FREESCALE MRF7S27130HSR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S27130H
Rev. 0, 9/2007
RF Power Field Effect Transistors
MRF7S27130HR3
MRF7S27130HSR3
N - Channel Enhancement - Mode Lateral MOSFETs
Designed for WiMAX base station applications with frequencies up to
2700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class
AB and Class C amplifier applications.
• Typical WiMAX Performance: VDD = 28 Volts, IDQ = 1500 mA,
Pout = 23 Watts Avg., f = 2500 and 2700 MHz, 802.16d, 64 QAM 3/4,
4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF.
Power Gain — 16.5 dB
Drain Efficiency — 20%
Device Output Signal PAR — 8.2 dB @ 0.01% Probability on CCDF
ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 105 Watts CW
Peak Tuned Output Power
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
2500- 2700 MHz, 23 W AVG., 28 V
WiMAX
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465 - 06, STYLE 1
NI - 780
MRF7S27130HR3
CASE 465A - 06, STYLE 1
NI - 780S
MRF7S27130HSR3
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain- Source Voltage
Rating
VDS
- 0.5, +65
Vdc
Gate- Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
CW
150
0.83
W
°C/W
Symbol
Value (2,3)
Unit
CW Operation @ TC = 25°C
Derate above 25°C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 104 W CW
Case Temperature 69°C, 23 W CW
RθJC
0.32
0.36
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Design Tools (Software & Tools)/Calculators to access MTTF calculators
by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
 Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S27130HR3 MRF7S27130HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
1B (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
µAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
µAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
µAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 348 µAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDS = 28 Vdc, ID = 1500 mAdc)
VGS(Q)
—
2.7
—
Vdc
Fixture Gate Quiescent Voltage (1)
(VDD = 28 Vdc, ID = 1500 mAdc, Measured in Functional Test)
VGG(Q)
4
5.4
7
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 3.4 Adc)
VDS(on)
0.1
0.24
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
10.4
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
711
—
pF
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
326
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (2)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg., f = 2500 MHz and f =
2700 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset.
Power Gain
Gps
15
16.5
18.5
dB
Drain Efficiency
ηD
18
20
23
%
PAR
7.5
8.2
—
dB
ACPR
—
- 49
- 46
dBc
IRL
—
-8
-5
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit
schematic.
2. Part internally matched both on input and output.
(continued)
MRF7S27130HR3 MRF7S27130HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg.,
f = 2500 MHz and f = 2700 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @
0.01% Probability on CCDF.
Mask System Type G @ Pout = 23 W Avg.
Mask
Point B at 3.5 MHz Offset
Point C at 5 MHz Offset
Point D at 7.4 MHz Offset
Point E at 14 MHz Offset
Point F at 17.5 MHz Offset
dBc
—
—
—
—
—
- 27
- 40
- 44
- 60
- 60
—
—
—
—
—
Relative Constellation Error @ Pout = 23 W Avg. (1)
RCE
—
- 33
—
dB
(1)
EVM
—
2.2
—
% rms
Error Vector Magnitude
(Typical EVM Performance @ Pout = 23 W Avg. with OFDM 802.16d
Signal Call)
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, 2500 - 2700 MHz Bandwidth
Video Bandwidth @ 130 W PEP Pout where IM3 = - 30 dBc
(Tone Spacing from 100 kHz to VBW)
∆IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
MHz
—
40
—
Gain Flatness in 200 MHz Bandwidth @ Pout = 23 W Avg.
GF
—
1.2
—
dB
Average Deviation from Linear Phase in 200 MHz Bandwidth
@ Pout = 105 W CW
Φ
—
135
—
°
Delay
—
1.5
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 105 W CW,
f = 2600 MHz, Six Sigma Window
∆Φ
—
81.3
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
∆G
—
0.013
—
dB/°C
∆P1dB
—
0.01
—
dBm/°C
Average Group Delay @ Pout = 105 W CW, f = 2600 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
1. RCE = 20Log(EVM/100)
MRF7S27130HR3 MRF7S27130HSR3
RF Device Data
Freescale Semiconductor
3
R1
Z18
R3
VBIAS
VSUPPLY
+
R2
C2
C3
C4
C6
C7
C8
C12
Z17
Z9
RF
INPUT
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z10
Z8
Z11
Z12
Z13
Z14
Z15
RF
Z16 OUTPUT
C13
C1
DUT
Z19
C5
Z1
Z2
Z3
Z4
Z5
Z6
Z7
Z8
Z9
Z10
0.320″ x 0.084″ Microstrip
0.380″ x 0.240″ Microstrip
0.046″ x 0.084″ Microstrip
0.273″ x 0.084″ Microstrip
0.360″ x 0.600″ Microstrip
0.260″ x 0.394″ Microstrip
0.145″ x 0.922″ Microstrip
0.455″ x 0.922″ Microstrip
0.106″ x 0.716″ Microstrip
0.413″ x 0.716″ Microstrip
Z11
Z12
Z13
Z14
Z15
Z16
Z17*
Z18, Z19*
PCB
C10
C11
C9
0.251″ x 0.084″ Microstrip
0.160″ x 0.162″ Microstrip
0.566″ x 0.084″ Microstrip
0.059″ x 0.084″ Microstrip
0.080″ x 0.123″ Microstrip
0.583″ x 0.084″ Microstrip
0.950″ x 0.100″ Microstrip
0.560″ x 0.100″ Microstrip
Taconix TLX8 - 0300, 0.030″, εr = 2.55
* Variable for tuning
Figure 1. MRF7S27130HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S27130HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
C1
2 pF Chip Capacitor
ATC100B2R0BT500XT
ATC
C2, C6, C7, C8, C9, C10, C11
10 µF, 50 V Chip Capacitors
C5750X5R1H106M
TDK
C3
3 pF Chip Capacitor
ATC100B3R0BT500XT
ATC
C4, C5
3.6 pF Chip Capacitors
ATC100B3R6BT500XT
ATC
C12
470 µF, 63 V Electrolytic Capacitor, Radial
EKME630ELL471MK255
Multicomp
C13
5.6 pF Chip Capacitor
ATC100B5R6BT500XT
ATC
R1, R2
2 KΩ, 1/4 W Chip Resistors
CRCW12062001FKEA
Vishay
R3
10 Ω, 1/4 W Chip Resistor
CRCW120610R1FKEA
Vishay
MRF7S27130HR3 MRF7S27130HSR3
4
RF Device Data
Freescale Semiconductor
C6
C7
C8
VGS
VDD
C4
R1
C12
C3
R3
C2
C1
CUT OUT AREA
R2
C13
C11
C9
C5
C10
MRF7S27130H/HS
Rev. 0
Figure 2. MRF7S27130HR3(HSR3) Test Circuit Component Layout
MRF7S27130HR3 MRF7S27130HSR3
RF Device Data
Freescale Semiconductor
5
Gps, POWER GAIN (dB)
17.8
17.7
21
17.5
17.4
Gps
17.3
23
22
ηD
17.6
24
20
−5
−46
−6
−47
IRL
17.2
−48
−49
17.1
17
2500
ACPR
2525
2550
2575
2600
2625
2650
2675
ACPR (dBc)
17.9
25
VDD = 28 Vdc, Pout = 23 W (Avg.), IDQ = 1500 mA
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth
Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF
−50
2700
−7
−8
−9
−10
IRL, INPUT RETURN LOSS (dB)
18
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
Gps, POWER GAIN (dB)
17.5
33
VDD = 28 Vdc, Pout = 43 W (Avg.), IDQ = 1500 mA
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth
Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF
17.4
29
17.2
Gps
17.1
28
−5
−36
−6
−37
17
IRL
16.9
−38
−39
16.8
16.7
2500
31
30
ηD
17.3
32
ACPR
2525
2550
2575
2600
2625
2650
2675
ACPR (dBc)
17.6
−40
2700
−7
−8
−9
−10
IRL, INPUT RETURN LOSS (dB)
17.7
ηD, DRAIN
EFFICIENCY (%)
Figure 3. WiMAX Broadband Performance @ Pout = 23 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. WiMAX Broadband Performance @ Pout = 43 Watts Avg.
19
−10
Gps, POWER GAIN (dB)
18
17
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ = 2250 mA
2000 mA
1500 mA
1200 mA
16
1000 mA
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 2595 MHz, f2 = 2605 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
15
14
−20
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 2595 MHz, f2 = 2605 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−30
IDQ = 2250 mA
1000 mA
−40
−50
1500 mA
2000 mA
1200 mA
−60
1
10
100
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
500
1
100
10
200
Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF7S27130HR3 MRF7S27130HSR3
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 2595 MHz, f2 = 2605 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−40
3rd Order
−50
5th Order
−60
7th Order
−70
−80
1
100
10
VDD = 28 Vdc, Pout = 130 W (PEP), IDQ = 1500 mA
Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 2600 MHz
−10
−20
IM3−U
−30
IM3−L
−40
IM5−U
IM5−L
IM7−L
−50
IM7−U
−60
10
1
200
100
TWO−TONE SPACING (MHz)
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Intermodulation Distortion Products
versus Output Power
55
−10
VDD = 28 Vdc, IDQ = 1500 mA
f = 2600 MHz, 802.16d, 64 QAM 3/4
4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
50
45
40
35
−30_C
25_C −15
85_C −20
85_C −25
25_C
30
−30
−35
−30_C
−40
25
Gps
20
TC = −30_C −45
−50
15
10
ηD
85_C
ACPR
5
25_C −55
−60
−65
300
0
1
10
ACPR (dBc)
−30
0
IMD, INTERMODULATION DISTORTION (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
−20
100
Pout, OUTPUT POWER (WATTS) AVG. WiMAX
Figure 9. WiMAX, ACPR, Power Gain and Drain
Efficiency versus Output Power
25_C 50
85_C
25_C
17
40
Gps
16
30
85_C
15
20
14
VDD = 28 Vdc
IDQ = 1500 mA
f = 2600 MHz
ηD
13
1
10
10
100
0
300
IDQ = 1500 mA
f = 2600 MHz
17
Gps, POWER GAIN (dB)
−30_C
18
Gps, POWER GAIN (dB)
18
60
TC = −30_C
ηD, DRAIN EFFICIENCY (%)
19
16
15
32 V
14
VDD = 24 V
28 V
13
0
25
50
75
100
125
150
175
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
200
MRF7S27130HR3 MRF7S27130HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
109
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 23 W Avg., and ηD = 20%.
MTTF calculator available at http:/www.freescale.com/rf. Select Tools/
Software/Application Software/Calculators to access the MTTF calcu−
lators by product.
Figure 12. MTTF versus Junction Temperature
WiMAX TEST SIGNAL
100
−10
7 MHz
Channel BW
−20
10
−40
−50
0.1
(dB)
PROBABILITY (%)
Compressed Output
Signal @ 23 W Avg. Pout
1
System Type G
−30
Input Signal
0.01
−70
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz
Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
0
2
4
−60
−80
Point B
Point C
−90
6
8
PEAK−TO−AVERAGE (dB)
Figure 13. OFDM 802.16d Test Signal
10
Point B
Point C
−100 Point D
Point D
−110
−9
−7.2 −5.4
−3.6 −1.8
0
1.8
3.6
5.4
7.2
9
f, FREQUENCY (MHz)
Figure 14. WiMAX Spectrum Mask Specifications
MRF7S27130HR3 MRF7S27130HSR3
8
RF Device Data
Freescale Semiconductor
Zo = 5 Ω
f = 2700 MHz
Zsource
f = 2500 MHz
f = 2700 MHz
Zload
f = 2500 MHz
VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg.
f
MHz
Zsource
W
Zload
W
2500
4.499 - j2.335
2.936 - j4.876
2525
4.382 - j1.944
2.885 - j4.666
2550
4.294 - j1.567
2.838 - j4.467
2575
4.234 - j1.194
2.797 - j4.273
2600
4.209 - j0.820
2.763 - j4.084
2625
4.219 - j0.447
2.733 - j3.903
2650
4.248 - j0.090
2.706 - j3.732
2675
4.304 + j0.261
2.678 - j3.570
2700
4.390 + j0.612
2.652 - j3.410
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MRF7S27130HR3 MRF7S27130HSR3
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
B
G
2X
1
Q
bbb
M
T A
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
3
B
K
2
(FLANGE)
D
bbb
M
T A
B
M
M
M
bbb
N
R
(INSULATOR)
M
T A
B
M
M
ccc
M
T A
S
(LID)
ccc
H
(LID)
B
M
M
T A
B
M
aaa
M
M
T A
M
DIM
A
B
C
D
E
F
G
H
K
M
N
Q
R
S
aaa
bbb
ccc
M
(INSULATOR)
B
M
C
F
E
A
T
A
SEATING
PLANE
INCHES
MIN
MAX
1.335
1.345
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
1.100 BSC
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
.118
.138
0.365
0.375
0.365
0.375
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
33.91
34.16
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
27.94 BSC
1.45
1.70
4.32
5.33
19.66
19.96
19.60
20.00
3.00
3.51
9.27
9.53
9.27
9.52
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
(FLANGE)
CASE 465 - 06
ISSUE G
NI - 780
MRF7S27130HR3
4X U
(FLANGE)
4X Z
(LID)
B
1
K
2X
2
B
(FLANGE)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
D
bbb
M
T A
M
B
M
N
(LID)
ccc
M
R
M
T A
M
B
M
ccc
M
T A
S
(INSULATOR)
bbb
M
T A
M
M
B
M
aaa
M
T A
M
(LID)
B
M
(INSULATOR)
B
M
H
C
3
E
A
A
F
T
SEATING
PLANE
(FLANGE)
CASE 465A - 06
ISSUE H
NI - 780S
MRF7S27130HSR3
DIM
A
B
C
D
E
F
H
K
M
N
R
S
U
Z
aaa
bbb
ccc
INCHES
MIN
MAX
0.805
0.815
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
0.365
0.375
0.365
0.375
−−−
0.040
−−−
0.030
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
20.45
20.70
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
1.45
1.70
4.32
5.33
19.61
20.02
19.61
20.02
9.27
9.53
9.27
9.52
−−−
1.02
−−−
0.76
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
5. SOURCE
MRF7S27130HR3 MRF7S27130HSR3
10
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
Sept. 2007
Description
• Initial Release of Data Sheet
MRF7S27130HR3 MRF7S27130HSR3
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800- 521- 6274 or +1 - 480- 768- 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or 303 - 675- 2140
Fax: 303 - 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
 Freescale Semiconductor, Inc. 2007. All rights reserved.
MRF7S27130HR3 MRF7S27130HSR3
Document Number: MRF7S27130H
Rev. 0, 9/2007
12
RF Device Data
Freescale Semiconductor