FREESCALE MRF7S38010HSR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S38010H
Rev. 0, 8/2007
RF Power Field Effect Transistors
MRF7S38010HR3
MRF7S38010HSR3
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for WiMAX base station applications with frequencies up to
3800 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class
AB and Class C amplifier applications.
• Typical WiMAX Performance: VDD = 30 Volts, IDQ = 160 mA, Pout =
2 Watts Avg., f = 3400 - 3600 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz
Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on
CCDF.
Power Gain — 15 dB
Drain Efficiency — 17%
Device Output Signal PAR — 8.5 dB @ 0.01% Probability on CCDF
ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 3500 MHz, 10 Watts CW
Peak Tuned Output Power
• Pout @ 1 dB Compression Point w 10 Watts CW
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel.
3400 - 3600 MHz, 2 W AVG., 30 V
WiMAX
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465I - 02, STYLE 1
NI - 400 - 240
MRF7S38010HR3
CASE 465J - 02, STYLE 1
NI - 400S - 240
MRF7S38010HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDS
- 0.5, +65
Vdc
Gate - Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
TC
150
°C
TJ
225
°C
Symbol
Value (2,3)
Unit
Case Operating Temperature
Operating Junction Temperature
(1,2)
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 10 W CW
Case Temperature 77°C, 2 W CW
RθJC
2.05
2.24
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S38010HR3 MRF7S38010HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1C (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 33.5 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 30 Vdc, ID = 160 mAdc, Measured in Functional Test)
VGS(Q)
2
2.7
3.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 335 mAdc)
VDS(on)
0.1
0.21
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.13
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
68.5
—
pF
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
50.6
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg., f = 3400 MHz and f = 3600 MHz,
WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in
0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset.
Power Gain
Gps
13
15
17
dB
Drain Efficiency
ηD
15
17
30
%
PAR
8
8.5
—
dB
ACPR
—
- 49
- 46
dBc
IRL
—
- 12
-6
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. Part internally matched both on input and output.
(continued)
MRF7S38010HR3 MRF7S38010HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg.,
f = 3400 MHz and f = 3600 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @
0.01% Probability on CCDF.
Mask System Type G @ Pout = 2 W Avg.
Mask
Point B at 3.5 MHz Offset
Point C at 5 MHz Offset
Point D at 7.4 MHz Offset
Point E at 14 MHz Offset
Point F at 17.5 MHz Offset
dBc
—
—
—
—
—
- 26
- 38
- 43
- 60
- 60
—
—
—
—
—
Relative Constellation Error @ Pout = 2 W Avg. (1)
RCE
—
- 33
—
dB
(1)
EVM
—
2.3
—
% rms
Error Vector Magnitude
(Typical EVM Performance @ Pout = 2 W Avg. with OFDM 802.16d
Signal Call)
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 30 Vdc, IDQ = 160 mA, 3400 - 3600 MHz Bandwidth
Video Bandwidth @ 12 W PEP Pout where IM3 = - 30 dBc
VBW
(Tone Spacing from 100 kHz to VBW)
—
20
—
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
MHz
Gain Flatness in 200 MHz Bandwidth @ Pout = 2 W Avg.
GF
—
1.04
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 10 W CW
Φ
—
2.22
—
°
Delay
—
1.88
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 10 W CW,
f = 3500 MHz, Six Sigma Window
ΔΦ
—
25.9
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.025
—
dB/°C
ΔP1dB
—
0.246
—
dBm/°C
Average Group Delay @ Pout = 10 W CW, f = 3500 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
1. RLE = 20Log(EVM/100)
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
3
VSUPPLY
B1
+
VBIAS
C4
+
C7
Z8
Z9
Z7
Z2
C6
C3
C5
RF
INPUT Z1
+
Z3
Z4
Z5
C1
Z10
Z11
Z12 Z13
Z14
Z15
Z16
Z17
Z18
Z19
RF
OUTPUT
C2
Z6
DUT
Z1, Z19
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
0.750″ x 0.084″ Microstrip
0.596″ x 0.084″ Microstrip
0.288″ x 0.110″ Microstrip
0.450″ x 0.084″ Microstrip
0.067″ x 0.367″ Microstrip
0.083″ x 0.307″ Microstrip
0.830″ x 0.058″ Microstrip
0.567″ x 0.128″ Microstrip
0.116″ x 0.367″ Microstrip
0.064″ x 0.307″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
Z17
Z18
PCB
0.032″ x 0.166″ Microstrip
0.124″ x 0.538″ Microstrip
0.099″ x 0.341″ Microstrip
0.220″ x 0.166″ Microstrip
0.063″ x 0.240″ Microstrip
0.085″ x 0.340″ Microstrip
0.037″ x 0.340″ x 0.257″ Taper
0.637″ x 0.084″ Microstrip
CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 1. MRF7S38010HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S38010HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
95 Ω, 100 MHz Long Ferrite Bead, Surface Mount
2743021447
Fair - Rite
C1
2.2 pF Chip Capacitor
ATC100B2R2JT500XT
ATC
C2
2.7 pF Chip Capacitor
ATC100B2R7BT500XT
ATC
C3, C4
0.8 pF Chip Capacitors
ATC100B0R8BT500XT
ATC
C5, C6, C7
22 μF, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
MRF7S38010HR3 MRF7S38010HSR3
4
RF Device Data
Freescale Semiconductor
C5
B1
C4
C3
C6 C7
C2
CUT OUT AREA
C1
MRF7S38010H/HS
Rev. 1
Figure 2. MRF7S38010HR3(HSR3) Test Circuit Component Layout
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
5
16.5
16
Gps, POWER GAIN (dB)
19
ηD
18
17
VDD = 30 Vdc, Pout = 2 W (Avg.), IDQ = 160 mA
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel 16
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% −49
Probability on CCDF
−50
15.5
15
14.5
14
ACPR−U
13.5
−51
ACPR −L
13
−52
12.5
−53
IRL
12
3400
3425
3450
3475
3500
3525
3550
3575
0
−5
−10
−15
−20
−54
3600
−25
IRL, INPUT RETURN LOSS (dB)
20
Gps
ACPR (dBc)
17
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
26
ηD
Gps, POWER GAIN (dB)
25
Gps
16
15.5
15
14.5
24
VDD = 30 Vdc, Pout = 4 W (Avg.), IDQ = 160 mA
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
23
−40
0
ACPR−U
−41
−5
14
ACPR −L
13.5
22
−42
13
−43
12.5
−44
IRL
12
3400
3425
3450
3475
3500
3525
3550
3575
ACPR (dBc)
16.5
−10
−15
−20
−45
3600
−25
IRL, INPUT RETURN LOSS (dB)
17
ηD, DRAIN
EFFICIENCY (%)
Figure 3. WiMAX Broadband Performance
@ Pout = 2 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. WiMAX Broadband Performance
@ Pout = 4 Watts Avg.
19
Gps, POWER GAIN (dB)
18
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
−10
IDQ = 240 mA
200 mA
17
160 mA
16
15
80 mA
14
120 mA
13
12
VDD = 30 Vdc, IDQ = 160 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
11
10
VDD = 30 Vdc, IDQ = 160 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
−20
IDQ = 80 mA
−30
120 mA
240 mA
200 mA
−40
160 mA
−50
1
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
50
1
10
50
Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF7S38010HR3 MRF7S38010HSR3
6
RF Device Data
Freescale Semiconductor
−10
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 30 Vdc, IDQ = 160 mA
f1 = 3495 MHz, f2 = 3505 MHz
Two −Tone Measurements, 10 MHz Tone Spacing
−20
−30
3rd Order
−40
7th Order
−50
5th Order
−60
−70
1
−10
−30
IM3 −U
−40
IM3 −L
IM5 −U
IM5 −L
IM7 −U
−50
IM7 −L
−60
−70
1
50
10
VDD = 30 Vdc, Pout = 12 W (PEP), IDQ = 160 mA
Two −Tone Measurements
(f1 + f2)/2 = Center Frequency of 3500 MHz
−20
10
100
TWO −TONE SPACING (MHz)
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Intermodulation Distortion Products
versus Output Power
45
VDD = 30 Vdc, IDQ = 160 mA
f = 3500 MHz, 802.16d, 64 QAM 3/4
4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
40
35
30
−15
−30_C
−20
85_C
−30_C
Gps
20
−25
−30
85_C
ηD
25
25_C
−35
−40
TC = −30_C
−45
15
85_C
10
25_C
−50
ACPR
5
ACPR (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
−55
−60
0
1
10
20
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 9. WiMAX, ACPR, Power Gain and Drain
Efficiency versus Output Power
Gps, POWER GAIN (dB)
17
16
25_C
45
85_C
25_C
40
35
85_C
15
30
14
25
13
20
ηD
VDD = 30 Vdc
IDQ = 160 mA
f = 3500 MHz
12
11
1
15
0
10
30
IDQ = 160 mA
f = 3500 MHz
16
Gps, POWER GAIN (dB)
−30_C
18
Gps
17
50
TC = −30_C
ηD, DRAIN EFFICIENCY (%)
19
15
14
13
32 V
12
30 V
VDD = 28 V
11
0
5
10
15
20
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
25
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 30 Vdc, Pout = 2 W Avg., and ηD = 17%.
MTTF calculator available at http:/www.freescale.com/rf. Select Tools/
Software/Application Software/Calculators to access the MTTF calcu−
lators by product.
Figure 12. MTTF versus Junction Temperature
WIMAX TEST SIGNAL
100
−10
7 MHz
Channel BW
−20
10
−40
−50
0.1
(dB)
PROBABILITY (%)
Compressed Output
Signal @ 2 W Avg. Pout
1
System Type G
−30
Input Signal
0.01
−70
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz
Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
0
2
4
−60
Point B
Point C
−80
−90
6
8
PEAK −TO−AVERAGE (dB)
Figure 13. OFDM 802.16d Test Signal
10
Point B
Point C
−100 Point D
Point D
−110
−9
−7.2 −5.4
−3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 14. WiMAX Spectrum Mask Specifications
MRF7S38010HR3 MRF7S38010HSR3
8
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
f = 3400 MHz
f = 3600 MHz
Zload
Zsource
f = 3400 MHz
f = 3600 MHz
VDD = 30 Vdc, IDQ = 160 mA, Pout = 2 W Avg.
f
MHz
Zsource
W
Zload
W
3400
31.79 - j0.13
13.92 - j11.33
3425
32.46 - j3.62
14.61 - j11.40
3450
32.58 - j6.82
15.53 - j11.36
3475
32.29 - j9.43
16.44 - j11.28
3500
31.32 - j11.63
17.25 - j11.07
3525
30.03 - j13.46
18.11 - j10.64
3550
28.76 - j15.19
18.96 - j10.22
3575
27.24 - j16.25
19.60 - j9.68
3600
25.51 - j17.02
20.17 - j8.99
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
MRF7S38010HR3 MRF7S38010HSR3
10
RF Device Data
Freescale Semiconductor
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
11
MRF7S38010HR3 MRF7S38010HSR3
12
RF Device Data
Freescale Semiconductor
MRF7S38010HR3 MRF7S38010HSR3
RF Device Data
Freescale Semiconductor
13
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Aug. 2007
Description
• Initial Release of Data Sheet
MRF7S38010HR3 MRF7S38010HSR3
14
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MRF7S38010HR3 MRF7S38010HSR3
Document
Number:
RF
Device
Data MRF7S38010H
Rev. 0, 8/2007
Freescale
Semiconductor
15