TI TLE2227CDW

TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
D
D
D
D
P PACKAGE
(TOP VIEW)
Outstanding Combination of DC Precision
and AC Performance:
Unity-Gain Bandwidth . . . 15 MHz Typ
Vn . . . 3.3 nV/√Hz at f = 10 Hz Typ,
2.5 nV/√Hz at f = 1 kHz Typ
VIO . . . 100 µV Typ
AVD . . . 45 V/µV Typ With RL = 2 kΩ
38 V/µV Typ With RL = 1 kΩ
Available in 16-Pin Small-Outline
Wide-Body Package
Macromodels and Statistical Information
Included
Output Features Saturation Recovery
Circuitry
1OUT
1IN –
1IN +
VCC –
1
8
2
7
3
6
4
5
VCC +
2OUT
2IN –
2IN +
DW PACKAGE
(TOP VIEW)
NC
NC
1OUT
1IN –
1IN +
VCC –
NC
NC
description
The TLE22x7C combines innovative circuit
design expertise and high-quality process control
techniques to produce a level of ac performance
and dc precision previously unavailable in dual
operational amplifiers. This device allows
upgrades to systems that use lower-precision
devices and is manufactured using Texas
Instruments state-of-the-art Excalibur process.
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
NC
NC
VCC +
2OUT
2IN –
2IN +
NC
NC
NC – No internal connection
In the area of dc precision, the TLE22x7C offers a typical offset voltage of 100 µV, a common-mode rejection
ratio of 115 dB (typ), a supply voltage rejection ratio of 120 dB (typ), and a dc gain of 45 V/µV (typ).
The ac performance is highlighted by a typical unity-gain bandwidth specification of 15 MHz, 55° of phase
margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies of 10 Hz and 1 kHz,
respectively.
The TLE22x7C is available in a wide variety of packages, including the industry standard 16-pin small-outline
wide-body version for high-density system applications. This device is characterized for operation from 0°C to
70°C.
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
VIOtyp
AT 25°C
SMALL OUTLINE†
(DW)
PLASTIC DIP
(P)
100 µV
TLE2227CDW
TLE2227CP
100 µV
TLE2237CDW
TLE2237CP
CHIP FORM‡
(Y)
TLE2227Y
TLE2237Y
† The DW package is available taped and reeled. Add R suffix to device type (e.g., TLE2227CDWR).
‡ Chip forms are tested at 25°C only.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
symbol (each amplifier)
IN +
+
IN –
–
OUT
TLE2227Y chip information
This chip, properly assembled, displays characteristics similar to the TLE2227C. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips my be mounted with conductive
epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
(5)
(8)
1IN +
(3)
(2)
1IN –
116
(4)
2OUT
(7)
VCC+
(8)
+
(1)
1OUT
–
+
–
(5)
(6)
(4)
VCC–
CHIP THICKNESS: 15 TYPICAL
BONDING PADS: 4 × 4 MINIMUM
TJmax = 150°C
(1)
(2)
(3)
TOLERANCES ARE ± 10%.
ALL DIMENSIONS ARE IN MILS.
104
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2IN +
2IN –
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TLE2237Y chip information
ThIs chip, when properly assembled, displays characteristics similar to TLE2237. Thermal compression or
ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(7)
(6)
VCC +
(8)
(5)
(8)
1IN +
(3)
(2)
1IN –
2OUT
(7)
+
(1)
1OUT
–
+
–
(4)
116
(5)
(6)
2IN +
2IN –
(4)
VCC –
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(1)
(2)
(3)
ALL DIMENSIONS ARE IN MILS.
104
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
Q2
Q10
R1
R4
R2
R5
Q42
Q1
Q59
Q32
Q17
Q39
R17
Q25 Q28
Q8
Q57
OUT
Q37
C3
Q7
IN –
Q44 R22
Q43
R13
C2
Q56
Q38
R16
R11
Q19
Q12
Q55
R21
Q14
R8
Q4
Q52
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Q48
Q47
C4
Q50
Q62
Q18
Q23
Q53
Q34
Q24
Q41
Q20
Q33
Q54
Q21
Q15
Q51
Q26
Q29
Q22
R6
Q45
R7
R10
R12
R24
R14
R19
R18
VCC –
ACTUAL DEVICE COMPONENT COUNT
COMPONENT
Q60
R23
Q40
Q35
Q31
Q16
R3
Q61
Q30
Q6
IN +
Q58
Q46
Q36
Q13
Q11
R25
Q49
Q27
C1
Q9
Q3
R20
R15
TLE2227
TLE2237
Transistors
62
62
Resistors
24
24
Diodes
0
0
Capacitors
4
4
R26
Template Release Date: 7–11–94
R9
Q5
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
VCC +
SLOS184 – FEBRUARY 1997
4
equivalent schematic (each amplifier)
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Supply voltage, VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 19 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1.2 V
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC ±
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VCC + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Total current out of VCC – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC – .
2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if a differential input voltage in excess of approximately
± 1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output can be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
DW
1025 mW
8.2 mW/°C
656 mW
P
1000 mW
8.0 mW/°C
640 mW
recommended operating conditions
Supply voltage, VCC ±
MIN
MAX
UNIT
±4
± 19
V
±11
TA = 25°C
Common mode input voltage
Common-mode
voltage, VIC
TA = Full range†
Operating free-air temperature, TA
† Full range is 0°C to 70°C.
0
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
±10.5
V
70
°C
5
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of input offset
voltage
TEST CONDITIONS
Input offset current
IIB
Input bias current
25°C
RS = 50 Ω
VIC = 0,
25°C
0.006
1
µV/mo
25°C
7.5
90
RS = 50 Ω
RL = 2 kΩ
Maximum negative
g
peak output voltage
g
swing
zo
Open-loop output impedance
15
RL = 1 kΩ
– 11
to
11
12
– 10
25°C
– 12
Full range
– 11
2.5
RL = 2 kΩ
25°C
RL = 2 kΩ
Full range
VO = ± 10 V
V,
RL = 1 kΩ
25°C
Full range
3.5
25°C
98
Full range
95
CMRR
Common mode rejection ratio
Common-mode
VIC = VICRmin
min,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio (∆VCC ± /∆VIO)
VCC ± = ± 4 V to ± 18 V,
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
25°C
94
RS = 50 Ω
Full range
92
ICC
Supply current
VO = 0
0,
No load
25°C
V
– 13
V
– 13.5
45
V/µV
38
1
25°C
Full range
V
2
25°C
IO = 0
nA
11
– 10.5
Full range
VO = ± 10 V,
nA
10.5
25°C
VO = ± 11 V,
– 13
to
13
– 10.5
to
10.5
10
25°C
90
150
Full range
Full range
RL = 2 kΩ
Input capacitance
150
Full range
Maximum positive
ositive peak
eak out
output
ut voltage
VOM +
swing
µV
µV/°C
25°C
ci
350
UNIT
1
25°C
Common mode input voltage range
Common-mode
Large-signal
differential voltage
g
g
g
amplification
100
Full range
RL = 1 kΩ
AVD
MAX
0.4
Full range
VOM –
TYP
500
Full range
25°C
VICR
TLE2227C
MIN
Full range
Input offset voltage long-term drift
(see Note 4)
IIO
TA†
8
pF
50
Ω
115
dB
120
7.3
dB
10.6
11.2
mA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
operating characteristics at specified free-air temperature, VCC ± = ± 15 V
PARAMETER
TA†
TEST CONDITIONS
RL = 2 kΩ
kΩ,
CL = 100 pF
RS = 20 Ω,
f = 10 Hz
RS = 20 Ω,
f = 1 kHz
TYP
25°C
1.7
2.5
Full range
1.2
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD
Total harmonic distortion
VO = ± 10 V,
See Note 5
AVD = 1,
25°C
B1
Unity-gain bandwidth
RL = 2 kΩ,
CL = 100 pF
25°C
BOM
Maximum output-swing bandwidth
RL = 2 kΩ
0 1 Hz to 10 Hz
f = 0.1
f = 10 Hz
25°C
25°C
25°C
f = 1 kHz
φm
Phase margin
RL = 2 kΩ
CL = 100 pF
† Full range is 0°C to 70°C.
NOTE 5: Measured distortion of the source used in the analysis is 0.002%.
POST OFFICE BOX 655303
TLE2227C
MIN
• DALLAS, TEXAS 75265
MAX
UNIT
V/ s
V/µs
3.3
8
2.5
4.5
50
250
1.5
4
0.4
0.6
nV/√HZ
nV
pA/√HZ
< 0.002%
7
13
MHz
25°C
30
kHz
25°C
40°
7
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
electrical characteristics at specified free-air temperature, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Input offset voltage
αVIO
Temperature coefficient of input offset voltage
IIB
Input bias current
VIC = 0
0,
RS = 50 Ω
350
0.4
0.006
1
7.5
90
150
25°C
15
Full range
RS = 50 Ω
Common mode input voltage range
Common-mode
25°C
VOM + Maximum positive peak output voltage swing
RL = 2 kΩ
Maximum negative peak output voltage swing
RL = 2 kΩ
Large signal differential voltage amplification
Large-signal
VO = ± 11V,
VO = ± 10 V,
VO = ± 10 V
V,
– 11
to
11
12
Full range
– 10
25°C
– 12
Full range
– 11
25°C
2.5
RL = 2 kΩ
Full range
Full range
µV
µV/°C
µV/mo
nA
nA
V
V
11
– 10.5
RL = 2 kΩ
RL = 1 kΩ
UNIT
10.5
10
25°C
– 13
to
13
– 10.5
to
10.5
25°C
25°C
90
150
Full range
Full range
RL = 1 kΩ
1
25°C
Full range
RL = 1 kΩ
AVD
100
25°C
Full range
VOM –
MAX
500
Full range
25°C
VICR
TYP
Full range
Input offset voltage long-term drift (see Note 4)
Input offset current
TLE2237C
MIN
25°C
VIO
IIO
TA†
– 13
V
– 13.5
45
2
3.5
V/µV
38
1
Ci
Input capacitance
25°C
8
pF
zO
Open-loop output impedance
IO = 0
25°C
50
Ω
Common mode rejection ratio
Common-mode
VIC = VICRmin,,
RS = 50 Ω
25°C
98
Full range
95
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
25°C
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
92
CMRR
kSVR
ICC
Supply voltage rejection ratio (∆VCC ± /∆VIO)
Supply-voltage
Supply current
VO = 0
0,
No load
115
dB
120
dB
25°C
Full range
7.3
10.6
11.2
mA
† Full range is 0°C to 70°C.
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
operating characteristics at specified free-air temperature, VCC ± = ± 15 V
PARAMETER
AVD = 5,,
RL = 2 kΩ,,
CL = 100 pF
MIN
TYP
25°C
4
5
Full range
3
SR
Slew rate
Vn
Equivalent input noise voltage
Vn(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
THD
Total harmonic distortion
VO = ± 10 V,, AVD = 5 V,,
See Note 5
25°C
GBP
Gain bandwidth product
Gain-bandwidth
f = 100 kHz,, RL = 2 kΩ,,
CL = 100 pF
25°C
RS = 20 Ω,
f = 10 Hz
RS = 20 Ω,
f = 1 kHz
f = 0.1 Hz to 10 Hz
f = 10 Hz
25°C
25°C
25°C
f = 1 kHz
BOM
Maximum output-swing bandwidth
RL = 2 kΩ
φm
Phase margin
RL = 2 kΩ , CL = 100 pF
† Full range is 0°C to 70°C.
NOTE 5. Measured distortion of the source used in the analysis was 0.002%.
POST OFFICE BOX 655303
TLE2237C
TA†
TEST CONDITIONS
• DALLAS, TEXAS 75265
MAX
UNIT
V/µs
3.3
8
2.5
4.5
50
250
1.5
4
0.4
0.6
nV/√Hz
nV
pA/√Hz
< 0.002%
0 002%
35
50
MHz
25°C
80
kHz
25°C
40°
9
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
IIB
TLE2227Y
MIN
Input offset current
RS = 50 Ω
VIC = 0
0,
Input bias current
VICR
Common-mode input voltage range
VOM +
Maximum positive peak output voltage swing
VOM –
Maximum negative peak output voltage swing
AVD
Large signal differential voltage amplification
Large-signal
ci
zo
Input capacitance
CMRR
Common-mode rejection ratio
kSVR
Supply-voltage rejection ratio (∆VCC ± / ∆VIO)
Open-loop output impedance
TYP
MAX
350
1
µV/mo
7.5
90
nA
15
90
nA
RS = 50 Ω
RL = 1 kΩ
10.5
RL = 2 kΩ
12
RL = 1 kΩ
– 10.5
– 13
RL = 2 kΩ
– 12
– 13.5
RL = 2 kΩ
2.5
45
RL = 1 kΩ
3.5
38
IO = 0
VIC = VICRmin,
VCC ± = ± 4 V to ± 18 V,
VO = 0,
µV
100
0.006
– 11
to
11
VO = ± 11 V,
VO = ± 10 V,
UNIT
– 13
to
13
V
V
V
V/µV
8
pF
50
Ω
RS = 50 Ω
98
115
dB
RS = 50 Ω
94
120
dB
ICC
Supply current
No load
7.3
10.6
mA
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
operating characteristics, VCC± = ±15 V, TA = 25°C
PARAMETER
TEST CONDITIONS
SR
Slew rate
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
2.5
RS = 20 Ω,
f = 10 Hz
3.3
8
RS = 20 Ω,
f = 1 kHz
2.5
4.5
0 1 Hz to 10 Hz
f = 0.1
50
250
f = 10 Hz
1.5
4
f = 1 kHz
0.4
0.6
THD
Total harmonic distortion
VO = ± 10 V,
See Note 5
AVD = 1,
B1
Unity-gain bandwidth
RL = 2 kΩ,
CL = 100 pF
BOM
Maximum output-swing bandwidth
RL = 2 kΩ
Phase margin
RL = 2 kΩ
CL = 100 pF
Measured distortion of the source used in the analysis is 0.002%.
POST OFFICE BOX 655303
1.7
MAX
CL = 100 pF
Equivalent input noise current
10
TYP
RL = 2 kΩ,
In
φm
NOTE 5
TLE2227Y
MIN
• DALLAS, TEXAS 75265
UNIT
V/µs
nV/√HZ
nV
pA/√HZ
< 0.002%
7
13
MHz
30
kHz
40°
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
electrical characteristics at specified free-air temperature VCC ± = ±15 V (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset voltage long-term drift (see Note 4)
IIO
IIB
TLE2237Y
MIN
Input offset current
RS = 50 Ω
VIC = 0
0,
Input bias current
VICR
Common-mode input voltage range
VOM +
Maximum positive peak output voltage swing
VOM –
Maximum negative peak output voltage swing
AVD
Large signal differential voltage amplification
Large-signal
Ci
Input capacitance
zO
Open-loop output impedance
CMRR
Common-mode rejection ratio
TYP
MAX
100
350
1
µV/mo
7.5
90
nA
15
90
nA
RS = 50 Ω
RL = 1 kΩ
10.5
RL = 2 kΩ
12
RL = 1 kΩ
– 10.5
– 13
RL = 2 kΩ
– 12
– 13.5
RL = 2 kΩ
2.5
45
RL = 1 kΩ
3.5
38
– 13
to
13
V
V
V
V/µV
8
IO = 0
VIC = VICRmin,
RS = 50 Ω
98
µV
0.006
– 11
to
11
VO = ± 11 V,
VO = ± 10 V,
UNIT
pF
50
Ω
115
dB
Supply-voltage rejection ratio (∆VCC ± / ∆VIO)
VCC ± = ± 4 V to ± 18 V, RS = 50 Ω
94
120
dB
ICC
Supply current
VO = 0,
No load
7.3
10.6
mA
NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
kSVR
operating characteristics at specified free-air temperature VCC ± = ±15 V
PARAMETER
SR
TEST CONDITIONS
Slew rate
Vn
Equivalent input noise voltage
Vn(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
THD
Total harmonic distortion
B1
BOM
Unity-gain bandwidth
TLE2237Y
MIN
MAX
RL = 2 kΩ,
CL = 100 pF
RS = 20 Ω,
f = 10 Hz
3.3
8
RS = 20 Ω,
f = 1 kHz
2.5
4.5
f = 0.1 Hz to 10 Hz
50
250
f = 10 Hz
1.5
4
f = 1 kHz
0.4
0.6
VO = ± 10 V,
RL = 2 kΩ,
Maximum output-swing bandwidth
RL = 2 kΩ
φm
Phase margin
RL = 2 kΩ ,
NOTE 5. Measured distortion of the source used in the analysis is 0.002%.
POST OFFICE BOX 655303
AVD = 1, See Note 5
CL = 100 pF
CL = 100 pF
• DALLAS, TEXAS 75265
4
TYP
5
UNIT
V/µs
nV/√Hz
nV
pA/√Hz
< 0.002%
35
50
MHz
80
kHz
40°
11
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
PARAMETER MEASUREMENT INFORMATION
2 kΩ
4 kΩ
15 V
15 V
–
–
VO
VO
VI
+
+
– 15 V
4 kΩ
CL = 100 pF
(see Note A)
– 15 V
20 Ω
20 Ω
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
Figure 2. Noise-Voltage Test Circuit
10 kΩ
100 Ω
VI
15 V
15 V
–
–
VO
VO
VI
+
– 15 V
CL = 100 pF
(see Note A)
2 kΩ
NOTE A: CL includes fixture capacitance.
Figure 3. Unity-Gain Bandwidth and
Phase-Margin Test Circuit
12
+
POST OFFICE BOX 655303
– 15 V
2 kΩ
CL = 100 pF
(see Note A)
NOTE A: CL includes fixture capacitance.
Figure 4. Small-Signal PulseResponse Test Circuit
• DALLAS, TEXAS 75265
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
∆VIO
Input offset voltage
Distribution
Input offset voltage change
vs Time after power on
6, 7
IIO
Input offset current
vs Free-air temperature
8
IIB
Input bias current
vs Common-mode input voltage
vs Free-air temperature
9
10
II
VO(PP)
Input current
vs Differential input voltage
11
Maximum peak-to-peak output voltage
vs Frequency
12
VOM
Maximum peak positive output voltage
vs Load resistance
vs Free-air temperature
13
15
VOM
Maximum peak negative output voltage
vs Load resistance
vs Free-air temperature
14
16
AVD
Large-signal differential voltage amplification
vs Supply voltage
vs Load resistance
vs Frequency
vs Free-air temperature
17
19
18, 20, 21
22
zo
Output impedance
vs Frequency
23
CMRR
Common-mode rejection ratio
vs Frequency
24
kSVR
Supply-voltage rejection ratio
vs Frequency
IOS
Short-circuit output current
vs Supply voltage
vs Elasped time
vs Free-air temperature
26, 27
28, 29
30, 31
ICC
Supply current
vs Supply voltage
vs Free-air temperature
32
33
Voltage-follower small-signal pulse response
vs Time
34, 35
Voltage-follower large-signal pulse response
vs Time
36, 37
Equivalent input noise voltage
vs Frequency
38
Noise voltage (referred to input)
Over 10-second interval
39
B1
Unity-gain bandwidth
vs Supply voltage
vs Load capacitance
40, 41
42, 43
SR
Slew rate
vs Free-air temperature
44, 45
Phase margin
vs Supply voltage
vs Load capacitance
46
47, 48
Phase shift
vs Frequency
Vn
φm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
25
18, 20, 21
13
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
DISTRIBUTION OF
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
14
12
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
1568 Amplifiers Tested From 2 Wafer Lots
VCC ± = ± 15 V
TA = 25°C
DW Package
10
8
6
4
2
0
–120
– 90 – 60 – 30
0
30
60
VIO – Input Offset Voltage – µV
90
12
XVIO
∆V IO – Change In Input Offset Voltage – uV
µV
16
10
8
6
VCC ± = ± 15 V
TA = 25°C
DW Package
Sample Size = 50 Units
2
0
120
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
4
0
10
20
Figure 5
3
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCC ± = ± 15 V
TA = 25°C
P Package
Sample Size = 50 Units
From 2 Wafer Lots
20
40
60
80 100 120 140
t – Time After Power On – s
160 180
IIIO
IO – Input Offset Current – nA
XVIO
V
∆V IO – Change In Input Offset Voltage – µuV
4
0
VCC ± = ± 15 V
VIC = 0
16
12
8
4
0
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
Figure 8
Figure 7
14
60
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
20
5
0
50
INPUT OFFSET CURRENT
vs
FREE-AIR TEMPERATURE
6
1
40
Figure 6
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
2
30
t – Time After Power On – s
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
70
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
40
VCC ± = ± 15 V
TA = 25°C
16
IIB
I IB – Input Bias Current – nA
IIB
I IB – Input Bias Current – nA
35
20
30
25
20
15
10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
VIC = 0
12
8
4
0
–4
5
–8
0
– 12
–8
–4
0
4
8
0
12
10
20
Figure 9
0.6
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
VIC = 0
TA = 25°C
0.4
0.2
0
– 0.2
– 0.4
– 0.6
– 0.8
–1
– 1.8
– 1.2
– 0.6
0
50
60
70
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE
vs
FREQUENCY
0.6
1.2
1.8
V
VO(PP)
O(PP) – Maximum Peak-to-Peak Output Voltage – V
IIII – Input Current – mA
0.8
40
Figure 10
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
1
30
TA – Free-Air Temperature – °C
VIC – Common-Mode Input Voltage – V
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
30
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
25
20
15
10
5
0
10 k
VID – Differential Input Voltage – V
100 k
1M
10 M
f – Frequency – Hz
Figure 12
Figure 11
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
14
12
10
8
6
4
2
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
TA = 25°C
0
100
1k
10 k
VVOM–
OM – – Maximum Negative Peak Output Voltage – V
VVOM+
OM + – Maximum Positive Peak Output Voltage – V
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
– 14
– 12
– 10
–8
–6
–4
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
–2
VCC ± = ± 15 V
TA = 25°C
0
100
Figure 13
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
13.24
13.2
13.16
13.12
13.08
0
10
20
30
40
50
60
70
VVOM–
OM – – Maximum Negative Peak Output Voltage – V
VVOM+
OM + – Maximum Positive Peak Output Voltage – V
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
VCC ± = ± 15 V
RL = 2 kΩ
13.28
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
– 13.4
VCC ± = ± 15 V
RL = 2 kΩ
– 13.45
– 13.5
– 13.55
– 13.6
– 13.65
– 13.7
– 13.75
0
10
20
30
Figure 15
Figure 16
POST OFFICE BOX 655303
40
50
TA – Free-Air Temperature – °C
TA – Free-Air Temperature – °C
16
10 k
Figure 14
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
13.32
1k
RL – Load Resistance – Ω
RL – Load Resistance – Ω
• DALLAS, TEXAS 75265
60
70
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
50
ÎÎÎÎ
ÎÎÎÎ ÎÎÎÎ
ÎÎÎÎ
AVD
AVD – Large-Signal differential
Voltage Amplification – V/ µ V
TA = 25°C
RL = 2 kΩ
40
RL = 1 kΩ
30
20
ÁÁ
ÁÁ
ÁÁ
10
0
0
4
8
12
16
| VCC± | – Supply Voltage – V
20
Figure 17
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
160
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
Phase Shift
120
100°
125°
AVD
100
80
150°
175°
Á ÎÎÎÎÎ
Á ÎÎÎÎÎ
Á ÎÎÎÎÎ
60
40
200°
225°
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
20
250°
0
0.1
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
140
75°
100
100 k
f – Frequency – Hz
275°
100 M
Figure 18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
AVD
AVD – Large-Signal differential
Voltage Amplification – V/ µ V
50
ÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
TA = 25°C
40
30
20
10
0
100
400
1k
4k
RL – Load Resistance – Ω
10 k
Figure 19
6
100°
3
125°
0
150°
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÁÁ ÎÎÎÎÎ
ÁÁ ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
–3
175°
AVD
200°
–6
Phase Shift
225°
–9
–12
250°
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
–15
–18
10
20
40
f – Frequency – MHz
275°
70
Figure 20
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
300°
100
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
TLE2227
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
30
100°
25
125°
20
150°
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÁÁ ÎÎÎÎÎ
ÁÁ ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
175°
AVD
10
200°
Phase Shift
5
0
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
–5
– 10
4
1
10
40
f – Frequency – MHz
Phase Shift
AVD
AVD – Large-Signal Differential
Voltage Amplification – dB
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
225°
250°
275°
300°
100
Figure 21
LARGE-SCALE DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
ÁÁ
ÁÁ
ÁÁ
ÎÎÎÎÎ
100
VCC ± = ± 15 V
55
zzo
Ω
o – Output Impedance – O
AVD
AVD – Large-Signal Differential
Voltage Amplification – V/ µ V
60
OUTPUT IMPEDANCE
vs
FREQUENCY
50
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
45
RL = 2 kΩ
40
RL = 1 kΩ
35
10
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC ± = ± 15 V
TA = 25°C
AVD = 100
1
AVD = 1
AVD = 10
0.1
0.01
30
0
10
20
30
40
50
60
70
10
100
TA – Free-Air Temperature – °C
1k
10 k
100 k
1M
10 M
100 M
f – Frequency – Hz
Figure 22
Figure 23
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
120
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
140
VCC ± = ± 15 V
TA = 25°C
kXXXX
SVR – Supply-Voltage Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
140
100
80
60
40
20
VCC ± = ± 15 V
TA = 25°C
120
100
kSVR –
80
60
kSVR +
40
20
0
0
10
100
1k
10 k 100 k 1 M
f – Frequency – Hz
10 M
100
10
100 M
1k
100 M
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
34
IIOS
OS – Short-Circuit Output Current – mA
– 42
IIOS
OS – Short-Circuit Output Current – mA
10 M
Figure 25
Figure 24
– 40
– 38
– 36
– 34
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
VID = 100 mV
VO = 0
TA = 25°C
P Package
– 32
0
2
VID = – 100 mV
VO = 0
TA = 25°C
P Package
33
32
31
30
29
28
27
26
25
24
– 30
4
6
8
10
12 14 16
|VCC ± | – Supply Voltage – V
18
20
0
2
4
6
8
10 12 14 16
|VCC ± | – Supply Voltage – V
Figure 27
Figure 26
20
10 k 100 k 1 M
f – Frequency – Hz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
18
20
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
– 43
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
36
IIOS
OS – Short-Circuit Output Current – mA
IIOS
OS – Short-Circuit Output Current – mA
– 45
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
– 41
– 39
– 37
– 35
0
30
60
90
120
150
34
32
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC ± = ± 15 V
VID = – 100 mV
VO = 0
TA = 25°C
P Package
30
28
26
180
0
t – Time – s
30
60
Figure 28
IIOS
OS – Short-Circuit Output Current – mA
VCC ± = ± 15 V
VID = 100 mV
VO = 0
P Package
– 51
150
180
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
– 49
– 47
– 45
– 43
42
IIOS
OS – Short-Circuit Output Current – mA
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
– 53
120
Figure 29
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
– 55
90
t – Time – s
41
40
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC ± = ± 15 V
VID = – 100 mV
VO = 0
P Package
39
38
37
36
35
– 41
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
70
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
70
Figure 31
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ÎÎÎÎ ÎÎÎÎ
ÎÎÎÎ ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
10
VO = 0
No Load
8
TA = 70°C
VCC ± = ± 15 V
VO = 0
No Load
7.8
IICC
CC – Supply Current – mA
8
IICC
CC – Supply Current – mA
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
TA = 25°C
6
4
2
7.6
7.4
7.2
7
0
0
2
4
6
8
10 12 14 16
|VCC ± | – Supply Voltage – V
18
6.8
20
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
Figure 32
Figure 33
TLE2227
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
VV)
O – Output Voltage – mV
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
50
0
– 50
– 100
0
200
400
600
t – Time – ns
800
1000
TLE2237
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
100
VV)
O – Output Voltage – mV
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
100
50
0
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
– 50
– 100
0
Figure 34
22
70
100
200
t – Time – ns
Figure 35
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
300
400
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2237
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
TLE2227
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
15
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
10
VV)
O – Output Voltage – V
VV)
O – Output Voltage – V
10
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
15
5
0
–5
5
0
–5
– 10
– 10
– 15
– 15
0
5
10
15
t – Time – µs
20
0
25
2
Figure 36
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
50
40
30
Noise Voltage – nV
V
Vn
nV/ Hz
n – Equivalent Input Noise Voltage – nV/Hz
10
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
8
8
Figure 37
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
4
6
t – Time – µs
6
4
20
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
f = 0.1 to 10 Hz
TA = 25°C
10
0
– 10
– 20
2
– 30
– 40
0
– 50
1
10
100
1k
f – Frequency – Hz
10 k
100 k
0
Figure 38
2
4
6
t – Time – s
8
10
Figure 39
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2227
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
TLE2237
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
52
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
18
B1
B1 – Unity-Gain Bandwidth – MHz
B1
B1 – Unity-Gain Bandwidth – MHz
20
16
14
12
10
0
2
4
6
8
10 12 14 16
| VCC ± | – Supply Voltage – V
18
f = 100 kHZ
RL = 2 kΩ
CL = 100 pF
TA = 25°C
51
50
49
48
20
0
2
4
6
8
10 12 14 16
| VCC ± | – Supply Voltage – V
Figure 40
TLE2237
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
B1
B1 – Unity-Gain Bandwidth – MHz
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
8
4
0
100
1000
CL – Load Capacitance – pF
10000
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
52
B1
B1 – Unity-Gain Bandwidth – MHz
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
12
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
51
50
49
48
100
Figure 42
24
20
Figure 41
TLE2227
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
16
18
1000
CL – Load Capacitance – pF
Figure 43
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10000
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2227
SLEW RATE
vs
FREE-AIR TEMPERATURE
TLE2237
SLEW RATE
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
3
2.6
2.4
2.2
2
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
See Figure 1
7
SR – Slew Rate – V/
V/us
µs
SR – Slew Rate – V/
V/us
µs
2.8
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
8
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
See Figure 1
6
5
4
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
3
70
0
10
20
30
40
50
60
TA – Free-Air Temperature – °C
Figure 45
Figure 44
TLE2227
PHASE MARGIN
vs
LOAD CAPACITANCE
PHASE MARGIN
vs
SUPPLY VOLTAGE
38°
φ m – Phase Margin
om
36°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
40°
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
35°
φom
m – Phase Margin
40°
70
34°
32°
30°
30°
25°
20°
15°
10°
28°
5°
26°
24°
0
2
4
6
8
10
12 14 16
| VCC ± | – Supply Voltage – V
18
20
0°
100
Figure 46
1000
CL – Load Capacitance – pF
10000
Figure 47
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TYPICAL CHARACTERISTICS
TLE2237
PHASE MARGIN
vs
LOAD CAPACITANCE
70°
φom
m – Phase Margin
60°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
50°
40°
30°
ÁÁ
ÁÁ
20°
φm
10°
0°
100
1000
CL – Load Capacitance – pF
10000
Figure 48
APPLICATION INFORMATION
TLE2227 macromodel information
Macromodel information provided was derived using Microsim Parts , the model generation software used
with Microsim PSpice . The Boyle macromodel (see Note 6) and subcircuit in Figure 49 and Figure 50 are
generated using the TLE2227C typical electrical and operating characteristics at 25°C. Using this information,
output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
NOTE 6:
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
D
D
D
D
D
D
Unity-gain bandwidth
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon,“Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
PSpice and Parts are trademarks of MicroSim Corporation.
Macromodels, simulation models, or other models provided by TI,
directly or indirectly, are not warranted by TI as fully representing all
of the specification and operating characteristics of the
semiconductor product to which the model relates.
26
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
APPLICATION INFORMATION
TLE2227 macromodel information (continued)
99
3
VCC +
9
rc1
1
rc2
c1
rp
Q1
2
dp
vc
Q2
13
ree
14
re1
dln
92
fb
ro2 90
vb
+
IN –
+
–
+
12
11
IN +
egnd
cee
–
C2
gcm
vlim
8
–
4
vin
+
+
ga
–
ro1
54 de
VCC –
–
–
7
10
lee
dip
vip
–
r2
–
6
53
dc
re2
+
hlim
91
+
5
+
ve
OUT
Figure 49. Boyle Macromodel
.subckt
*
c1
c2
dc
de
dlp
dln
dp
egnd
fb
ga
gcm
iee
hlim
q1
q2
r2
rc1
rc2
re1
re2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
TLE2227 1
2
3
4
5
11
12 4.003E-12
6
7 20.00E-12
5
53 dx
54
5 dx
90
91 dx
92
90 dx
4
3 dx
99
0 poly(2)
(3,0) (4,0) 0
7
99 poly(5)
vb vc ve vlp
6
0 11 12 2.062E-3
0
6 10 99 531.3E-12
10
4 dc 56.01E-6
90
0 vlim
1K
11
2 13 qx
12
1 14 qx
6
9 100.0E3
3
11 530.5
3
12 530.5
13
10 – 393.2
14
10 – 393.2
10
99 3.571E6
8
5 25
7
99 25
3
4 8.013E3
9
0 dc 0
3
53 dc 2.400
54
4 dc 2.100
7
8 dc 0
91
0 dc 40
0
92 dc 40
dx D(Is=800.0E-18)
qx NPN(Is=800.0E-18
Bf=7.000E3)
.5 .5
vln
0
954.8E6
–1E9
1E9
1E9 –1E9
Figure 50. TLE2227 Macromodel Subcircuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
TLE2037 macromodel information
Macromodel information provided is derived using PSpice  Parts  model generation software. The Boyle
macromodel (see Note 6) and subcircuit in Figure 51 and Figure 52 are generated using the TLE2237C typical
electrical and operating characteristics at 25°C. Using this information, output simulations of the following key
parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
NOTE 6.
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain bandwidth
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon,“Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
rc1
1
c1
rp
rc2
Q1
2
dp
vc
Q2
13
ree
14
re1
dln
92
fb
ro2 90
vb
+
IN –
+
–
+
12
11
IN +
egnd
cee
–
C2
7
+
gcm
ga
vlim
8
10
lee
ro1
54 de
VCC –
4
–
–
5
+
ve
OUT
Figure 51. Boyle Macromodel
Macromodels, simulation models, or other models provided by TI,
directly or indirectly, are not warranted by TI as fully representing all
of the specification and operating characteristics of the
semiconductor product to which the model relates.
28
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dlp
vlp
–
r2
–
6
53
dc
re2
+
hlim
91
+
–
–
vln
+
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
APPLICATION INFORMATION
TLE2037 macromodel information (continued)
.subckt
*
c1
c2
dc
de
dlp
dln
dp
egnd
fb
ga
gcm
iee
hlim
q1
q2
r2
rc1
rc2
re1
re2
ree
ro1
ro2
rp
vb
vc
ve
vlim
vlp
vln
.model
.model
.ends
TLE2227 1
2
3
4
5
11
12 4.003E-12
6
7 20.00E-12
5
53 dx
54
5 dx
90
91 dx
92
90 dx
4
3 dx
99
0 poly(2)
(3,0) (4,0) 0
7
99 poly(5)
vb vc ve vlp
6
0 11 12 2.062E-3
0
6 10 99 531.3E-12
10
4 dc 56.01E-6
90
0 vlim
1K
11
2 13 qx
12
1 14 qx
6
9 100.0E3
3
11 530.5
3
12 530.5
13
10 – 393.2
14
10 – 393.2
10
99 3.571E6
8
5 25
7
99 25
3
4 8.013E3
9
0 dc 0
3
53 dc 2.400
54
4 dc 2.100
7
8 dc 0
91
0 dc 40
0
92 dc 40
dx D(Is=800.0E-18)
qx NPN(Is=800.0E-18
Bf=7.000E3)
.5 .5
vln
0
954.8E6
–1E9
1E9
1E9 –1E9
Figure 52. TLE2237 Macromodel Subcircuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
TLE2227, TLE2227Y, TLE2237, TLE2237Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION DUAL OPERATIONAL AMPLIFIERS
SLOS184 – FEBRUARY 1997
APPLICATION INFORMATION
voltage-follower applications
The TLE22x7C circuitry includes input-protection diodes to limit the voltage across the input transistors;
however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition
can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal
pulse. A feedback resistor is recommended to limit the current to a maximum of 1 mA to prevent degradation
of the device. Also, this feedback resistor forms a pole with the input capacitance of the device. For feedback
resistor values greater than 10 kΩ, this pole degrades the amplifier’s phase margin. This problem can be
alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 53).
CF = 20 to 50 pF
IF ≤ 1 mA
RF
VCC +
–
VO
VI
+
VCC –
Figure 53. Voltage-Follower Circuit
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated