 (I/O) (see Note 1) I: 0; O: 1 0 X 0 DAC12.1AMPx X LCDS0 0 DAC1 high impedance (see Note 1) X X X 1 0 X DVSS (see Note 1) X X X 1 1 X DAC1 output (see Note 1) X X X 1 >1 X A12 (see Notes 1, 2) X 1 12 0 X 0 S0 enabled (see Note 1) X 0 X 0 X 1 S0 disabled (see Note 1) X 1 X 0 X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. Setting theP5SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 SLAS508 − APRIL 2006 input/output schematic (continued) port P5, P5.2 to P5.4, input/output with Schmitt-trigger Pad Logic LCD Signal DVSS P5DIR.x 0 Direction 0: Input 1: Output 1 P5OUT.x PRODUCT PREVIEW DVSS 0 1 P5.2/COM1 P5.3/COM2 P5.4/COM3 Bus Keeper P5SEL.x EN P5IN.x Note: x = 2,3,4 Port P5 (P5.2 to P5.4) pin functions PIN NAME (P5.X) CONTROL BITS / SIGNALS X P5.2/COM1 2 P5.3/COM2 3 P5.4/COM3 4 FUNCTION P5.2 (I/O) COM1 (see Note 1) P5.3 (I/O) COM2 (see Note 1) P5.4 (I/O) COM3 (see Note 1) NOTES: 1. X: Don’t care. 76 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 SLAS508 − APRIL 2006 input/output schematic (continued) port P5, P5.5 to P5.7, input/output with Schmitt-trigger Pad Logic LCD Signal DVSS 0 Direction 0: Input 1: Output 1 P5OUT.x DVSS 0 1 Bus Keeper P5SEL.x P5.5/R03 P5.6/LCDREF/R13 P5.7/R03 PRODUCT PREVIEW P5DIR.x EN P5IN.x Note: x = 5,6,7 Port P5 (P5.5 to P5.7) pin functions PIN NAME (P5.X) CONTROL BITS / SIGNALS X P5.5/R03 5 P5.6/LCDREF/R13 6 P5.7/R03 7 FUNCTION P5.5 (I/O) R03 (see Note 1) P5.6 (I/O) R13 or LCDREF (see Notes 1, 2) P5.7 (I/O) R03 (see Note 1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care. 2. External reference for the LCD_A charge pump is applied when VLCDREFx = 01. Otherwise R13 is selected. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 77 SLAS508 − APRIL 2006 input/output schematic (continued) port P6, P6.0, P6.2, and P6.4, input/output with Schmitt-trigger INCH=0/2/4# Pad Logic Ay# P6DIR.x 0 1 P6OUT.x PRODUCT PREVIEW DVSS Direction 0: Input 1: Output P6.0/A0/OA0I0 P6.2/A2/OA0I1 P6.4/A4/OA1I0 0 1 Bus Keeper P6SEL.x EN P6IN.x Note: x = 0,2,4 y = 0,1 #Signal from or to ADC 12 + OA0/1 − 78 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P6 (P6.0, P6.2, and P6.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) P6.0/A0/OA0I0 X 0 FUNCTION P6.0 (I/O) (see Note 1) OA0I0 (see Note 1) A0 (see Notes 1, 3) P6.2/A2/OA0I1 2 P6.2 (I/O) (see Note 1) OA0I1 (see Note 1) A2 (see Notes 1, 3) P6.4/A4/OA1I0 4 P6SEL.x OAPx (OA0) OANx (OA0) OAPx (OA1) OANx(OA1) INCHx I: 0; O: 1 0 X X X X X 0 X X P6DIR.x X 1 X X 0 I: 0; O: 1 0 X X X X X 1 X X X 1 X X 2 I: 0; O: 1 0 X X X OA1I0 (see Note 1) X X X 0 X A4 (see Notes 1, 3) X 1 X X 4 P6.4 (I/O) (see Note 1) PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. N/A: Not available or not applicable. 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 79 SLAS508 − APRIL 2006 input/output schematic (continued) port P6, P6.1, P6.3, and P6.5 input/output with Schmitt-trigger INCH=1/3/5# Pad Logic Ay# P6DIR.x 0 1 P6OUT.x PRODUCT PREVIEW DVSS Direction 0: Input 1: Output P6.1/A1/OA0O P6.3/A3/OA1O P6.5/A5/OA2O 0 1 Bus Keeper P6SEL.x EN P6IN.x OAPMx> 0 OAADC1 + OAy − Note: x = 1,3,5 y = 0,1,2 #Signal from or to ADC 12 80 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P6 (P6.1, P6.3, and P6.5) pin functions PIN NAME (P6.X) P6.1/A1/OA0O P6.3/A3/OA1O P6.5/A5/OA2O CONTROL BITS / SIGNALS X 1 3 5 FUNCTION P6DIR.x P6SEL.x OAADC1 OAPMx INCHx P6.1 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA0O (see Notes 1, 4) X X 1 >0 X A1 (see Notes 1, 3) X 1 X X 1 P6.3 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA1O (see Notes 1, 4) X X 1 >0 X A3 (see Notes 1, 3) X 1 X X 3 P6.5 (I/O) (see Note 1) I: 0; O: 1 0 X X X OA2O (see Notes 1, 4) X X 1 >0 X A5 (see Notes 1, 3) X 1 X X 5 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. N/A: Not available or not applicable. 3. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 4. Setting the OAADC1 bit or setting OAFCx = 00 will cause the operational amplifier to be present at the pin as well as internally connected to the corresponding ADC12 input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 81 SLAS508 − APRIL 2006 input/output schematic (continued) port P6, P6.6, input/output with Schmitt-trigger INCH=6# Pad Logic A6# P6DIR.x 0 1 P6OUT.x PRODUCT PREVIEW DVSS Direction 0: Input 1: Output P6.6/A6/DAC0/OA2I0 0 1 Bus Keeper P6SEL.x DAC12.0AMP > 0 DAC12.0OPS EN P6IN.x Note: x = 6 #Signal from or to ADC12 + OA2 − DVSS DAC0 0 1 2 0 if DAC12.0AMPx= 0 and DAC12.0OPS = 0 1 if DAC12.0AMPx= 1 and DAC12.0OPS = 0 2 if DAC12.0AMPx> 1 and DAC12.0OPS = 0 82 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P6 (P6.6) pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) X P6.6/A6/DAC0/OA2I0 6 FUNCTION P6DIR.x P6SEL.x INCHx DAC12.0OPS DAC12.0AMPx OAPx (OA2) OANx (OA2) P6.6 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X X DAC0 high impedance (see Note 1) X X X 0 0 X DVSS (see Note 1) X X X 0 1 X DAC0 output (see Note 1) X X X 0 >1 X A6 (see Notes 1, 2) X 1 6 X X X OA2I0 (see Note 1) X X 0 X X 0 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 83 SLAS508 − APRIL 2006 input/output schematic (continued) port P6, P6.7, input/output with Schmitt-trigger To SVS Mux # INCH=7 Pad Logic A7# P6DIR.x 0 PRODUCT PREVIEW 1 P6OUT.x DVSS Direction 0: Input 1: Output 0 1 P6SEL.x Bus Keeper VLD =15 EN P6.7/A7/DAC1/SVSIN DAC12.1AMP > 0 DAC12.1OPS P6IN.x Note: x = 7 #Signal from or to ADC12 DVSS DAC1 0 1 2 0 if DAC12.1AMPx = 0 and DAC12.1OPS = 0 1 if DAC12.1AMPx = 1 and DAC12.1OPS = 0 2 if DAC12.1AMPx > 1 and DAC12.1OPS = 0 84 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P6 (P6.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P6.X) X P6.7/A7/DAC1/SVSIN 7 FUNCTION P6DIR.x P6SEL.x INCHx DAC12.1OPS DAC12.1AMPx P6.7 (I/O) (see Note 1) I: 0; O: 1 0 X 1 X DAC1 high impedance (see Note 1) X X X 0 0 DVSS (see Note 1) X X X 0 1 DAC1 output (see Note 1) X X X 0 >1 A7 (see Notes 1, 2) X 1 7 X X SVSIN (see Notes 1,3) 0 1 0 1 X PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 3. Setting VLDx = 15 will also cause the external SVSIN to be used. In this case, the P6SEL.x bit is a do not care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 SLAS508 − APRIL 2006 input/output schematic (continued) port P7, P7.0 − P7.3, input/output with Schmitt-trigger Pad Logic LCDS28/32 Segment Sy DVSS P7DIR.x Direction control from Module X P7OUT.x PRODUCT PREVIEW Module X OUT 0 Direction 0: Input 1: Output 1 0 1 P7.3/UCA0CLK/S30 P7.2/UCA0SOMI/S31 P7.1/UCA0SIMO/S32 P7.0/UCA0STE/S33 Bus Keeper P7SEL.x EN P7IN.x EN Module X IN D Note: x = 0,1,2,3 y = 30,31,32,33 Port P7 (P7.0 to P7.1) pin functions CONTROL BITS / SIGNALS PIN NAME (P7.X) X P7.0/UCA0STE/S33 0 P7.1/UCA0SIMO/S32 1 FUNCTION P7.0 (I/O) P7SEL.x LCDS32 I: 0; O: 1 0 0 USCI_A0.UCA0STE (see Notes 1, 2) X 1 0 S33 (see Note 1) X X 1 P7.1 (I/O) I: 0; O: 1 0 0 USCI_A0.UCA0SIMO (see Notes 1, 2) X 1 0 S32 (see Note 1) X X 1 NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 86 P7DIR.x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 Port P7 (P7.2 to P7.3) pin functions (continued) CONTROL BITS / SIGNALS PIN NAME (P7.X) X P7.2/UCA0SOMI/S31 2 P7.3/UCA0CLK/S30 3 FUNCTION P7.2 (I/O) P7DIR.x P7SEL.x LCDS28 I: 0; O: 1 0 0 USCI_A0.UCA0SOMI (see Notes 1, 2) X 1 0 S31 (see Note 1) X X 1 I: 0; O: 1 0 0 P7.3 (I/O) USCI_A0.UCA0CLK (see Notes 1, 2) X 1 0 S30 (see Note 1) X X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 87 SLAS508 − APRIL 2006 input/output schematic (continued) port P7, P7.4 − P7.7, input/output with Schmitt-trigger Pad Logic LCDS24/28 Segment Sy DVSS P7DIR.x 0 Direction 0: Input 1: Output 1 P7OUT.x PRODUCT PREVIEW DVSS 0 1 P7.7/S26 P7.6/S27 P7.5/S28 P7.4/S29 Bus Keeper P7SEL.x EN P7IN.x Note: x = 4,5,6,7 y = 26,27,28,29 Port P7 (P7.4 to P7.5) pin functions PIN NAME (P7.X) CONTROL BITS / SIGNALS X P7.4/S29 4 P7.5/S28 5 FUNCTION P7.4 (I/O) S29 (see Note 1) P7.5 (I/O) S28 (see Note 1) NOTES: 1. X: Don’t care. 88 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P7DIR.x P7SEL.x LCDS28 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 SLAS508 − APRIL 2006 Port P7 (P7.6 to P7.7) pin functions (continued) PIN NAME (P7.X) CONTROL BITS / SIGNALS X P7.6/S27 6 P7.7/S26 7 FUNCTION P7.6 (I/O) S27 (see Note 1) P7.7 (I/O) S26 (see Note 1) P7DIR.x P7SEL.x LCDS24 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 89 SLAS508 − APRIL 2006 input/output schematic (continued) port P8, P8.0 − P8.7, input/output with Schmitt-trigger Pad Logic LCDS16/20/24 Segment Sy DVSS P8DIR.x 0 Direction 0: Input 1: Output 1 0 P8OUT.x PRODUCT PREVIEW DVSS 1 P8.7/S18 P8.6/S19 P8.5/S20 P8.4/S21 P8.3/S22 P8.2/S23 P8.1/S24 P8.0/S25 Bus Keeper P8SEL.x EN P8IN.x Note: x = 0,1,2,3,4,5,6,7 y = 25,24,23,22,21,20,19,18 Port P8 (P8.0 to P8.1) pin functions PIN NAME (P8.X) P8.0/S18 CONTROL BITS / SIGNALS X 0 FUNCTION P8.0 (I/O) S18 (see Note 1) P8.1/S19 0 P8.0 (I/O) S19 (see Note 1) NOTES: 1. X: Don’t care. 90 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P8DIR.x P8SEL.x LCDS16 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 SLAS508 − APRIL 2006 Port P8 (P8.2 to P8.5) pin functions (continued) PIN NAME (P8.X) CONTROL BITS / SIGNALS X P8.2/S20 2 P8.3/S21 3 FUNCTION P8.2 (I/O) S20 (see Note 1) P8.3 (I/O) S21 (see Note 1) P8.4/S22 4 P8.4 (I/O) S22 (see Note 1) P8.5/S23 5 P8.5 (I/O) S23 (see Note 1) P8DIR.x P8SEL.x LCDS20 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 NOTES: 1. X: Don’t care. Port P8 (P8.6 to P8.7) pin functions CONTROL BITS / SIGNALS X P8.6/S24 6 P8.7/S25 7 FUNCTION P8.6 (I/O) S24 (see Note 1) P8.7 (I/O) S25 (see Note 1) P8DIR.x P8SEL.x LCDS24 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 PRODUCT PREVIEW PIN NAME (P8.X) NOTES: 1. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 91 SLAS508 − APRIL 2006 input/output schematic (continued) port P9, P9.0 − P9.7, input/output with Schmitt-trigger Pad Logic LCDS8/12/16 Segment Sy DVSS P9DIR.x 0 Direction 0: Input 1: Output 1 P9OUT.x PRODUCT PREVIEW DVSS 0 1 P9.7/S10 P9.6/S11 P9.5/S12 P9.4/S13 P9.3/S14 P9.2/S15 P9.1/S16 P9.0/S17 Bus Keeper P9SEL.x EN P9IN.x Note: x = 0,1,2,3,4,5,6,7 y = 17,16,15,14,13,12,11,10 Port P9 (P9.0 to P9.1) pin functions PIN NAME (P9.X) CONTROL BITS / SIGNALS X P9.0/S17 0 P9.1/S16 1 FUNCTION P9.0 (I/O) S17 (see Note 1) P9.1 (I/O) S16 (see Note 1) NOTES: 1. X: Don’t care. 92 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P9DIR.x P9SEL.x LCDS16 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 SLAS508 − APRIL 2006 Port P9 (P9.2 to P9.5) pin functions (continued) PIN NAME (P9.X) CONTROL BITS / SIGNALS X P9.2/S20 2 P9.3/S21 3 FUNCTION P9.2 (I/O) S15 (see Note 1) P9.3 (I/O) S14 (see Note 1) P9.4/S22 4 P9.4 (I/O) S13 (see Note 1) P9.5/S23 5 P9.5 (I/O) S12 (see Note 1) P9DIR.x P9SEL.x LCDS12 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 NOTES: 1. X: Don’t care. Port P9 (P9.6 to P9.7) pin functions (continued) CONTROL BITS / SIGNALS X P9.6/S24 6 P9.7/S25 7 FUNCTION P9.6 (I/O) S11 (see Note 1) P9.7 (I/O) S10 (see Note 1) P9DIR.x P9SEL.x LCDS8 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 PRODUCT PREVIEW PIN NAME (P9.X) NOTES: 1. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 93 SLAS508 − APRIL 2006 input/output schematic (continued) port P10, P10.0 − P10.5, input/output with Schmitt-trigger Pad Logic LCDS4/8 Segment Sy DVSS P10DIR.x 0 Direction 0: Input 1: Output 1 P10OUT.x PRODUCT PREVIEW DVSS 0 1 P10.5/S4 P10.4/S5 P10.3/S6 P10.2/S7 P10.1/S8 P10.0/S9 Bus Keeper P10SEL.x EN P10IN.x Note: x = 0,1,2,3,4,5 y = 9,8,7,6,5,4 Port P10 (P10.0 to P10.1) pin functions PIN NAME (P10.X) CONTROL BITS / SIGNALS X P10.0/S8 0 P10.1/S7 1 FUNCTION P10.0 (I/O) S8 (see Note 1) P10.1 (I/O) S7 (see Note 1) NOTES: 1. X: Don’t care. 94 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P10DIR.x P10SEL.x LCDS8 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 SLAS508 − APRIL 2006 Port P10 (P10.2 to P10.5) pin functions (continued) PIN NAME (P10.X) CONTROL BITS / SIGNALS X P10.2/S7 2 P10.3/S6 3 FUNCTION P10.2 (I/O) S7 (see Note 1) P10.3 (I/O) S6 (see Note 1) P10.4/S5 4 P10.4 (I/O) S5 (see Note 1) P10.5/S4 5 P10.5 (I/O) S4 (see Note 1) P10DIR.x P10SEL.x LCDS4 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 95 SLAS508 − APRIL 2006 input/output schematic (continued) port P10, P10.6, input/output with Schmitt-trigger INCH=15# Pad Logic A15# LCDS0 PRODUCT PREVIEW Segment Sy P10DIR.x 0 Direction 0: Input 1: Output 1 P10OUT.x DVSS 0 1 P10.6/S3/A15 Bus Keeper P10SEL.x EN P10IN.x Note: x = 6 y =3 Port P10 (P10.6) pin functions PIN NAME (P10.X) P10.6/S3/A15 CONTROL BITS / SIGNALS X 6 FUNCTION P10DIR.x P10SEL.x INCHx LCDS0 I: 0; O: 1 0 X 0 A15 (see Notes 1, 3) X 1 15 0 S3 enabled (see Note 1) X 0 X 1 S3 disabled (see Note 1) X 1 X 1 P5.0 (I/O) (see Note 1) NOTES: 1. X: Don’t care. 2. N/A: Not available or not applicable. 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 96 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 input/output schematic (continued) port P10, P10.7, input/output with Schmitt-trigger INCH=14# Pad Logic A14# LCDS0 P10DIR.x 0 1 P10OUT.x DVSS Direction 0: Input 1: Output 0 1 Bus Keeper P10SEL.x P10.7/S2/A14/OA2I1 EN P10IN.x Note: x = 7 y= 2 + OA2 − POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 97 PRODUCT PREVIEW Segment Sy SLAS508 − APRIL 2006 Port P10 (P10.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P10.X) X FUNCTION P10.7/S2/A14/OA2I1 7 P10.7 (I/O) (see Note 1) P10DIR.x P10SEL.x INCHx OAPx (OA1) OANx (OA1) LCDS0 I: 0; O: 1 0 X X 0 A14 (see Notes 1, 3) X 1 14 X 0 OA2I1 (see Notes 1, 3) X X X 1 0 S2 enabled (see Note 1) X 0 X X 1 S2 disabled (see Note 1) X 1 X X 1 PRODUCT PREVIEW NOTES: 1. X: Don’t care. 2. N/A: Not available or not applicable. 3. Setting the P10SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. 98 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS508 − APRIL 2006 input/output schematic (continued) VeREF+/DAC0 DAC12.0OPS 0 DAC0_2_OA P6.6/A6/DAC0/OA2I0 1 Reference Voltage to DAC1 Reference Voltage to ADC12 Reference Voltage to DAC0 # Ve REF+ /DAC0 ’0’, if DAC12CALON = 0 DAC12AMPx>1 AND DAC12OPS=1 − 1 0 PRODUCT PREVIEW + ’1’, if DAC12AMPx>1 ’1’, if DAC12AMPx=1 DAC12OPS # If the reference of DAC0 is taken from pin VeREF+ /DAC0, unpredictable voltage levels will be on pin. In this situation, the DAC0 output is fed back to its own reference input. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 99 SLAS508 − APRIL 2006 input/output schematic (continued) JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI PRODUCT PREVIEW Burn and Test Fuse TDI/TCLK Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 100 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S SLAS508 − APRIL 2006 JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF) ) of 1 mA at 3 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 37). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS PRODUCT PREVIEW I(TF) ITDI/TCLK Figure 37. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 101 SLAS508 − APRIL 2006 Data Sheet Revision History Literature Number SLAS508 Summary Preliminary PRODUCT PREVIEW datasheet release. PRODUCT PREVIEW NOTE: The referring page and figure numbers are referred to the respective document revision. 102 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 24-Apr-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty Lead/Ball Finish MSL Peak Temp (3) MSP430FG4616IPZ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI MSP430FG4616IPZR PREVIEW LQFP PZ 100 1000 TBD Call TI Call TI MSP430FG4617IPZ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI MSP430FG4617IPZR PREVIEW LQFP PZ 100 1000 TBD Call TI Call TI MSP430FG4618IPZ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI MSP430FG4618IPZR PREVIEW LQFP PZ 100 1000 TBD Call TI Call TI MSP430FG4619IPZ PREVIEW LQFP PZ 100 90 TBD Call TI Call TI MSP430FG4619IPZR PREVIEW LQFP PZ 100 1000 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Mailing Address: Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2006, Texas Instruments Incorporated