FUJITSU SEMICONDUCTOR DATA SHEET DS07-16806-1E 32-bit Microcontroller CMOS FR60Lite MB91220/S Series MB91F223/F223S/MB91V220 ■ OVERVIEW MB91220/S series is a line of single-chip microcontrollers based on a 32-bit high-performance RISC CPU and integrating a variety of I/O resources for embedded control applications. The MB91220/S series is designed to be best suited for embedded applications which require high-speed and high-performance processing power in the CPU, such as DVD players, printers, TV sets, and the PDP control.The MB91220/S series is a line of CPUs in the FR60Lite implemented by FR* family. * : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited. Be sure to refer to the “Check Sheet” for the latest cautions on development. “Check Sheet” is seen at the following support page URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html “Check Sheet” lists the minimal requirement items to be checked to prevent problems beforehand in system development. Copyright©2007 FUJITSU LIMITED All rights reserved MB91220/S Series ■ FEATURES • FR60Lite CPU • 32-bit RISC, load/store architecture, 5-stage pipeline • Maximum operating frequency : 32 MHz (Source oscillation is 4 MHz with x8 multiplier-PLL clock multiplier system) • 16-bit fixed-length instructions (basic instructions) • Instruction execution speed : 1 instruction per cycle • Instruction set optimized for embedded application : Memory-to-memory transfer, bit manipulation, barrel shift instructions etc. • Instructions supported by C language : Function entry/exit instructions, multiple-register load/store instructions. • Register interlock function : Easier assembler coding enabled • Built-in multiplier supported at the instruction level Signed 32-bit multiplication : 5 cycles Signed 16-bit multiplication : 3 cycles • Interrupt (PC/PS save) : 6 cycles (16 priority levels) • Harvard architecture allowing program access and data access to be executed simultaneously. • Instruction set compatible with FR family • Internal Peripheral Functions • Internal ROM size & ROM type Flash Memory : 512 Kbytes (MB91F223/S) • Internal RAM size : 16 Kbytes (MB91F223/S) / 64 Kbytes (MB91V220) • General-purpose ports : up to 120 ports (including 4 input-only ports) • 8/10-bit A/D converter (Sequential comparison type) 8/10-bit resolution : 24 channels Conversion time : 3 µs (16/32 MHz) Set the PLL multiplier and the division ratio of peripheral circuit clocks so that the above conversion time is achieved. 32 MHz : Source oscillation (4 MHz) with ×8 multiplier, divided by 1 16 MHz : Source oscillation with ×8 multiplier, divided by 2 • D/A converter (R-2R type) 8-bit resolution : 2 channels • External interrupt : 8 channels • Bit search module (for REALOS) • LIN-UART (full duplex double buffer type) : 4 channels Synchronous/asynchronous clock operations selectable Sync-break detection Dedicated built-in baud-rate generator • I2C Bus interface* : 2 channels • Stepping motor controller (SMC) : 4 channels 10-bit PWM with 4 high-current outputs for each channel • 8/16-bit PPG timer : 16 channels • 16-bit reload timer : 3 channels • 16-bit free-run timer : 2 channels (ICU/OCU linkage) • 16-bit pulse width counter : 1 channel • Input capture : 4 channels (free-run timers ch.0 and ch.1). ch.0 linked to PWC • Output compare : 2 channels (free-run timer ch.0 ) • LCD controller : SEG0 to SEG31/COM0 to COM3 (shared with port) • 16-bit timebase/watch dog timer (Continued) 2 MB91220/S Series (Continued) • Sound generator : 3 channels • Real-time clock • 32 kHz sub clock (not supported in devices with an S suffix in the part number) • C-CAN : 2 channels • Low power consumption modes : sleep mode, stop mode, watch mode • Package : LQFP-144 (FPT-144P-M08) • CMOS technology : 0.35 µm • Power supply voltage : 5 V (Internal logic : 3.3 V, I/O : 5.0 V (step-down circuit used)) * : Purchase of Fujitsu I2C components conveys a license under the Philips I2C Patent Rights to use, these components in an I2C system provided that the system conforms to the I2C Standard Specification as defined by Philips. 3 MB91220/S Series ■ PRODUCT LINEUP The table below shows the product lineup of the MB91220/S series. Embedded peripheral functions which are not listed are common functions. MB91V220 MB91F223/S ROM/Flash size RAM size External SRAM 512 Kbytes 64 Kbytes 16 Kbytes External interrupt 8 channels DMA Controller 5 channels 8 /10-bit A/D Converter 24 channels D/A Converter 2 channels LIN-UART 4 channels I2C 2 channels Stepping Motor Controller 4 channels 8 /16-bit PPG Timer 16 channels 16-bit Reload Timer 3 channels 16-bit Free-Run Timer 2 channels 16-bit Pulse Width Counter 1 channel Input Capture Unit 4 channels Output Compare Unit 2 channels LCD Controller 4 COM, 32 SEG Sound Generator 3 channels Real Time Clock Yes 32 kHz Sub Clock Addr 16 bits Data 16 bits External bus Others On Chip Debug Support Unit C-CAN 4 Yes : MB91F223 No : MB91F223S Yes Evaluation product Flash memory product DSU4 ⎯ 2 channels 32-message buffer MB91220/S Series ■ PIN ASSIGNMENT P21/SEG1/A01 P22/SEG2/A02 P23/SEG3/A03 P24/SEG4/A04 P25/SEG5/A05 P26/SEG6/A06 P27/SEG7/A07 P30/SEG8/A08 P31/SEG9/A09 P32/SEG10/A10 P33/SEG11/A11 P34/SEG12/A12 P35/SEG13/A13 P36/SEG14/A14 P37/SEG15/A15 X0A X1A VCC VSS VCC3C P10/SEG16/D08 P11/SEG17/D09 P12/SEG18/D10 P13/SEG19/D11 P14/SEG20/D12 P15/SEG21/D13 P16/SEG22/D14 P17/SEG23/D15 P00/SEG24/D00 P01/SEG25/D01 P02/SEG26/D02 P03/SEG27/D03 P04/SEG28/D04 P05/SEG29/D05 P06/SEG30/D06 P07/SEG31/ATGX/D07 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 P20/SEG0/A00 PD7/COM3/PPG7H PD6/COM2/PPG5H PD5/COM1/PPG3H PD4/COM0/PPG1H PD3/IN3/V3 PD2/TIN2/INT2/V2 PD1/TIN1/IN1/V1 PD0/TIN0/IN0/PWC0/INT2/V0 P47/SYSCLK P46/ASX P57/OUT1/RDY P56/OUT0/WR1X P55/SCK5/WR0X P54/SOT5/RDX X0 X1 VSS VCC P53/SIN5/CK1/CS3X P52/SCK4/CS2X P51/SOT4/CS1X P50/SIN4/CK0/CS0X P45/SCK3 P44/SOT3 P43/SIN3/INT1 P42/SCK0 P41/SOT0 P40/SIN0/INT0 PG3/TOT2/PPG6H PG2/TOT1/PPG4H PG1/TOT0/PPG2H P73/TX1 P72/INT7/RX1 P71/TX0 P70/INT6/RX0 (TOP VIEW) 1 2 108 107 3 106 4 5 105 104 6 7 103 102 8 101 9 10 100 99 11 98 12 13 14 97 96 95 15 94 16 93 17 18 92 91 19 20 90 89 21 22 88 87 23 86 24 85 25 26 27 84 83 82 28 81 29 30 80 79 31 32 78 77 33 76 34 35 75 74 36 73 INITX MD0 MD1 MD2 DVSS DVCC PE7/PPG15H/SCL1 PE6/PPG14H/SDA1 PE5/PPG13H/SCL0 PE4/PPG12H/SDA0 PE3/PWM2M2 PE2/PWM2P2 PE1/PWM1M2 PE0/PWM1P2 PA3/PWM2M3 PA2/PWM2P3 PA1/PWM1M3 PA0/PWM1P3 DVSS DVCC PF7/AN15 PF6/AN14 PF5/AN13 PF4/AN12 PF3/AN11 PF2/AN10 PF1/AN9 PF0/AN8 P67/AN7 P66/AN6 P65/AN5 P64/AN4 P63/AN3 P62/AN2 P61/AN1 P60/AN0 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 AVSS/AVRL AVRH AVCC P80/AN16 P81/AN17 P82/AN18 P83/AN19 P84/AN20 P85/AN21/INT3 P86/AN22/INT4 P87/AN23/INT5 P90/DA0 P91/DA1 P92/SGA0 P93/SGO0 P94/SGA1 P95/SGO1 P96/SGA2 P97/SGO2 DVSS DVCC PC3/PWM2M0 PC2/PWM2P0 PC1/PWM1M0 PC0/PWM1P0 PB7/PWM2M1 PB6/PWM2P1 PB5/PWM1M1 PB4/PWM1P1 PB3/PPG11H PB2/PPG10H PB1/PPG9H PB0/PPG8H DVSS DVCC PG0/PPG0H (FPT-144P-M08) 5 MB91220/S Series ■ PIN DESCRIPTIONS Pin No. Pin name I/O circuit type* 129 X0 A Main clock (oscillator) input. 128 X1 A Main clock (oscillator) output. 16 X0A B Sub clock (oscillator) input. 17 X1A B Sub clock (oscillator) output. 108 INITX C External reset input 105 MD2 D Mode pin 2. The setting on this pin determines the basic operation mode. Connect it to VCC or VSS. 106 MD1 D Mode pin 1. The setting on this pin determines the basic operation mode. Connect it to VCC or VSS. 107 MD0 D Mode pin 0. The setting on this pin determines the basic operation mode. Connect it to VCC or VSS. P00 to P06 29 to 35 SEG24 to SEG30 General-purpose I/O port G D00 to D06 SEG31 ATGX General-purpose I/O port G D07 SEG16 to SEG23 G General-purpose I/O port F A00 8 to 15 SEG1 to SEG7 General-purpose I/O port F SEG outputs from LCDC A01 to A07 External address bus bit01 to bit07 P30 to P37 General-purpose I/O port SEG8 to SEG15 F A08 to A15 116 SEG output from LCDC External address bus bit00 P21 to P27 1 to 7 SEG outputs from LCDC External data bus bit08 to bit15 P20 SEG0 External trigger input for A/D converter. General-purpose I/O port D08 to D15 144 SEG output from LCDC External data bus bit07 P10 to P17 21 to 28 SEG output from LCDC External data bus bit00 to bit06 P07 36 Function SEG outputs from LCDC External address bus bit08 to bit15 P40 General-purpose I/O port: Valid when the data input specification is prohibited on UART0. SIN0 UART0 data input. Because this input is used as necessary while UART0 is used for input operation, the port output needs to be disabled except when it is used intentionally. INT0 M External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally. (Continued) 6 MB91220/S Series Pin No. Pin name I/O circuit type* P41 117 I SOT0 P42 118 I SCK0 119 General-purpose I/O port: Valid when the clock output specification is prohibited on UART0. UART0 clock input/output: Valid when the clock output specification is permitted on UART0. SIN3 UART1 data input. Because this input is used as necessary while UART1 is used for input operation, the port output needs to be disabled except when it is used intentionally. M INT1 External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally. P44 General-purpose I/O port: Valid when the data output specification on UART1 is prohibited. I P45 121 I SCK3 P46 ASX I P47 122 UART0 data output: Valid when the clock output specification is permitted on UART0 . General-purpose I/O port: Valid when the data input specification is prohibited on LIN-UART1. SOT3 135 General-purpose I/O port: Valid when the data output specification is prohibited on UART0. P43 120 134 Function SYSCLK LIN-UART1 data output: Valid when the data output specification is permitted on LIN-UART1. General-purpose I/O port: Valid when the clock output specification is prohibited on LIN-UART1. LIN-UART1 clock input/output: Valid when the clock output specification is permitted on LIN-UART1. General-purpose I/O port Address strobe output: Valid when the address strobe output is permitted. General-purpose I/O port I System clock output: Valid when the system clock output specification is permitted. A clock with the same frequency as that external bus operation frequency is output at this pin (Clock output stops at transition to the STOP state). P50 General-purpose I/O port : Valid when the data input specification is prohibited on LIN-UART2. SIN4 LIN-UART2 data input. Because this input is used as necessary while LIN-UART2 is used for input operation, the port output needs to be disabled except when it is used intentionally. CK0 CS0X M External clock input for free-run timer 0 Chip select 0 output: Valid when the chip select 0 is permitted to output. (Continued) 7 MB91220/S Series Pin No. Pin name I/O circuit type* General-purpose I/O port: Valid when the data output specification is prohibited on LIN-UART2. P51 123 SOT4 I General-purpose I/O port: Valid when clock output is prohibited on LIN-UART2. P52 SCK4 I P53 General-purpose I/O port: Valid when the data input specification is prohibited on LIN-UART3. SIN5 LIN-UART3 data input. Because this input is used as necessary while LINUART3 is used for input operation, the port output needs to be disabled except when it is used intentionally. M CK1 External clock input for free-run timer 1 Chip select 3 output: Valid when the output specification is permitted on chip select 3. CS3X General-purpose I/O port: Valid when data output specification is prohibited on LIN-UART3. P54 130 131 SOT5 I External bus read strobe output: Valid at the external bus mode. P55 General-purpose I/O port: Valid when clock output is prohibited on LIN-UART3. SCK5 I OUT0 General-purpose I/O port I P57 RDY Output compare output External bus write strobe output: Valid when the WR1X output is permitted at the external bus mode. WR1X OUT1 LIN-UART3 clock input/output: Valid when the clock output specification is permitted on LIN-UART3. External bus write strobe output: Valid when the WR0X output is permitted at the external bus mode. P56 133 LIN-UART3 data output: Valid when the data output specification is permitted on LIN-UART3. RDX WR0X 132 LIN-UART2 clock input/output: Valid when the clock output specification is permitted on LIN-UART2. Chip select 2 output: Valid when the output specification is permitted on chip select 2. CS2X 125 LIN-UART2 data output: Valid when the data output specification is permitted on LIN-UART2. Chip select 1 output: Valid when the output specification is permitted on chip select 1. CS1X 124 Function General-purpose I/O port J Output compare output External ready input: Valid when the external ready input specification is permitted. (Continued) 8 MB91220/S Series Pin No. Pin name I/O circuit type* P60 to P67 73 to 80 E AN0 to AN7 P70 109 INT6 P71 TX0 I INT7 I P73 TX1 I I E AN16 to AN20 63 AN21 TX0 input pin for CAN0 External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally. General-purpose I/O port TX1 output pin for CAN1 General-purpose I/O port: Valid when analog input specification is prohibited. A/D converter analog inputs: Valid when the analog input is selected in the ADER register. General-purpose I/O port: Valid when analog input specification is prohibited. P85 64 General-purpose I/O port RX1 input pin for CAN1 P80 to P84 69 to 65 External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally. General-purpose I/O port RX1 112 A/D converter analog inputs: Valid when the analog input is selected in the ADER register. RX0 input pin for CAN0 P72 111 General-purpose I/O ports: Valid when analog input specification is prohibited. General-purpose I/O port RX0 110 Function E A/D converter analog inputs: Valid when the analog input is selected in the ADER register. INT3 External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally. P86 General-purpose I/O port: Valid when analog input specification is prohibited. AN22 INT4 E A/D converter analog inputs: Valid when the analog input is selected in the ADER register. External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally. (Continued) 9 MB91220/S Series Pin No. Pin name I/O circuit type* General-purpose I/O port: Valid when analog input specification is prohibited. P87 62 AN23 E 60 59 58 57 56 55 54 91 92 93 94 P90 DA0 P91 DA1 P92 SGA0 P93 SGO0 P94 SGA1 P95 SGO1 P96 SGA2 P97 SGO2 PA0 PWM1P3 PA1 PWM1M3 PA2 PWM2P3 PA3 PWM2M3 L L I I I I I I H H H H PB0 40 PPG8H PPG9H General-purpose I/O port D/A converter analog output General-purpose I/O port D/A converter analog output General-purpose I/O port Sound generator 0 output General-purpose I/O port Sound generator 0 output General-purpose I/O port Sound generator 1 output General-purpose I/O port Sound generator 1 output General-purpose I/O port Sound generator 2 output General-purpose I/O port Sound generator 2 output General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port I PB1 41 A/D converter analog inputs: Valid when the analog input is selected in the ADER register. External interrupt input. Because this input is used as necessary while the pertinent external interrupt is enabled, the pot output need to be disabled except when it is used intentionally. INT5 61 Function PPG timer 8 output: Valid when the output specification is permitted on PPG timer 8. General-purpose I/O port I PPG timer 9 output: Valid when the output specification is permitted on PPG timer 9. (Continued) 10 MB91220/S Series Pin No. Pin name I/O circuit type* PB2 42 PPG10H General-purpose I/O port I PB3 43 44 45 46 47 48 49 50 51 PPG11H PB4 PWM1P1 PB5 PWM1M1 PB6 PWM2P1 PB7 PWM2M1 PC0 PWM1P0 PC1 PWM1M0 PC2 PWM2P0 PC3 PWM2M0 Function PPG timer 10 output: Valid when the output specification is permitted on PPG timer 10. General-purpose I/O port I H H H H H H H H PPG timer 11 output: Valid when the output specification is permitted on PPG timer 11. General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin General-purpose I/O port Stepping motor controller PWM output pin PD0 General-purpose I/O port TIN0 External event input pin for reload timer 0 IN0 136 K PWC0 INT2 V0 Trigger input for input capture 0: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally. PWC0 pulse width counter 0 input: Valid when the PWC0 pulse width counter 0 input is permitted. External interrupt input. Because those inputs are used as necessary while the pertinent external interrupt is enabled, the port outputs need to be disabled except when they are used intentionally. LCD driver power supply input pin (Continued) 11 MB91220/S Series Pin No. 137 Pin name I/O circuit type* PD1 General-purpose I/O port TIN1 External event input pin for reload timer 1 IN1 K V1 138 PD2 General-purpose I/O port TIN2 External event input pin for reload timer 2 IN2 K PD3 General-purpose I/O port IN3 Trigger input for input capture 3: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally. K LCD driver power supply input pin Power supply pin for the embedded ladder resistor. PD4 COM0 General-purpose I/O port F PD5 COM1 General-purpose I/O port F PD6 COM2 General-purpose I/O port F PD7 COM3 General-purpose I/O port F PE0 PWM1P2 COM3 output from LCDC PPG timer 7 output: Valid when the output specification is permitted on PPG timer 7. PPG7H 95 COM2 output from LCDC PPG timer 5 output: Valid when the output specification is permitted on PPG timer 5. PPG5H 143 COM1 output from LCDC PPG timer 3 output: Valid when the output specification is permitted on PPG timer 3. PPG3H 142 COM0 output from LCDC PPG timer 1 output: Valid when the output specification is permitted on PPG timer 1. PPG1H 141 Trigger input for input capture 2: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally. LCD driver power supply input pin V3 140 Trigger input for input capture 1: Valid when input capture trigger input is permitted and an input port is specified. If this pin is selected for input capture input, it is used as necessary for input. Therefore the port output needs to be disabled except when it is used intentionally. LCD driver power supply input pin V2 139 Function H General-purpose I/O port Stepping motor controller PWM output pin (Continued) 12 MB91220/S Series (Continued) Pin No. 96 97 98 Pin name PE1 PWM1M2 PE2 PWM2P2 PE3 PWM2M2 I/O circuit type* H H H PE4 99 PPG12H N N N N PPG0H TOT0 I I I PPG6H External timer output for reload timer 1 PPG timer 4 output: Valid when the output specification is permitted on PPG timer 4. PG3 TOT2 External timer output for reload timer 0 General-purpose I/O port PPG4H 115 PPG timer 0 output: Valid when the output specification is permitted on PPG timer 0. PPG timer 2 output: Valid when the output specification is permitted on PPG timer 2. PG2 TOT1 A/D converter analog inputs: Valid when the analog input is selected in the ADER register. General-purpose I/O port PPG2H 114 PPG timer 15 output: Valid when the output specification is permitted on PPG timer 15. General-purpose I/O port. PG1 113 PPG timer 14 output: Valid when the output specification is permitted on PPG timer 14. General-purpose I/O ports: Valid when analog input is prohibited. E PG0 37 PPG timer 13 output: Valid when the output specification is permitted on PPG timer 13. I2C1 serial clock input/output pin PF0 to PF7 AN8 to AN15 PPG timer 12 output: Valid when the output specification is permitted on PPG timer 12. General-purpose I/O port SCL1 81 to 88 Stepping motor controller PWM output pin I2C1 serial data input/output pin PE7 PPG15H General-purpose I/O port General-purpose I/O port SDA1 102 Stepping motor controller PWM output pin I2C0 serial clock input/output pin PE6 PPG14H General-purpose I/O port General-purpose I/O port SCL0 101 Stepping motor controller PWM output pin I2C0 serial data input/output pin PE5 PPG13H General-purpose I/O port General-purpose I/O port SDA0 100 Function General-purpose I/O port I External timer output for reload timer 2 PPG timer 6 output: Valid when the output specification is permitted on PPG timer 6. * : For information about the I/O circuit type, refer to “■ I/O CIRCUIT TYPE”. 13 MB91220/S Series [Power supply and GND pins] Pin No. Pin name 19, 127 VSS GND pins. The potentials of these pins must be the same. 18, 126 VCC Power supply pins. The potentials of these pins must be the same. 70 AVCC Analog power supply pin for A/D converter 71 AVRH Analog reference power supply pin for A/D converter 72 14 Function AVSS/AVRL Analog GND or analog reference power supply pin for A/D converter 20 VCC3C Capacitor coupling pin for internal regulator 38, 52, 89, 103 DVCC Power supply pins for stepping motor controller 39, 53, 90, 104 DVSS GND pins for stepping motor controller MB91220/S Series ■ I/O CIRCUIT TYPE Group Circuit Type Remarks Clock input For high speed (source oscillation of main clock) • Oscillation circuit • Feedback resistance X0 : approx. 1 MΩ Clock input For low speed (source oscillation of sub clock) • Oscillation circuit • Feedback resistance X0A : approx. 7 MΩ X1 A X0 Standby control X1A B X0A Standby control P-ch P-ch • Hysteresis (CMOS level) input • Pull-up resistor supported Pull-up resistor value = approx. 50 kΩ N-ch • No standby control R C R CMOS hysteresis input (CMOS level) (Continued) 15 MB91220/S Series Group Circuit Type Remarks • Flash memory product Hysteresis input High-voltage control for Flash test supported N-ch N-ch D Control N-ch N-ch R N-ch Mode input Diffused resistor P-ch Digital output N-ch E Digital output • CMOS output (4 mA) • Hysteresis (Automotive level) input (Standby control supported) • Analog input (Analog input is valid when the corresponding ADER bit is set to 1.) R Hysteresis input (Automotive level) Standby control Analog input P-ch Digital output N-ch Digital output F • CMOS output (4 mA) • LCDC output • Hysteresis (Automotive level) input (Standby control provided) R R LCDC output Hysteresis input (Automotive level) Standby control (Continued) 16 MB91220/S Series Group Circuit Type P-ch Digital output N-ch Digital output R G Remarks • CMOS output (4 mA) • LCDC output • Hysteresis (Automotive level) input (Standby control supported) • Hysteresis (TTL level) input (Standby control supported) LCDC output Hysteresis input (Automotive level) R R Hysteresis input (TTL level) Standby control P-ch Digital output • CMOS output High current output for PWM (30 mA) • Hysteresis (Automotive level) input (Standby control supported) N-ch Digital output H R Hysteresis input (Automotive level) Standby control P-ch Digital output • CMOS output (4 mA) • Hysteresis (Automotive level) input (Standby control supported) N-ch I Digital output R Hysteresis input (Automotive level) Standby control (Continued) 17 MB91220/S Series Group Circuit Type Remarks • CMOS output (4 mA) • Hysteresis (Automotive level) input (Standby control supported) • Hysteresis (TTL level) input (Standby control supported) P-ch N-ch R J Hysteresis input (Automotive level) Hysteresis input (TTL level) Standby control R Hysteresis (Automotive level) input (Standby control supported) P-ch N-ch K R Hysteresis input (Automotive level) Standby control (Continued) 18 MB91220/S Series (Continued) Group Circuit Type P-ch Digital output N-ch Digital output L R Remarks • CMOS output (4 mA) • D/A converter output • Hysteresis (automotive level) input (Standby control supported) Analog output R Hysteresis input (Automotive level) STANDBY CONTROL P-ch Digital output N-ch Digital output M R R • CMOS output (4 mA) • Hysteresis (automotive level) input (standby control supported) • Hysteresis (CMOS level) input (Standby control supported) Hysteresis input (Automotive Level) Hysteresis input (CMOS level) STANDBY CONTROL P-ch N-ch N R R Digital output (When I2C is used, P-ch is intercepted.) Digital output • CMOS output (3 mA) • Hysteresis (automotive level) input (Standby control supported) • Hysteresis (CMOS level) input (Standby control supported) Hysteresis input (Automotive Level) Hysteresis input (CMOS level) STANDBY CONTROL 19 MB91220/S Series ■ HANDLING DEVICES • Preventing Latch-up Latch-up may occur in a CMOS IC, if a voltage greater than VCC or less than VSS is applied to input and output pin, or if an above-rating voltage is applied between VCC and VSS pins. When latch-up occurs, it may significantly increase the power supply current, and may cause thermal destruction of an element. When you use a CMOS IC, be very careful not to exceed the maximum rating. • Treatment of Unused Input Pins Do not leave unused input pins open, as this may cause a malfunction. Handle by performing a pull-up or pulldown with a resistance of 2 kΩ or more. An unused I/O pin should be set to the output status and left open. When set to the input status, it should be handled in the same way as an input pin. • Power supply pins If there are multiple VCC and VSS pins, from the point of view of device design pins to be of the same potential are connected inside the device to prevent such malfunctioning as latch-up. However, you must connect all the pins to the external power supply and ground lines to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source to the VCC and VSS pins of this device via a low impedance. Furthermore, it is also advisable to connect a ceramic bypass capacitor of approximately 0.1 µF between VCC and VSS near this device. This device incorporates a regulator. When using the device with 5 V power supply, apply that power supply to the VCC pin and always connect the VCC3C pin to a capacitor with 1 µF or more for the purpose of regulator. • Example of power supply connection 5V 5V 5V VCC DVCC AVCC AVRH AVSS VSS DVSS GND 20 VCC3C 1 µF MB91220/S Series • Crystal oscillator circuit Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the PC board such that X0/X1 pins, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to the ground are placed as near one another as possible. When routing the X0 and X1 signals, they should be shielded for use on the board. Caution must be taken especially when using a pin next to the X0. It is strongly recommended that the PC board artwork be designed such that the X0, X1, X0A and X1A pins are surrounded by ground plane because stable operation can be expected with such a layout. In addition, the X0A/X1A pins must be surrounded by ground plane even if the sub clock is disabled. When using MB91F223S, connect the X0A pin to GND and leave the X1A pin open. Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device. • Mode pins (MD0 to MD2) These pins should be connected directly to VCC or VSS pins. To prevent the device erroneously switching to test mode due to noise, design the PC board such that the distance between the mode pins and VCC or VSS pin is as short as possible and the connection impedance is now. • Operation at start-up Always use the INITX pin to perform a setting initialization reset (INIT) after power-on. Immediately after poweron, hold the low level input to the INITX pin for the stabilization wait time required for the oscillator circuit, to take the oscillation stabilization wait time for the oscillator circuit. For INIT via the INITX pin, the oscillation stabilization wait time setting is initialized to the minimum value. • Source oscillation input upon power-on When power-on, always input the clock for the duration of the oscillation stabilization delay time. • Treatment of power supply pins on A/D converter Connect to ensure “AVCC = AVRH = VCC and AVSS = VSS” even if the A/D converter is not in use. • Power-on sequence for power supply analog input of A/D converter Always supply power to the A/D converter (AVCC and AVRH) and apply analog input (AN0 to AN 23) after turning on the digital power supply (VCC). Also, turn off the power supply for the A/D converter and analog input before turning off the digital power supply (VCC). AVR should not exceed AVCC when turning on and off. Even when using a pin shared with analog input as an input port, ensure that the input voltage does not exceed AVCC. • Handling power supply for high-current output buffer pin (DVCC, DVSS) Always apply power to high-current output buffer pins (DVCC) after turning on the digital power supply (VCC). In addition, turn off the power supply for the high-current output buffer pins before turning off the digital power supply (VCC). Apply the same power as for high-current output buffer pins even when using such pins as general-purpose ports (There is no problem in turning on or off the power supply for the high-current output buffer pins and the digital power supply at the same time). Always use the GND pin (DVSS) for the high-current output buffer pin at the same potential as the digital GND pin (VSS). 21 MB91220/S Series • Switching from main clock mode to sub clock mode or stop mode Always stop the main clock after switching the main clock mode to the sub clock mode or stop mode. Also secure the oscillation stabilization wait time when returning from the sub clock mode or stop mode to the main clock mode. • Flash write Note that Flash write is not possible in the sub mode. 22 MB91220/S Series ■ BLOCK DIAGRAM FR 60Lite CPU Core 32 DSU*2 32 5 channels DMAC Bit search 32 Flash 512 Kbytes Bus converter RAM 64 Kbytes/16 Kbytes X0, X1 X0A, X1A*1 MD0 to MD2 INITX 16 32 adapter Clock control 16 Interrupt controller INT0 to INT7 8 channels External interrupt 2 channels C-CAN PORT I/F 3 channels Reload timer 1 channel PWC timer 16 channels PPG timer IN0 to IN3 OUT0, OUT1 CK0, CK1 SGA0 to SGA2 SGO0 to SGO2 ATGX AVCC/AVSS AVRH AN0 to AN23 SIN0,SIN3 to SIN5 SOT0,SOT3 to SOT5 SCK0,SCK3 to SCK5 4 channels Input capture ICU2 ICU3 ICU0 ICU1 2 channels Output compare OCU0 OCU1 2 channels Free-run timer TIN0 to TIN2 TOT0 to TOT2 PWC0 PPG0H to PPG15H CPU detect reset 4 channels Stepper motor controller 24 channels A/D converter 4 channels LIN-UART PORT Real time clock FRT0 FRT1 3 channels Sound Generator RX0, RX1 TX0, TX1 32SEG x 4COM LCD controller 2 channels I2C 2 channels D/A converter PWM1P0,PWM1P2 PWM1M0,PWM2P2 PWM2P0,PWM2M2 PWM2M0,PWM1M2 PWM1P1, PWM1P3 PWM1M1, PWM1M3 PWM2P1, PWM2P3 PWM2M1, PWM2M3 COM0 to COM3 SEG0 to SEG31 SDA0/SDA1 SCL0/SCL1 DA0/DA1 *1 : The devices with an S suffix in the part number does not support the sub-block. *2 : DSU is built into the MB91V220 only. 23 MB91220/S Series ■ MEMORY SPACE • Memory space The FR family has 4 Gbytes logical address space (232 addresses) linearly accessible to the CPU space. • Direct addressing area The following address space areas are used as I/O areas. These areas are called direct addressing areas, in which the address of an operand can be specified directly during on instruction. The direct area varies depending on the size of data to be accessed as follows. → Byte data access : 000H to 0FFH → Halfword data access : 000H to 1FFH → Word data access : 000H to 3FFH 24 MB91220/S Series ■ MEMORY MAP MB91V220 Single chip mode Internal ROM External ROM external bus mode external bus mode I/O I/O I/O addressing area I/O I/O I/O Refer to “■ I/O MAP”. Access prohibited Access prohibited Access prohibited I/O (C-CAN) I/O (C-CAN) I/O (C-CAN) 0003 0000H 0004 0000H Access prohibited Access prohibited Access prohibited Internal RAM 64 KB Internal RAM 64 KB Internal RAM 64 KB 0005 0000H Access prohibited Access prohibited Emulation SRAM area Emulation SRAM area Access prohibited External area 0000 0000H Direct 0000 0400H 0001 0000H 0002 0000H 0002 01B4H Access prohibited 0008 0000H External area 0010 0000H FFFF FFFFH 25 MB91220/S Series MB91F223/S Single chip mode Internal ROM External ROM external bus mode external bus mode 0000 0000H Direct I/O I/O I/O addressing area I/O I/O I/O Refer to “■ I/O MAP”. Access prohibited Access prohibited Access prohibited I/O (C-CAN) I/O (C-CAN) I/O (C-CAN) 0003 C000H 0004 0000H Access prohibited Access prohibited Access prohibited Internal RAM 16 KB Internal RAM 16 KB Internal RAM 16 KB 0005 0000H Access prohibited Access prohibited Flash memory area 512 Kbytes Flash memory area 512 Kbytes Access prohibited External area 0000 0400H 0001 0000H 0002 0000H 0002 01B4H Access prohibited 0008 0000H 0010 0000H External area FFFF FFFFH Note : Each mode is set depending on the mode vector fetch after INITX is negated. For mode settings, refer to “■ MODE SETTINGS”. 26 MB91220/S Series ■ MODE SETTINGS The FR family, sets the operation mode using mode pins (MD2 to MD0) and mode data. • Mode pins The mode pins (MD2 to MD0) specify how the mode vector fetch and reset vector fetch is performed. Other settings than these in the table are prohibited. Mode pin Mode name MD2 MD1 MD0 0 0 0 Reset vector access area Internal ROM mode vector Internal • Mode data Data written to the internal mode register (MODR) by mode vector fetch is called mode data. After an operating mode has been set in the mode register the device operates in that operating mode. The mode data is set by all reset sources. User programs cannot set data to the mode register. Details of mode data bit31 bit30 bit29 bit28 bit27 bit26 bit25 bit24 0 0 0 0 0 ROMA WTH1 WTH2 Operating mode setting bits Bit 31 to bit 27 are reserved. Always set the value to “00000B”. Otherwise, the operation is not guaranteed. [bit26] ROMA (Internal ROM enabling bit) This bit specifies whether to enable internal ROM area. ROMA Function Remarks 0 External ROM mode Internal F-bus RAM is enabled, and the internal ROM area (80000H to 100000H) becomes an external area. 1 Internal ROM mode Internal ROM area is enabled. [bit25, bit24] WTH1, WTH0 (bus width setting bits) Specify the bus width for the external bus mode. In the external bus mode, this value is set to DBW1 and DBW0 bits in ACR0 (CS0 area). WTH1 WTH0 Function 0 0 8-bit bus width 0 1 16-bit bus width 1 0 ⎯ 1 1 Single chip mode 27 MB91220/S Series Note : Mode data set in the mode vector must be placed as byte data at 000FFFF8H. Place the data in the most significant byte from bit 31 to bit 24 as the FR family uses the big endian system for byte endian. bit Incorrect Correct 24 23 16 15 8 7 0 000FFFF8H XXXXXXXX XXXXXXXX XXXXXXXX Mode Data 000FFFF8H Mode Data XXXXXXXX XXXXXXXX XXXXXXXX 000FFFFCH 28 31 Reset vector MB91220/S Series ■ I/O MAP The following table shows the correspondence between the memory space area and each register of the peripheral resource. [How to read the map] Address 000000H Register +0 +1 +2 +3 PDR0 [R/W] B XXXXXXXX PDR1 [R/W] B XXXXXXXX PDR2 [R/W] B XXXXXXXX PDR3 [R/W] B XXXXXXXX Block T-unit Port data register Read/Write attribute, Access unit (B : byte, H : halfword, W : word) Initial value after reset Register name (First-column register at address 4n; second-column register at 4n + 1, etc.) Location of left-most register (When using word access, the register in column 1 is in the MSB side of the data.) Note : Initial values of register bits are represented as follows : “ 1 ” : Initial value “1” “ 0 ” : Initial value “0” “ X ” : Initial value “undefined” “-” : No physical register present at this location Access by any undescribed data access attribute is prohibited. 29 MB91220/S Series Address Register +0 +1 +2 +3 00000000H PDR0[R/W] B,H XXXXXXXX PDR1[R/W] B,H XXXXXXXX PDR2[R/W] B,H XXXXXXXX PDR3[R/W] B,H XXXXXXXX 00000004H PDR4[R/W] B,H XXXXXXXX PDR5[R/W] B,H XXXXXXXX PDR6[R/W] B,H XXXXXXXX PDR7[R/W] B,H ----XXXX 00000008H PDR8[R/W] B,H XXXXXXXX PDR9[R/W] B,H XXXXXXXX PDRA[R/W] B,H ----XXXX PDRB[R/W] B,H XXXXXXXX 0000000CH PDRC[R/W] B,H ----XXXX PDRD[R/W] B,H 0000XXXX PDRE[R/W] B,H XXXXXXXX PDRF[R/W] B,H XXXXXXXX 00000010H PDRG[R/W] B,H ----XXXX - - - 00000014H to 0000003CH - Block Port Data Register Reserved 00000040H EIRR0 [R/W] B,H,W XXXXXXXX ENIR0 [R/W] B,H,W 00000000 ELVR0 [R/W] B,H,W 00000000 00000000 External Interrupt 00000044H DICR [R/W] B,H,W -------0 HRCL[R/W] B 0--11111 - Delayed Interrupt 00000048H 0000004CH TMRLR0[W] H,W XXXXXXXX XXXXXXXX - TMR0[R] H,W XXXXXXXX XXXXXXXX TMCSR0[R/W] B,H,W ----0000 00000000 Reserved 00000050H TMRLR1[W] H,W XXXXXXXX XXXXXXXX TMR1[R] H,W XXXXXXXX XXXXXXXX 00000054H - TMCSR1[R/W] B,H,W ----0000 00000000 00000058H TMRLR2[W] H,W XXXXXXXX XXXXXXXX TMR2[R] H,W XXXXXXXX XXXXXXXX - TMCSR2[R/W] B,H,W ----0000 00000000 0000005CH 00000060H to 00000064H 00000068H 0000006CH to 0000007CH DACR1[R/W] B, H, W -------0 DACR0[R/W] B, H, W -------0 Reload Timer 1 Reload Timer 2 Reserved DADR1[R/W] B, H, W XXXXXXXX - Reload Timer 0 DADR0[R/W] B, H, W XXXXXXXX DAC Reserved (Continued) 30 MB91220/S Series Address Register +0 +1 +2 +3 00000080H - SGDBL0[R/W] B,H,W -------0 00000084H SGAR0[R/W] B,H,W 00000000 SGFR0[R/W] B,H,W XXXXXXXX 00000088H - SGDBL1[R/W] B,H,W -------0 0000008CH SGAR1[R/W] B,H,W 00000000 SGFR1[R/W] B,H,W XXXXXXXX 00000090H - SGDBL2[R/W] B,H,W -------0 00000094H SGAR2[R/W] B,H,W 00000000 SGFR2[R/W] B,H,W XXXXXXXX 00000098H LCDCMR[R/W] B,H,W ----0000 - 0000009CH VRAM0 [R/W] B,H,W XXXXXXXX VRAM1[R/W] B,H,W XXXXXXXX VRAM2 [R/W] B,H,W XXXXXXXX VRAM3 [R/W] B,H,W XXXXXXXX 000000A0H VRAM4 [R/W] B,H,W XXXXXXXX VRAM5 [R/W] B,H,W XXXXXXXX VRAM6 [R/W] B,H,W XXXXXXXX VRAM7 [R/W] B,H,W XXXXXXXX 000000A4H VRAM8 [R/W] B,H,W XXXXXXXX VRAM9 [R/W] B,H,W XXXXXXXX VRAM10[R/W] B,H,W XXXXXXXX VRAM11[R/W] B,H,W XXXXXXXX 000000A8H VRAM12[R/W] B,H,W XXXXXXXX VRAM13[R/W] B,H,W XXXXXXXX VRAM14[R/W] B,H,W XXXXXXXX VRAM15[R/W] B,H,W XXXXXXXX SGCR0[R/W] B,H,W 0-----00 000--000 SGTR0[R/W] B,H,W XXXXXXXX SGDR0[R/W] B,H,W XXXXXXXX SGCR1[R/W] B,H,W 0-----00 000--000 SGTR1[R/W] B,H,W XXXXXXXX SGDR1[R/W] B,H,W XXXXXXXX SGCR2[R/W, R] B,H,W 0------00 000--000 SGTR2[R/W] B,H,W XXXXXXXX SGDR2[R/W] B,H,W XXXXXXXX - 000000B0H SCR3 [R/W] B,H,W SMR3 [R/W] B,H,W SSR3 [R/W] B,H,W RDR3 [R/W] B,H,W 00000000 00000000 00001000 00000000 000000B8H 000000BCH ESCR3[R/W] B,H,W 00000X00 ECCR3[R/ W] B,H,W 000000XX Sound Generator 0 Sound Generator 1 Sound Generator 2 LCR0 [R/W] B,H,W LCR1 [R/W] B,H,W 00010000 00000000 000000ACH 000000B4H Block LCD Controller Driver Reserved BGR13[R/W] B,H,W XXXXXXXX BGR03[R/W] B,H,W XXXXXXXX LIN-UART1 SCR4 [R/W] B,H,W SMR4 [R/W] B,H,W SSR4 [R/W] B,H,W RDR4 [R/W] B,H,W 00000000 00000000 00001000 00000000 ESCR4[R/W] B,H,W 00000X00 ECCR4[R/W] B,H,W 000000XX BGR14[R/W] B,H,W XXXXXXXX BGR04[R/W] B,H,W XXXXXXXX LIN-UART2 (Continued) 31 MB91220/S Series Address 000000C0H 000000C4H 000000C8H 000000CCH Register +0 +1 +2 +3 Block SCR5 [R/W] B,H,W SMR5 [R/W] B,H,W SSR5 [R/W] B,H,W RDR5 [R/W] B,H,W 00000000 00000000 00001000 00000000 ESCR5[R/W] B,H,W 00000X00 ECCR5[R/W] B,H,W 000000XX SCR0 [R/W] B,H,W SMR0 [R/W] B,H,W 00000000 00000000 ESCR0[R/W] B,H,W 00000X00 ECCR0[R/W] B,H,W 000000XX 000000D0H BGR15[R/W] B,H,W XXXXXXXX BGR05 [R/W] B,H,W XXXXXXXX SSR0 [R/W, R] B,H,W 00001000 RDR0 [R/W] B,H,W 00000000 BGR10[R/W] B,H,W XXXXXXXX BGR00[R/W] B,H,W XXXXXXXX - LIN-UART3 LIN-UART0 Reserved 000000D4H TCDT0 [R/W] H,W 00000000 00000000 - TCCS0 [R/W] B,H,W 00000000 16-bit Free-Run Timer 0 000000D8H TCDT1 [R/W] H,W 00000000 00000000 - TCCS1 [R/W] B,H,W 00000000 16-bit Free-Run Timer 1 000000DCH to 000000E0H 000000E4H 000000E8H 000000ECH 000000F0H IPCP1 [R] H,W XXXXXXXX XXXXXXXX - 0000010CH 00000110H 00000114H to 0000012CH - IPCP3 [R] H,W XXXXXXXX XXXXXXXX ICS01 [R/W] B,H,W 00000000 IPCP2 [R] H,W XXXXXXXX XXXXXXXX - 000000F4H to 00000104H 00000108H IPCP0 [R] H,W XXXXXXXX XXXXXXXX - - Reserved - ICS23 [R/W] B,H,W 00000000 OCCP1 [R/W] H,W XXXXXXXX XXXXXXXX - 16-bit ICU 0, 1 16-bit ICU 2, 3 Reserved OCCP0 [R/W] H,W XXXXXXXX XXXXXXXX - - - 16-bit OCU 0, 1 OCS01 [R/W] B,H,W 11101100 00001100 - - Reserved (Continued) 32 MB91220/S Series Address Register +0 +1 +2 +3 00000130H PWCSR0[R/W] B,H,W 0000000X 00000000 PWCR0[R] H,W 00000000 00000000 00000134H - - 00000138H PDIVR0[R/W] B,H,W -----000 - 0000013CH to 00000140H WTDBL [R/W] B -------0 - 00000148H - 0000014CH WTHR [R/W] B,H ---XXXXX 00000150H PWC - - - 00000144H Reserved WTCR [R/W] B,H 00000000 000-00-0 WTBR [R/W] B ---XXXXX XXXXXXXX XXXXXXXX WTMR [R/W] B,H --XXXXXX ADERH[R/W] B,H,W 11111111 11111111 WTSR [R/W] B --XXXXXX Real Time Clock - ADERL[R/W] B,H,W 11111111 11111111 00000154H ADCS1[R/W] B,H,W 00000000 ADCS0[R/W] B,H,W 00000000 ADCR1[R] B,H,W ------XX ADCR0[R] B,H,W XXXXXXXX 00000158H ADCT1[R/W] B,H,W 00010000 ADCT0[R/W] B,H,W 00101100 ADSCH[R/W] B,H,W ---00000 ADECH[R/W] B,H,W ---00000 0000015CH CUCR[R/W] B,H,W -------- ---0--00 CUTD[R/W] B,H,W 10000000 00000000 00000160H CUTR1[R] B,H,W -------- 00000000 CUTR2[R] B,H,W 00000000 00000000 00000164H PWC20[R/W] H,W ------XX XXXXXXXX PWC10[R/W] H,W ------XX XXXXXXXX 00000168H - PWC21[R/W] H,W ------XX XXXXXXXX 0000016CH 00000170H - PWC1[R/W] B -0000--0 PWC22[R/W] H,W ------XX XXXXXXXX 00000174H 00000178H PWC0[R/W] B -0000--0 - PWC2[R/W] B -0000--0 Block PWS20[R/W] B,H,W -0000000 PWS10[R/W] B,H,W --000000 ADC Clock Calibrator SMC0 PWC11[R/W] H,W ------XX XXXXXXXX PWS21[R/W] B,H,W -0000000 PWS11[R/W] B,H,W --000000 SMC1 PWC12[R/W] H,W ------XX XXXXXXXX PWS22[R/W] B,H,W -0000000 PWS12[R/W] B,H,W --000000 SMC2 (Continued) 33 MB91220/S Series Address Register +0 - PWS23[R/W] B,H,W -0000000 PWC3[R/W] B -0000--0 PWS13[R/W] B,H,W --000000 CANPRE[R/W] B,H,W 00000000 Reserved 000001ACH 000001B0H +3 TRG0[R/W] B,H,W 00000000 - - - REVC0[R/W] B,H,W 00000000 PRLH0[R/W]B,H,W PRLL0[R/W]B,H,W PRLH1[R/W]B,H,W PRLL1[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001B8H PRLH2[R/W]B,H,W PRLL2[R/W]B,H,W PRLH3[R/W]B,H,W PRLL3[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX PPGC0[R/W] B,H,W 0000000X PPGC1[R/W] B,H,W 0000000X CAN Prescaler Reserved 000001B4H 000001BCH SMC3 Reserved - Block PWC13[R/W] H,W ------XX XXXXXXXX 00000184H to 000001A4H 000001A8H +2 PWC23[R/W] H,W ------XX XXXXXXXX 0000017CH 00000180H +1 PPGC2[R/W] B,H,W 0000000X PPGC3[R/W] B,H,W 0000000X 000001C0H PRLH4[R/W]B,H,W PRLL4[R/W]B,H,W PRLH5[R/W]B,H,W PRLL5[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001C4H PRLH6[R/W]B,H,W PRLL6[R/W]B,H,W PRLH7[R/W]B,H,W PRLL7[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001C8H PPGC4[R/W] B,H,W 0000000X PPGC5[R/W] B,H,W 0000000X PPGC6[R/W] B,H,W 0000000X PPGC7[R/W] B,H,W 0000000X 000001CCH - - - - 000001D0H TRG1[R/W] B,H,W 00000000 - REVC1[R/W] B,H,W 00000000 - 000001D4H PRLH8[R/W]B,H,W PRLL8[R/W]B,H,W PRLH9[R/W]B,H,W PRLL9[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001D8H PRLHA[R/W]B,H,W PRLLA[R/W]B,H,W PRLHB[R/W]B,H,W PRLLB[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001DCH PPGC8[R/W] B,H,W 0000000X PPGC9[R/W] B,H,W 0000000X PPGCA[R/W] B,H,W 0000000X PPGCB[R/W] B,H,W 0000000X 000001E0H PRLHC[R/W] B,H,W XXXXXXXX PRLLC[R/W]B,H,W XXXXXXXX PRLHD[R/W] B,H,W XXXXXXXX PRLLD[R/W]B,H,W XXXXXXXX PPG0 PPG1 (Continued) 34 MB91220/S Series Address 000001E4H Register +0 +1 +2 +3 Block PRLHE[R/W]B,H,W PRLLE[R/W]B,H,W PRLHF[R/W]B,H,W PRLLF[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000001E8H PPGCC[R/W] B,H,W 0000000X PPGCD[R/W] B,H,W 0000000X PPGE[R/W]B,H,W 0000000X PPGCF[R/W] B,H,W 0000000X 000001ECH - - - - 000001F0H to 000001FCH - 00000200H DMACA0[R/W] B,H,W * 00000000 0000XXXX XXXXXXXX XXXXXXXX 00000204H DMACB0[R/W] B,H,W 00000000 00000000 XXXXXXXX XXXXXXXX 00000208H DMACA1[R/W] B,H,W * 00000000 0000XXXX XXXXXXXX XXXXXXXX 0000020CH DMACB1[R/W] B,H,W 00000000 00000000 XXXXXXXX XXXXXXXX 00000210H DMACA2[R/W] B,H,W * 00000000 0000XXXX XXXXXXXX XXXXXXXX 00000214H DMACB2[R/W] B,H,W 00000000 00000000 XXXXXXXX XXXXXXXX 00000218H DMACA3[R/W] B,H,W * 00000000 0000XXXX XXXXXXXX XXXXXXXX 0000021CH DMACB3[R/W] B,H,W 00000000 00000000 XXXXXXXX XXXXXXXX 00000220H DMACA4[R/W] B,H,W * 00000000 0000XXXX XXXXXXXX XXXXXXXX 00000224H DMACB4[R/W] B,H,W 00000000 00000000 XXXXXXXX XXXXXXXX 00000228H to 0000023CH Reserved 00000240H DMACR[R/W] B 0XX00000 XXXXXXXX XXXXXXXX XXXXXXXX 00000244H to 000003ECH - PPG1 Reserved DMAC Reserved (Continued) 35 MB91220/S Series Address Register +0 +1 +2 +3 000003F0H BSD0 [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000003F4H BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000003F8H BSDC [W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 000003FCH BSRR [R] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00000400H DDR0[R/W] B,H,W DDR1[R/W] B,H,W DDR2[R/W] B,H,W DDR3[R/W] B,H,W 00000000 00000000 00000000 00000000 00000404H DDR4[R/W] B,H,W DDR5[R/W] B,H,W DDR6[R/W] B,H,W DDR7[R/W] B,H,W 00000000 00000000 00000000 ----0000 00000408H DDR8[R/W] B,H,W DDR9[R/W] B,H,W DDRA[R/W] B,H,W DDRB[R/W] B,H,W 00000000 00000000 ----0000 00000000 0000040CH DDRC[R/W] B,H,W DDRD[R/W] B,H,W DDRE[R/W] B,H,W DDRF[R/W] B,H,W ----0000 1111---00000000 00000000 00000410H DDRG[R/W] B,H,W ----0000 - 00000414H to 0000041CH - Bit Search Data Direction Register - - Reserved 00000420H PFR0[R/W] B,H,W 00000000 PFR1[R/W] B,H,W 00000000 PFR2[R/W] B,H,W 00000000 PFR3[R/W] B,H,W 00000000 00000424H PFR4[R/W] B,H,W 00000000 PFR5[R/W] B,H,W 00000000 Reserved PFR7[R/W] B,H,W ----0000 00000428H PFR8[R/W] B,H,W 00000000 PFR9[R/W] B,H,W 00000000 PFRA[R/W] B,H,W ----0000 0000042CH PFRC[R/W] B,H,W PFRD[R/W] B,H,W PFRE[R/W] B,H,W ----0000 00000000 00000000 00000430H PFRG[R/W] B,H,W ----0000 - Block - PFRB[R/W] B,H,W Port Function Register 00000000 PFRF[R/W] B,H,W 00000000 - 00000434H to 0000043CH - 00000440H ICR00[R/W] B,H,W ICR01[R/W] B,H,W ICR02[R/W] B,H,W ICR03[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000444H ICR04[R/W] B,H,W ICR05[R/W] B,H,W ICR06[R/W] B,H,W ICR07[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000448H ICR08[R/W] B,H,W ICR09[R/W] B,H,W ICR10[R/W] B,H,W ICR11[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 0000044CH ICR12[R/W] B,H,W ICR13[R/W] B,H,W ICR14[R/W] B,H,W ICR15[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 Reserved Interrupt Control Unit (Continued) 36 MB91220/S Series Address Register +0 +1 +2 +3 00000450H ICR16[R/W] B,H,W ICR17[R/W] B,H,W ICR18[R/W] B,H,W ICR19[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000454H ICR20[R/W] B,H,W ICR21[R/W] B,H,W ICR22[R/W] B,H,W ICR23[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000458H ICR24[R/W] B,H,W ICR25[R/W] B,H,W ICR26[R/W] B,H,W ICR27[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 0000045CH ICR28[R/W] B,H,W ICR29[R/W] B,H,W ICR30[R/W] B,H,W ICR31[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000460H ICR32[R/W] B,H,W ICR33[R/W] B,H,W ICR34[R/W] B,H,W ICR35[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000464H ICR36[R/W] B,H,W ICR37[R/W] B,H,W ICR38[R/W] B,H,W ICR39[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000468H ICR40[R/W] B,H,W ICR41[R/W] B,H,W ICR42[R/W] B,H,W ICR43[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 0000046CH ICR44[R/W] B,H,W ICR45[R/W] B,H,W ICR46[R/W] B,H,W ICR47[R/W] B,H,W ---11111 ---11111 ---11111 ---11111 00000470H to 0000047CH - 00000480H 00000484H CLKR [W] B,H,W 00000000 WPR [R/W] B,H,W XXXXXXXX DIVR0 [R/W] B,H,W 00000011 00000488H - - OSCCR [R/W] B X000XXX0 00000490H 00000494H to 000004ACH CTBR [W] B,H,W XXXXXXXX DIVR1 [R/W] B,H,W 00000000 - Clock Control Unit Clock Control Unit Reserved OSCR [R/W] B 000--001 Interrupt Control Unit Reserved RSRR [R/W] B,H,W STCR [R/W] B,H,W TBCR [R/W] B,H,W 10000000 00110011 00XXXX11 0000048CH Block Reserved - Reserved (Continued) 37 MB91220/S Series Address Register +0 +1 +2 +3 000004B0H - TRG2[R/W] B,H,W 00000000 - REVC2[R/W] B,H,W 00000000 00000B4H PRLHG[R/W] B,H,W 00000000 PRLLG[R/W]B,H,W XXXXXXXX PRLHH[R/W] B,H,W XXXXXXXX PRLLH[R/W]B,H,W XXXXXXXX 000004B8H PRLHI[R/W]B,H,W 00000000 000004BCH PPGCG[R/W] B,H,W 0000000X 000004C0H PRLLI[R/W]B,H,W PRLHJ[R/W]B,H,W PRLLJ[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX PPGCH[R/W] B,H,W 0000000X PPGCI[R/W]B,H,W PPGCJ[R/W]B,H,W 0000000X 0000000X PRLHM[R/W] B,H,W 00000000 PRLLM[R/W]B,H,W XXXXXXXX PRLHN[R/W] B,H,W XXXXXXXX PRLLN[R/W]B,H,W XXXXXXXX 000004C8H PPGCK[R/W] B,H,W 0000000X PPGCL[R/W] B,H,W 0000000X PPGCM[R/W] B,H,W 0000000X PPGCN[R/W] B,H,W 0000000X REVC3[R/W] B,H,W 00000000 - 000004CCH - 000004D0H TRG3[R/W] B,H,W 00000000 000004D4H PRLHO[R/W] B,H,W 00000000 PRLLO[R/W]B,H,W PRLHP[R/W]B,H,W PRLLP[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX 000004D8H PRLHQ[R/W] B,H,W 00000000 PRLLQ[R/W]B,H,W XXXXXXXX PRLHR[R/W] B,H,W XXXXXXXX PRLLR[R/W]B,H,W XXXXXXXX 000004DCH PPGCO[R/W] B,H,W 0000000X PPGCP[R/W] B,H,W 0000000X PPGCQ[R/W] B,H,W 0000000X PPGCR[R/W] B,H,W 0000000X - PPG3 PRLHS[R/W]B,H,W PRLLS[R/W]B,H,W PRLHT[R/W]B,H,W PRLLT[R/W]B,H,W 00000000 XXXXXXXX XXXXXXXX XXXXXXXX 000004E4H PRLHU[R/W] B,H,W 00000000 000004E8H PPGCS[R/W] B,H,W 0000000X 000004ECH PPG2 PRLHK[R/W]B,H,W PRLLK[R/W]B,H,W PRLHL[R/W]B,H,W PRLLL[R/W]B,H,W 00000000 XXXXXXXX XXXXXXXX XXXXXXXX 000004C4H 000004E0H Block PRLLU[R/W]B,H,W PRLHV[R/W]B,H,W PRLLV[R/W]B,H,W XXXXXXXX XXXXXXXX XXXXXXXX PPGCT[R/W] B,H,W 0000000X PPGCU[R/W] B,H,W 0000000X PPGCV[R/W] B,H,W 0000000X (Continued) 38 MB91220/S Series Address Register +0 +1 000004F0H to 000004F8H 000004FCH +2 +3 PSCR[W] B XXXXXXXX - 00000500H to 0000053CH Reserved - - PILR0[R/W] B 00000000 PILR1[R/W] B 00000000 Reserved Reserved 00000544H PILR4[R/W] B 00000000 PILR5[R/W] B 00000000 Reserved - PILRE[R/W] B 00000000 Reserved 0000054CH - - 00000550H - 00000554H to 0000055CH - 00000560H IBCR0[R/W] B,H,W 00000000 IBSR0[R] B,H,W 00000000 00000564H ITMKH0[R/W] B,H,W 00----11 ITMKL0[R/W] B,H,W 11111111 00000568H - 0000056CH IBCR1[R/W] B,H,W 00000000 IBSR1[R] B,H,W 00000000 00000570H ITMKH1[R/W] B,H,W 00----11 ITMKL1[R/W] B,H,W 11111111 00000574H - 00000580H to 000005FCH Reserved ITBAH0[R/W] B,H,W ------00 ITBAL0[R/W] B,H,W 00000000 ISMK0[R/W] B,H,W ISBA0[R/W] B,H,W 01111111 -0000000 ITBAH1[R/W] B,H,W ------00 I2C0 ITBAL1[R/W] B,H,W 00000000 ISMK1[R/W] B,H,W ISBA1[R/W] B,H,W 01111111 -0000000 I2C1 IDAR1[R/W] B,H,W ICCR1[R/W] B,H,W IDBL1[R/W] B,H,W 00000000 -0011111 -------0 - Reserved Port Input Level Select Register IDAR0[R/W] B,H,W ICCR0[R/W] B,H,W IDBL0[R/W] B,H,W 00000000 -0011111 -------0 00000578H 0000057CH Port Input Level Select Register Reserved 00000540H 00000548H Block LVRC[R/W] B,H,W 00011000 Reserved Reserved - Reserved Detection of CPU operation Reserved (Continued) 39 MB91220/S Series Address Register +0 +1 +2 +3 00000600H Reserved Reserved EPFR2[R/W] B,H,W 00000000 EPFR3[R/W] B,H,W 00000000 00000604H EPFR4[R/W] B,H,W 11111111 EPFR5[R/W] B,H,W 00000000 - EPFR7[R/W] B,H,W ----0000 00000608H EPFR8[R/W] B,H,W 00000000 EPFR9[R/W] B,H,W 00000000 - - 0000060CH - EPFRD[R/W] B,H,W 00000000 EPFRE[R/W] B,H,W 00000000 EPFRF[R/W] B,H,W 00000000 00000610H EPFRG[R/W] B,H,W ----0000 - - - 00000614H to 0000063CH ASR0 [R/W] B,H,W 00000000 00000000 ACR0 [R/W] B,H,W 1111XX00 00000000 00000644H ASR1 [R/W] B,H,W XXXXXXXX XXXXXXXX ACR1 [R/W] B,H,W XXXXXXXX XXXXXXXX 00000648H ASR2 [R/W] B,H,W XXXXXXXX XXXXXXXX ACR2 [R/W] B,H,W XXXXXXXX XXXXXXXX 0000064CH ASR3 [R/W] B,H,W XXXXXXXX XXXXXXXX ACR3 [R/W] B,H,W XXXXXXXX XXXXXXXX Reserved T-unit 00000660H AWR0 [R/W] B,H,W 01111111 11111111 AWR1 [R/W] B,H,W XXXXXXXX XXXXXXXX 00000664H AWR2 [R/W] B,H,W XXXXXXXX XXXXXXXX AWR3 [R/W] B,H,W XXXXXXXX XXXXXXXX 00000668H to 0000067CH 00000680H Reserved CSER[R/W] B,H,W XXXX0001 - 00000684H to 000007F8H 000007FCH I/O port Reserved 00000640H 00000650H to 0000065CH Block - - - MODR * Reserved - - (Continued) 40 MB91220/S Series Address Register +0 +1 00000800H to 00000FFCH +2 +3 Block Reserved 00001000H DMASA0[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001004H DMADA0[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001008H DMASA1[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0000100CH DMADA1[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001010H DMASA2[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001014H DMADA2[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001018H DMASA3[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 0000101CH DMADA3[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001020H DMASA4[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001024H DMADA4[R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX 00001028H to 00006FFCH DMAC Reserved 00007000H FLCR[R/W] 01XX1000 - - - 00007004H FLWC[R/W] 00000011 - - - Flash I/F 00007008H to 0000FFFCH Reserved 00020000H CTRLR0 00000000 00000001 STATR0 00000000 00000000 00020004H ERRCNT0 00000000 00000000 BTR0 00100011 00000001 00020008H INTR0 00000000 00000000 TESTR0 00000000 r0000000* (r : indication the level on the CAN bus) 0002000CH BRPER0 00000000 00000000 Reserved CAN0 (Continued) 41 MB91220/S Series Address Register +0 +1 +2 +3 00020010H IF1CREQ0 00000000 00000001 IF1CMSK0 00000000 00000000 00020014H IF1MSK20 11111111 11111111 IF1MSK10 11111111 11111111 00020018H IF1ARB20 00000000 00000000 IF1ARB10 00000000 00000000 0002001CH IF1MCTR0 00000000 00000000 - 00020020H IF1DTA10 00000000 00000000 IF1DTA20 00000000 00000000 00020024H IF1DTB10 00000000 00000000 IF1DTB20 00000000 00000000 00020028H to 0002002CH Block Reserved 00020030H IF1DTA20 00000000 00000000 IF1DTA10 00000000 00000000 00020034H IF1DTB20 00000000 00000000 IF1DTB10 00000000 00000000 00020038H to 0002003CH CAN0 Reserved 00020040H IF2CREQ0 00000000 00000001 IF2CMSK0 00000000 00000000 00020044H IF2MSK20 00000000 00000000 IF2MSK10 00000000 00000000 00020048H IF2ARB20 00000000 00000000 IF2ARB10 00000000 00000000 0002004CH IF2MCTR0 00000000 00000000 - 00020050H IF2DTA10 00000000 00000000 IF2DTA20 00000000 00000000 00020054H IF2DTB10 00000000 00000000 IF2DTB20 00000000 00000000 00020058H to 0002005CH Reserved 00020060H IF2DTA20 00000000 00000000 IF2DTA10 00000000 00000000 00020064H IF2DTB20 00000000 00000000 IF2DTB10 00000000 00000000 (Continued) 42 MB91220/S Series Address Register +0 +1 00020068H to 0002007CH 00020080H Reserved NEWDT10 00000000 00000000 Reserved CAN0 Reserved INTPEND10 00000000 00000000 Reserved 000200A4H to 000200ACH 000200B0H Block TREQR10 00000000 00000000 Reserved 00020094H to 0002009CH 000200A0H +3 Reserved 00020084H to 0002008CH 00020090H +2 Reserved MESVAL10 00000000 00000000 Reserved 000200B4H to 000200BCH Reserved 00020100H CTRLR1 00000000 00000001 STATR1 00000000 00000000 00020104H ERRCNT1 00000000 00000000 BTR1 00100011 00000001 00020108H INTR1 00000000 00000000 TESTR1 00000000 r0000000* 0002010CH BRPER1 00000000 00000000 Reserved 00020110H IF1CREQ1 00000000 00000001 IF1CMSK1 00000000 00000000 00020114H IF1MSK21 11111111 11111111 IF1MSK11 11111111 11111111 00020118H IF1ARB21 00000000 00000000 IF1ARB11 00000000 00000000 CAN1 (Continued) 43 MB91220/S Series Address Register +0 +1 +2 +3 0002011CH IF1MCTR1 00000000 00000000 - 00020120H IF1DTA11 00000000 00000000 IF1DTA21 00000000 00000000 00020124H IF1DTB11 00000000 00000000 IF1DTB21 00000000 00000000 00020128H to 0002012CH Reserved 00020130H IF1DTA21 00000000 00000000 IF1DTA11 00000000 00000000 00020134H IF1DTB21 00000000 00000000 IF1DTB11 00000000 00000000 00020138H to 0002013CH Reserved 00020140H IF2CREQ1 00000000 00000001 IF2CMSK1 00000000 00000000 00020144H IF2MSK21 00000000 00000000 IF2MSK11 00000000 00000000 00020148H IF2ARB21 00000000 00000000 IF2ARB11 00000000 00000000 0002014CH IF2MCTR1 00000000 00000000 - 00020150H IF2DTA11 00000000 00000000 IF2DTA21 00000000 00000000 00020154H IF2DTB11 00000000 00000000 IF2DTB21 00000000 00000000 00020158H to 0002015CH CAN1 Reserved 00020160H IF2DTA21 00000000 00000000 IF2DTA11 00000000 00000000 00020164H IF2DTB21 00000000 00000000 IF2DTB11 00000000 00000000 00020168H to 0002017CH 00020180H Block Reserved Reserved TREQR11 00000000 00000000 (Continued) 44 MB91220/S Series (Continued) Address Register +0 +1 00020184H to 0002018CH 00020190H 000201B4H to 000201BCH Block NEWDT11 00000000 00000000 Reserved Reserved INTPEND11 00000000 00000000 Reserved 000201A4H to 000201ACH 000201B0H +3 Reserved 00020194H to 0002019CH 000201A0H +2 CAN1 Reserved MESVAL11 00000000 00000000 Reserved Reserved * : The lower 16 bits (DTC [15 : 0] ) of DMCA0 to DMCA4 cannot be accessed in bytes. Notes : • Do not perform read modify write instructions to a register including write-on-bit. • The data in the area reserved or - is undefined. 45 MB91220/S Series ■ VECTOR TABLE Interrupt number Interrupt source Interrupt level Offset TBR default address DMA start source Decimal Hexadecimal Reset 0 00 ⎯ 3FCH 000FFFFCH ⎯ Mode vector 1 01 ⎯ 3F8H 000FFFF8H ⎯ System reserved 2 02 ⎯ 3F4H 000FFFF4H ⎯ System reserved 3 03 ⎯ 3F0H 000FFFF0H ⎯ System reserved 4 04 ⎯ 3ECH 000FFFECH ⎯ System reserved 5 05 ⎯ 3E8H 000FFFE8H ⎯ System reserved 6 06 ⎯ 3E4H 000FFFE4H ⎯ Coprocessor absent trap 7 07 ⎯ 3E0H 000FFFE0H ⎯ Coprocessor error trap 8 08 ⎯ 3DCH 000FFFDCH ⎯ INTE instruction 9 09 ⎯ 3D8H 000FFFD8H ⎯ System reserved 10 0A ⎯ 3D4H 000FFFD4H ⎯ System reserved 11 0B ⎯ 3D0H 000FFFD0H ⎯ Step trace trap 12 0C ⎯ 3CCH 000FFFCCH ⎯ NMI request (ICE) 13 0D ⎯ 3C8H 000FFFC8H ⎯ Undefined instruction exception 14 0E ⎯ 3C4H 000FFFC4H ⎯ NMI instruction 15 0F 0FH Fixed 3C0H 000FFFC0H ⎯ External interrupt 0/1/2/6/7 16 10 ICR00 3BCH 000FFFBCH ⎯ External interrupt 3 17 11 ICR01 3B8H 000FFFB8H 6 External interrupt 4 18 12 ICR02 3B4H 000FFFB4H 7 External interrupt 5 19 13 ICR03 3B0H 000FFFB0H ⎯ PPG0H/0L/8H/8L 20 14 ICR04 3ACH 000FFFACH ⎯ PPG2H/2L/9H/9L 21 15 ICR05 3A8H 000FFFA8H ⎯ PPG4H/4L/10H/10L 22 16 ICR06 3A4H 000FFFA4H ⎯ PPG6H/6L/11H/11L 23 17 ICR07 3A0H 000FFFA0H ⎯ Reload timer 0 24 18 ICR08 39CH 000FFF9CH 8 Reload timer 1 25 19 ICR09 398H 000FFF98H 9 Reload timer 2 26 1A ICR10 394H 000FFF94H 10 LIN-UART0 (Reception) 27 1B ICR11 390H 000FFF90H ⎯ LIN-UART0 (Transmission) 28 1C ICR12 38CH 000FFF8CH ⎯ LIN-UART1 (Reception) 29 1D ICR13 388H 000FFF88H 1 LIN-UART1 (Transmission) 30 1E ICR14 384H 000FFF84H 4 LIN-UART2 (Reception) 31 1F ICR15 380H 000FFF80H 2 LIN-UART2 (Transmission) 32 20 ICR16 37CH 000FFF7CH 5 LIN-UART3 (Reception) 33 21 ICR17 378H 000FFF78H ⎯ LIN-UART3 (Transmission) 34 22 ICR18 374H 000FFF74H ⎯ (Continued) 46 MB91220/S Series (Continued) Interrupt number Interrupt source Interrupt level Offset TBR default address DMA start source Decimal Hexadecimal 35 23 ICR19 370H 000FFF70H ⎯ 36 24 ICR20 36CH 000FFF6CH ⎯ PPG12H/12L/I C0 37 25 ICR21 368H 000FFF68H ⎯ PPG13H/13L 38 26 ICR22 364H 000FFF64H ⎯ PPG14H/14L/I C1 39 27 ICR23 360H 000FFF60H ⎯ PWC (Measurement completed) 40 28 ICR24 35CH 000FFF5CH ⎯ PWC (Overflow) 41 29 ICR25 358H 000FFF58H ⎯ DMAC 42 2A ICR26 354H 000FFF54H ⎯ A/D converter 43 2B ICR27 350H 000FFF50H 14 Real-time clock 44 2C ICR28 34CH 000FFF4CH ⎯ PPG15H/15L 45 2D ICR29 348H 000FFF48H ⎯ Main oscillation stabilization wait timer 46 2E ICR30 344H 000FFF44H ⎯ Timebase timer overflow 47 2F ICR31 340H 000FFF40H ⎯ PPG1H/1L 48 30 ICR32 33CH 000FFF3CH 11 PPG3H/3L 49 31 ICR33 338H 000FFF38H 12 PPG5H/5L 50 32 ICR34 334H 000FFF34H 13 PPG7H/7L 51 33 ICR35 330H 000FFF30H 3 16-bit free-run timer 0 52 34 ICR36 32CH 000FFF2CH ⎯ 16-bit free-run timer 1 53 35 ICR37 328H 000FFF28H ⎯ ICU0 54 36 ICR38 324H 000FFF24H ⎯ ICU1 55 37 ICR39 320H 000FFF20H ⎯ ICU2 56 38 ICR40 31CH 000FFF1CH ⎯ ICU3 57 39 ICR41 318H 000FFF18H ⎯ OCU0 58 3A ICR42 314H 000FFF14H ⎯ OCU1 59 3B ICR43 310H 000FFF10H ⎯ Sound generator 0 60 3C ICR44 30CH 000FFF0CH ⎯ Sound generator 1 61 3D ICR45 308H 000FFF08H ⎯ Sound generator 2 62 3E ICR46 304H 000FFF04H ⎯ Delay interrupt 63 3F ICR47 300H 000FFF00H ⎯ System reserved 64 40 ⎯ 2FCH 000FFEFCH ⎯ System reserved 65 41 ⎯ 2F8H 000FFEF8H ⎯ System reserved 66 to 79 42 to 4F ⎯ 2F4H to 2C0H 000FFEF4H to 000FFEC0H ⎯ INT instruction 80 to 255 50 to FF ⎯ 2BCH to 000H 000FFEBCH to 000FFC00H ⎯ CAN0 CAN1 2 2 47 MB91220/S Series ■ TABLE OF PIN STATUS IN EACH MODE • Single chip mode Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State INITX INIT Input permitted Hi-Z or Input permitted X0 Main clock "H" output or input permitted X1 X0A Sub clock Input Input Input permitted permitted permitted Hi-Z or input permitted "H" output or input permitted X1A MD0 MD1 Mode Input permitted MD2 P00 SEG24 P01 SEG25 P02 SEG26 P03 SEG27 P04 SEG28 P05 SEG29 P06 SEG30 P07 SEG31/ATGX P10 SEG16 P11 SEG17 P12 SEG18 P13 SEG19 P14 SEG20 P15 SEG21 P16 SEG22 P17 SEG23 Output Hi-Z Input cut-off Output Hi-Z Previous Previous Input state held state held permitted Output Hi-Z Input cut-off When LCD is used, output operation or output retention for both SLEEP/STOP Output Hi-Z Input cut-off Output Hi-Z Previous Previous Input state held state held permitted Output Hi-Z Input cut-off When LCD is used, output operation or output retention for both SLEEP/STOP (Continued) 48 MB91220/S Series Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State P20 SEG0 P21 SEG1 P22 SEG2 P23 SEG3 P24 SEG4 P25 SEG5 P26 SEG6 P27 SEG7 P30 SEG8 P31 SEG9 P32 SEG10 P33 SEG11 P34 SEG12 P35 SEG13 P36 SEG14 P37 SEG15 P40 SIN0/INT0 P41 SOT0 P42 SCK0 P43 SIN3/INT1 P44 SOT3 P45 SCK3 P46 ⎯ P47 ⎯ P50 SIN4/CK0 P51 SOT4 P52 SCK4 P53 SIN5/CK1 P54 SOT5 P55 SCK5 P56 OUT0 P57 OUT1 Output Hi-Z Input cut-off Output Hi-Z Previous Previous Input state held state held permitted Output Hi-Z Input cut-off When LCD is used, output operation or output retention for both SLEEP/STOP Output Hi-Z Input cut-off Output Hi-Z Previous Previous Input state held state held permitted Output Hi-Z Input cut-off When LCD is used, output operation or output retention for both SLEEP/STOP Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Input of external interrupt is enabled by setting PFR Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off (Continued) 49 MB91220/S Series Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State P60 AN0 P61 AN1 P62 AN2 P63 AN3 P64 AN4 P65 AN5 P66 AN6 P67 AN7 P70 INT60/RX0 P71 TX0 P72 INT7/RX1 P73 TX1 P80 AN16 P81 AN17 P82 AN18 P83 AN19 P84 AN20/INT2 P85 AN21/INT3 P86 AN22/INT4 P87 AN23/INT5 P90 DA0 P91 DA1 P92 SGA0 P93 SGO0 P94 SGA1 P95 SGO1 P96 SGA2 P97 SGO2 PA0 PWM1P3 PA1 PWM1M3 PA2 PWM2P3 PA3 PWM2M3 Previous Previous state held state held Output Hi-Z Input cut-off Output Hi-Z Input Previous Previous Input permitted state held state held permitted Output Hi-Z Input cut-off Output Hi-Z Input cut-off Output Hi-Z Input cut-off Previous Previous state held state held Output Hi-Z Input cut-off Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Output Hi-Z Input cut-off Output Hi-Z Input cut-off Input of external interrupt is enabled by setting PFR When DA is used, output retention (Continued) 50 MB91220/S Series Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State PB0 PPG8H PB1 PPG9H PB2 PPG10H PB3 PPG11H PB4 PWM1P1 PB5 PWM1M1 PB6 PWM2P1 PB7 PWM2M1 PC0 PWM1P0 PC1 PWM1M0 PC2 PWM2P0 PC3 PWM2M0 PD0 TIN0/IN0/PWC0/INT2/V0 PD1 TIN1/IN1/V1 PD2 TIN2/IN2/V2 PD3 IN3/V3 PD4 COM0/PPG1H PD5 COM1/PPG3H PD6 COM2/PPG5H PD7 COM3/PPG7H PE0 PWM1P2 PE1 PWM1M2 PE2 PWM2P2 PE3 PWM2M2 PE4 PPG12H/SDA0 PE5 PPG13H/SCL0 PE6 PPG14H/SDA1 PE7 PPG15H/SCL1 Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Input Input Previous permitted permitted state held Previous state held Output Hi-Z Input cut-off Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off "L" output "L" output Previous Input Input state held permitted permitted Input of external interrupt is enabled by setting PFR When LCD is used, output operation or output retention for both SLEEP/STOP (Continued) 51 MB91220/S Series (Continued) Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 State 52 PF0 AN8 PF1 AN9 PF2 AN10 PF3 AN11 PF4 AN12 PF5 AN13 PF6 AN14 PF7 AN15 PG0 PPG0H PG1 TOT0/PPG2H PG2 TOT1/PPG4H PG3 TOT2/PPG6H Previous Previous state held state held Output Hi-Z Input cut-off Output Output Hi-Z Previous Previous Hi-Z Input state held state held Input permitted permitted Output Hi-Z Input cut-off Output Hi-Z Input cut-off Output Hi-Z Input cut-off Remarks MB91220/S Series • External bus mode (8-bit) Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State INITX Input permitted INIT Hi-Z or Input permitted X0 Main clock "H" output or input permitted X1 X0A Sub clock Input Input Input permitted permitted permitted Hi-Z or Input permitted "H" output or input permitted X1A MD0 MD1 Input permitted Mode MD2 P00 SEG24 P01 SEG25 P02 SEG26 P03 SEG27 P04 SEG28 P05 SEG29 P06 SEG30 P07 SEG31/ATGX P10 D08 P11 D09 P12 D10 P13 D11 P14 D12 P15 D13 P16 D14 P17 D15 P20 A00 P21 A01 P22 A02 P23 A03 P24 A04 P25 A05 P26 A06 P27 A07 Output Hi-Z Input cut-off Output Hi-Z Previous Previous Input state held state held permitted Output Hi-Z Input cut-off When LCD is used, output operation or output retention for both SLEEP/STOP Output Hi-Z Input cut-off Output Hi-Z Input permitted Hi-Z Hi-Z Output Hi-Z Input cut-off No port function Output Hi-Z Input cut-off Output Hi-Z Input permitted Address output Address output Output Hi-Z Input cut-off No port function (Continued) 53 MB91220/S Series (Continued) Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State Remarks HIZ=0 HIZ=1 Address output Output Hi-Z Input cut-off No port function Output Hi-Z Input cut-off Input of external interrupt is enabled by setting PFR When external bus signal is used, "H" output/clock output for SLEEP/STOP (Hi-Z=0) Output Hi-Z Input cut-off When external bus signal is used, "H" output for SLEEP/ STOP (Hi-Z=0) State P30 A08 P31 A09 P32 A10 P33 A11 P34 A12 P35 A13 P36 A14 P37 A15 P40 SIN0/INT0 P41 SOT0 P42 SCK0 P43 SIN3/INT1 P44 SOT3 P45 SCK3 P46 ASX "H" output P47 SYSCLK Clock output P50 SIN4/CK0/CS0X P51 SOT4/CS1X P52 SCK4/CS2X P53 SIN5/CK1/CS3X P54 SOT5/RDX P55 SCK5/WR0X P56 OUT0 P57 OUT1/RDY P60 to PG3 54 Output Hi-Z Input permitted Output Hi-Z Input cut-off Output Hi-Z Input permitted Output Hi-Z Input permitted Address output Output Hi-Z Input permitted Previous Previous state held state held Output Hi-Z Input Previous Previous permitted state held state held Input permitted It is the same as the single chip. MB91220/S Series • External bus mode (16-bit) Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State HIZ=0 HIZ=1 Remarks State INITX INIT Input permitted X0 X1 Hi-Z or Input permitted Main clock X0A X1A Sub clock "H" output or input permitted Input permitted Input permitted Input permitted Hi-Z or Input permitted "H" output or input permitted MD0 MD1 Mode Input permitted MD2 P00 D00 P01 D01 P02 D02 P03 D03 P04 D04 P05 D05 P06 D06 P07 D07 P10 D08 P11 D09 P12 D10 P13 D11 P14 D12 P15 D13 P16 D14 P17 D15 P20 A00 P21 A01 P22 A02 P23 A03 P24 A04 P25 A05 P26 A06 P27 A07 Output Hi-Z Input cut-off Output Hi-Z Input permitted Output Hi-Z Input cut-off Output Hi-Z Input permitted Output Hi-Z Input cut-off Output Hi-Z Input permitted Hi-Z Output Hi-Z Input cut-off No port function Hi-Z Hi-Z Output Hi-Z Input cut-off No port function Address output Address output Output Hi-Z Input cut-off No port function Hi-Z (Continued) 55 MB91220/S Series (Continued) Initial value Pin Name Function name INITX=L INITX=H In SLEEP In STOP State Remarks HIZ=0 HIZ=1 Address output Output Hi-Z Input cut-off No port function Output Hi-Z Input cut-off Input of external interrupt is enabled by setting PFR When external bus signal is used, "H" output/clock output for SLEEP/STOP (Hi-Z=0) Output Hi-Z Input cut-off When external bus signal is used, "H" output for SLEEP/ STOP (Hi-Z=0) State P30 A08 P31 A09 P32 A10 P33 A11 P34 A12 P35 A13 P36 A14 P37 A15 P40 SIN0/INT0 P41 SOT0 P42 SCK0 P43 SIN3/INT1 P44 SOT3 P45 SCK3 P46 ASX "H" output P47 SYSCLK Clock output P50 SIN4/CK0/CS0X P51 SOT4/CS1X P52 SCK4/CS2X P53 SIN5/CK1/CS3X P54 SOT5/RDX P55 SCK5/WR0X P56 OUT0/WR1X P57 OUT1/RDY P60 to PG3 56 Output Hi-Z Input permitted Output Hi-Z Input cut-off Output Hi-Z Input permitted Output Hi-Z Input permitted Address output Output Hi-Z Input permitted Previous Previous state held state held Output Hi-Z Input Previous Previous permitted state held state held Input permitted It is the same as the single chip. MB91220/S Series ■ ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings Parameter Symbol Rating Unit Remarks Min Max VCC VSS − 0.3 VSS + 6.0 V AVCC VSS − 0.3 VSS + 6.0 V AVCC = VCC*2 VAVRH VSS − 0.3 VSS + 6.0 V AVCC ≥ VAVRH DVCC VSS − 0.3 VSS + 6.0 V DVCC = VCC*2 VI VSS − 0.3 VCC + 6.0 V *9 VO VSS − 0.3 VCC + 6.0 V *9 “L” level maximum output current*3 IOL1 ⎯ 15 mA *5 IOL2 ⎯ 40 mA *6 “L” level average output current*4 IOLAV1 ⎯ 4 mA *5 IOLAV2 ⎯ 30 mA *6 ΣIOL1 ⎯ 120 mA *5 ΣIOL2 ⎯ 330 mA *6 ΣIOLAV1 ⎯ 50 mA *5 ΣIOLAV2 ⎯ 160 mA *6 OH1 3 ⎯ −15 mA *5 IOH2*3 ⎯ −40 mA *6 IOHAV1*4 ⎯ −4 mA *5 OHAV2 4 * ⎯ −30 mA *6 ΣIOH1 ⎯ −120 mA *5 ΣIOH2 Power supply voltage*1 Input voltage*1 Output voltage* 1 “L” level total maximum output current “L” level total average output current I “H” level maximum output current “H” level average output current “H” level total maximum output current I * ⎯ −330 mA *6 OHAV1 7 ⎯ −50 mA *5 ΣIOHAV2*7 ⎯ −160 mA *6 Power consumption PD ⎯ 660 mW Operating temperature TA −40 +105 °C In single chip operation −40 +85 °C In external bus operation “H” level total average output current ΣI * Storage temperature Tstg −55 +150 °C +B input standard (Maximum clamp current) ICLAMP −2 +2 mA +B input standard (Total maximum clamp current) ΣICLAMP −20 +20 mA Except dedicated input pins, (PD3 to PD0) and D/AC output pins (P91, P90) *8 (Continued) 57 MB91220/S Series (Continued) *1 : The parameter is based on VSS = AVSS = DVSS = 0.0 V. *2 : Note that AVCC and DVCC should not exceed VCC upon power-on and under other circumstances. *3 : The maximum output current defines the peak current value of each of the corresponding pins. *4 : The average output current defines the average value of the current (100 ms) which passes through each of the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate. *5 : Output other than PA0 to PA3 pins, PB4 to PB7 pins, PC0 to PC3 pins, and PE0 to PE3 pins. *6 : (PA0 to PA3, PE0 to PE3) + (PB4 to PB7, PC0 to PC3) . The stepping motor controller pins are divided into two groups (8 pins each) and the value is calculated as the total current per group. *7 : The total average output current defines the average value of the current (100 ms) which passes through all the corresponding pins. The average value represents a value calculated by multiplying the operating current by the operating rate. *8 : +B input standard defines the current value for each of the corresponding pins. *9 : VI and VO should not exceed VCC + 0.3 V. However, if the maximum current to/from an input is limited by some means with external components, when the +B input-enabled pin is used the ICLAMP rating supersedes the VI rating. WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. Recommended example circuit MB91220/S series Protection diode lIHH +B Input (12 V to 16 V) Current limiting resistor WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device’s electrical characteristics are warranted when the device is operated within these ranges. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand. 58 MB91220/S Series 2. Recommended Operating Conditions (VSS = DVSS = AVSS = 0.0 V) Parameter Power supply voltage Symbol VCC AVCC DVCC Smoothing capacitor*3 CS Operating temperature TA Rating Unit Remarks Min Max 4.5 5.5 V Recommended guaranteed operating range 3.5 5.5 V Guaranteed operating range*1 2.0 5.5 V Guaranteed operating range for holding stop operation status*2 (MB91F223/S) µF Use a ceramic capacitor or a capacitor with similar frequency characteristics. 1 −40 +105 °C In single chip operation −40 +85 °C In external bus operation *1 : Exclusive of A/D and D/A operation *2 : Internal voltage held in RAM : 1.8 V (Min) /3.6 V (Max) *3 : For how to connect the smoothing capacitor CS, refer to the diagram below. • C Pin Connection Diagram VCC3C CS VSS DVSS AVSS < + B input (12 V to 16 V) conditions> • Do not connect +B potential directly to a microcontroller pin. • Always connect a resistor between the microcontroller pin and +B signal to limit the current. lIHH = 2 mA per pin (Max.) [In the steady state and transient state between power-on and power-off, etc.] It can be connected to any general-purpose input port except the output pin for LCDC. • The protection diode in the microcontroller turns the potential upon +B input between the limiting resistor and microcontroller pin into “VCC + protection diode ON voltage”. Configure the circuit so that these are not interfered and the potential is not exceeded. 59 MB91220/S Series 3. DC Specifications (TA : − 40 °C to + 105 °C ;Vcc = 5.0 V ±10%, VSS = DVSS = AVSS = 0.0 V) Parameter “H” level input voltage “L” level input voltage Symbol Pin name Condition VIHS P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P73, P80 to P87, P90 to P97, PA0 to PA3, PB0 to PB7, PC0 to PC3, PD0 to PD7, PE0 to PE7, PF0 to PF7, PG0 to PG3 VIH VIHT Value Unit Remarks Min Typ Max ⎯ 0.8 VCC ⎯ VCC + 0.3 V Automotive level input pins*1 P40, P43, P50, P53 PE4 to PE7 ⎯ 0.7 VCC ⎯ VCC + 0.3 V CMOS input pins*2 P00 to P07, P10 to P17, P20 to P27, P30 to P37, P57, P60 to P67, PF0 to PF7 ⎯ 2.0 ⎯ VCC + 0.3 V TTL input pins*4 VIHM MD0 to MD2 ⎯ VCC − 0.3 ⎯ VCC + 0.3 V MD pins*3 VIHX X0, X1, X0A, X1A, INITX ⎯ 0.8 VCC ⎯ ⎯ V VILS P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P60 to P67, P70 to P73, P80 to P87, P90 to P97, PA0 to PA3, PB0 to PB7, PC0 to PC3, PD0 to PD7, PE0 to PE7, PF0 to PF7, PG0 to PG3 ⎯ VSS − 0.3 ⎯ 0.5 VCC V Automotive level input pins*1 VIL P40, P43, P50, P53, PE4 to PE7 ⎯ VSS − 0.3 ⎯ 0.3 VCC V CMOS hysteresis input pins*2 VILT P00 to P07, P10 to P17, P20 to P27, P30 to P37, P57, P60 to P67, PF0 to PF7 ⎯ VSS − 0.3 ⎯ 0.8 V TTL input pins*4 VILM MD0 to MD2 ⎯ VSS − 0.3 ⎯ Vss + 0.3 V MD pins*3 VILX X0, X1, X0A, X1A, INITX ⎯ ⎯ ⎯ 0.2 VCC V (Continued) 60 MB91220/S Series (TA : − 40 °C to + 105 °C; Vcc = 5.0 V ±10%, VSS = DVSS = AVSS = 0.0 V) Parameter Symbol Pin name Condition Operating frequency : FCP = 32 MHz in main mode ICC Value Unit Remarks Min Typ Max ⎯ 85 105 mA ⎯ 135 155 mA In Flash-Write mode Under normal operation ICCS Operating frequency : FCP = 32 MHz in main sleep mode ⎯ 40 70 mA ICCL Operating frequency : FCP = 32 kHz, TA = +25 °C in sub mode ⎯ 200 450 µA main oscillation/ PLL stops*6 ICCLS Operating frequency : FCP = 32 kHz, TA = +25 °C, Vcc = 5V in sub sleep mode ⎯ 180 400 µA main oscillation/ PLL stops*6 ICCH TA = +25 °C, Vcc = 5V in stop mode (oscillation stopped) ⎯ 10 150 µA main clock/PLL/ sub-oscillation halted*7 ICTS4M TA = +25 °C, Vcc = 5V in stop mode (RTC in use*8) ⎯ 330 500 µA PLL/ sub-oscillation halted*7 ICTS32K Sub clock frequency : FCP = 32 kHz, TA = +25 °C, Vcc = 5V in stop mode (Real Time Clock Operation*8) ⎯ 40 180 µA main oscillation/ PLL stops*6 VCC = DVCC = AVCC = 5.5 V VSS < VI < VCC −5 ⎯ +5 µA CIN1 Other than VCC, VSS, DVCC, DVSS, AVCC, AVSS, PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 ⎯ ⎯ 5 15 pF Input capacity 2 CIN2 PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 ⎯ ⎯ 15 45 pF Pull-up resistance RUP INITX ⎯ 25 50 100 kΩ Power supply current*5 Input leak current Input capacity 1 IIL VCC All input pins (Continued) 61 MB91220/S Series (TA : − 40 °C to + 105 °C; Vcc = 5.0 V ±10%, VSS = DVSS = AVSS = 0.0 V) Parameter Symbol Pin name Condition Value Min Typ Max Unit Remarks VOH1 Other than PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 Vcc = 4.5 V IOH = −4.0 mA VCC − 0.5 ⎯ ⎯ V VOH2 PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 Vcc = 4.5 V IOH = −30.0 mA VCC − 0.5 ⎯ ⎯ V VOL1 Other than PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 Vcc = 4.5 V IOL = 4.0 mA ⎯ ⎯ 0.4 V VOL2 PA0 to PA3, PB4 to PB7, PC0 to PC3, PE0 to PE3 Vcc = 4.5 V IOL = 30.0 mA ⎯ ⎯ 0.55 V PWM1Pn, High current output PWM1Mn, Drive capacity ∆VOH2 PWM2Pn, Phase-to-phase PWM2Mn, deviation 1 n = 0 to 3 Vcc = 4.5 V IOH = 30.0 mA Maximum deviation of VOH2 0 ⎯ 90 mV *9 High current output Drive capacity Phase-to-phase deviation 2 ∆VOL2 Vcc = 4.5 V IOL = 30.0 mA Maximum deviation of VOL2 0 ⎯ 90 mV *9 COM0 to COM3 Output impedance RVCOM COM0 to COM3 ⎯ ⎯ ⎯ 4.5 kΩ SEG00 to SEG31 Output impedance RVSEG SEG0 to SEG31 ⎯ ⎯ ⎯ 30 kΩ LCDC leak current ILCDC TA = +25 °C −0.5 ⎯ +0.5 µA Output “H” voltage 1 Output “H” voltage 2 Output “L” voltage 1 Output “L” voltage 2 PWM1Pn, PWM1Mn, PWM2Pn, PWM2Mn, n = 0 to 3 COM0 to COM3, SEG0 to SEG31 *1 : All input pins except X0, X1, X0A, X1A, MD0, MD1, MD2 and INITX pins *2 : CMOS input can be switched by the SIN of the LIN-UART and I2C input pin and switched by the input level selection register (PILR) . *3 : MD0, MD1, MD2 *4 : TTL input can be selected by the external bus input pins and input pin only in the parallel writer mode. The external bus input pins (P00 to P17 and P57) can be switched by the input level selection register (PILR) . *5 : They represent current values used when supplying power to the external clock from pin X1. (Continued) 62 MB91220/S Series (Continued) *6 : Before switching from the main clock operation mode to the sub clock operation (operation in sub RUN, sub SLEEP, and sub RTC) mode, set the main oscillation stop bit (OSCDS1) in the oscillation control register (OSCCR) to "1" and the clock source to half of the source oscillation input, and then stop the PLL. *7 : Before switching from the main clock operation mode to the stop mode, set the clock source to half of the source oscillation input , stop the PLL, set the OSDC1 bit in the standby control register (STCR) to "1". However, if using the main clock RTC operation , set the clock source to half of the source oscillation input, stop the PLL, and then set each clock of the CPU clock (CLKB) , peripheral clock (CLKP) , and external interface clock (CLKT) to the division ratio of 8 or more using the base clock divide setting registers 0 and 1 (DIVR0 and 1) before switching to the stop mode. *8 : The real time clock can be operated only in the 4 MHz main clock oscillation or 32 kHz sub clock oscillation. *9 : Defined by the maximum deviation of VOH2/VOL2 of each pin, when PWM1P0, PWM1M0, PWM2P0 and PWM2M0 in ch.0 are simultaneously turned on. Other channels are applied in the same condition. 63 MB91220/S Series 4. Flash Memory Write/Erase Characteristics Parameter Condition Value Min Typ Max Unit Remarks Sector erase time TA = +25 °C, Vcc = 5.0 V ⎯ 1 15 s Exclusive of internal write time prior to erase Chip erase time TA = +25 °C, Vcc = 5.0 V ⎯ 5 ⎯ s Exclusive of internal write time prior to erase Halfword write time TA = +25 °C, Vcc = 5.0 V ⎯ 16 3600 µs Exclusive of overhead time at system level Chip write time TA = +25 °C, Vcc = 5.0 V ⎯ 2.1 ⎯ s Exclusive of overhead time at system level 10000 ⎯ ⎯ cycle 10 ⎯ ⎯ year Erase/write cycle Flash memory data retain time ⎯ TA = +85 °C (average) * * : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into average temperature at + 85 °C) . 64 MB91220/S Series 5. AC Specifications (1) Clock timing (TA : − 40 °C to + 105 °C; Vcc = 5.0 V ±10%, VSS = DVSS = AVSS = 0.0 V) Parameter Symbol Pin name FC Value Condition Unit Remarks Min Typ Max X0, X1 ⎯ 4 ⎯ MHz Fca X0A, X1A ⎯ 32.768 ⎯ kHz Source oscillation clock cycle time tCYL X0, X1 ⎯ 250 ⎯ ns Input clock pulse width PWH, PWL X0 100 ⎯ ⎯ ns The duty ratio normally ranges from 40% to 60%. Input clock rise/fall time tcr, tcf X0 ⎯ ⎯ 5 ns When external clock is used Frequency of internal operating clock FCP ⎯ ⎯ ⎯ 32 MHz Internal operating clock cycle time tCP ⎯ ⎯ 31.25 ⎯ ⎯ ns CAN PLL cycle jitter (When locked) tPJ ⎯ ⎯ − 10 ⎯ + 10 ns Frequency of source oscillation clock ⎯ ⎯ FCP = 32 MHz (4 MHz, PLL multiplied by 8) • X0/X1 Clock Timing tCYL 0.8 VCC X0 0.2 VCC PWH tcf PWL tcr 65 MB91220/S Series • CAN PLL cycle jitter Deviation time from the ideal clock is assured per cycle out of 20, 000 cycles. PLL output t1 t2 tn-1 t3 tn Ideal clock Slow Deviation time t3 t2 t1 tn-1 tn Fast • Operations Oscillation should be performed as described below : [Source oscillation] : X0/X1 : 4 MHz, PLL : multiplied by 8, Internal frequency : 32 MHz : X0A/X1A : 32 kHz, PLL : no multiplication, Internal frequency : 32 kHz Note that the PLL oscillation stabilization wait time should be set to 500 µs or more. Sample oscillation circuit X0 X1 R C1 66 C2 MB91220/S Series AC specifications are defined by the following measurement standard voltage values : • Input signal wave form Automotive input pin • Output signal wave form Output pin 0.8 VCC 2.4 V 0.5 VCC 0.8 V CMOS input pin 0.7 VCC 0.3 VCC TTL input pin 2.0 V 0.8 V 67 MB91220/S Series (2) Reset input (TA : − 40 °C to + 105 °C; Vcc = 5.0 V ±10%, VSS = DVSS = AVSS = 0.0 V) Symbol Parameter INITX input time Pin name tINTL Value Condition ⎯ INITX Unit Remarks Min Max 500 ⎯ ns Under normal operation Oscillation time of oscillator* + 10 tcp + 12 µs ⎯ ms In stop mode * : The oscillation time of the oscillator refers to the time when the amplitude has reached 90%. The oscillation time of the crystal oscillator ranges from several ms to tens of ms. The oscillation time of the ceramic oscillator ranges from several hundreds to several ms, while that of the external clock is 0 ms. tINTL INITX 0.2 VCC 0.2 VCC • In stop mode tINTL INITX 0.2 VCC X0 0.2 VCC 90% of amplitude Internal operation clock 10 tcp + 12 µs Oscillation time of oscillator Oscillation stabilization wait time Instruction executed Internal reset 68 MB91220/S Series [External reset input specifications (INITX) and internal reset signal cancellation timing] • When an external reset input is generated, a maximum of 256 tcp is designed to be spent until it reaches the internal reset signal to transmit all reset signals to the internal logic (Max 8 µs at 32 MHz) . • The following chart shows how to set the timing for instruction execution start (start of application operation) after external reset input. Time from external reset input to instruction start = Max 256 tcp + 61 tcp • Timing Chart INITX Min Internal reset input timing 10 tcp Internal reset 61 tcp Max 256 tcp Internal reset cancellation timing [Pin state in external bus mode] In the external bus mode, it is not guaranteed to hold the RAM value upon external reset (INITX = “0”) input. Beside that, the value of the internal bus is to be output to each pin during the time between the internal reset input and its cancellation. • Timing Chart (Pin State for External Bus Mode : 1) INITX Min 10 tcp Internal reset 61 tcp Max 256 tcp Pin state of external bus Hi-Z Value immediately before reset Initial value at reset 69 MB91220/S Series It can be avoided by the following external reset input to continue Hi-Z. • Timing Chart (Pin State for External Bus Mode : 2) INITX 256 tcp Internal reset 61 tcp Max 256 tcp Pin state of external bus 70 Hi-Z Initial value at reset MB91220/S Series (3) Power-on Conditions (TA : − 40 °C to + 105 °C; VSS = 0.0 V) Parameter Symbol Pin name Condition Value Min Max Unit Power supply rising time tR 0.05 30 ms Power supply start voltage VOFF ⎯ 0.2 V Power supply peak voltage VON 2.7 ⎯ V Power supply cut-off time tOFF 50 ⎯ ms Remarks ⎯ VCC Due to the repetitive operation tR 4.5 V VCC 0.2 V 0.2 V 0.2 V tOFF Power supply drop time, power supply voltages and external reset input to retain RAM data in MB91220/S Satisfy the following reset input standard to retain the RAM data used in the single chip mode. Vcc (V) Voltage drop time External reset input standard (INITX) dropped 4.0 V → 3.5 V Vcc Min 256 tcp Min 256 tcp 4V 4V 3.5 V 3.5 V INITX 256 tcp To retain RAM data, enter 256 tcp of INITX or more before dropping VCC to 3.5 V or lower. 71 MB91220/S Series (4) Clock Output Timing (VCC = 4.5 V to 5.5 V, VSS = AVSS = 0.0 V) Parameter Symbol Pin name Cycle time tCYC SYSCLK SYSCLK↑→SYSCLK↓ tCHCL SYSCLK SYSCLK↓→SYSCLK↑ tCLCH SYSCLK Value Condition ⎯ Min Max tCPT ⎯ Unit Remarks ns *1 tCYC / 2 − 10 tCYC / 2 + 10 ns *2 tCYC / 2 − 10 tCYC / 2 + 10 ns *3 tCYC tCHCL tCLCH VOH SYSCLK VOH VOL *1 : tCYC is the frequency of one clock cycle including the gear cycle. *2 : The rating is under the conditions of “gear cycle × 1”. When the gear cycle is set to 1/2, 1/4 or 1/8, use the formula below by entering 1/2, 1/4 or 1/8 in “n” respectively. ( 1 / 2 × 1 / n ) × tCYC − 10 *3 : The rating is under the conditions of “gear cycle × 1”. 72 MB91220/S Series (5) Normal Bus Access : Read/Write Operation (VCC = 4.0 V to 5.5 V, VSS = AVSS = 0.0 V, TA = 0 °C to + 70 °C) Parameter Symbol Pin name tCSLCH CS0X to CS3X setup tCSDLCH CS0X to CS3X hold SYSCLK CS0X to CS3X Condition Value Unit Min Max AWRxL : W02 = 0 3 ⎯ ns AWRxL : W02 = 0 −10 ⎯ ns 3 tCYC / 2 + 30 ns tCHCSH tASCH SYSCLK A00 to A15 3 ⎯ ns tASWL WR0X, WR1X A00 to A15 3 ⎯ ns tASRL RDX A00 to A15 3 ⎯ ns tCHAX SYSCLK A00 to A15 3 tCYC / 2 + 30 ns tWHAX WR0X, WR1X A00 to A15 3 ⎯ ns tRHAX RDX A00 to A15 3 ⎯ ns Valid address → valid data input time tAVDV A00 to A15 D00 to D15 ⎯ 3 / 2 × tCYC + 45 ns WR0X, WR1X ↓ delay time tCHWL ⎯ 10 ns WR0X, WR1X ↑delay time tCHWH ⎯ 10 ns WR0X, WR1X minimum pulse width tWLWH WR0X, WR1X tCYC − 10 ⎯ ns Write data hold time tWHDX WR0X, WR1X, D00 to D15 3 ⎯ ns RDX ↓ delay time tCHRL ⎯ 10 ns RDX ↑delay time tCHRH ⎯ 10 ns RDX ↓ → valid data input time tRLDV ⎯ tCYC − 30 ns Data setup → RDX ↑ time tDSRH 3 ⎯ ns RDX ↑ → data hold time tRHDX 3 ⎯ ns RDX minimum pulse width tRLRH RDX tCYC − 10 ⎯ ns ASX setup tASLCH 3 ⎯ ns ASX hold tCHASH SYSCLK ASX 3 tCYC / 2 + 25 ns Address setup Address hold SYSCLK WR0, WR1 SYSCLK RDX RDX D00 to D15 ⎯ Remarks *1, *2 *1 *1 : If the bus is expanded by automatic wait insertion or RDY input, add time (tCYC × the number of expanded cycles) to the rated value. *2 : The rating is under the conditions of “gear cycle × 1”. When the gear cycle is set to 1/2 to 1/16, use the formula below by entering 1/2 to 1/16 in “n” respectively. 73 MB91220/S Series Formula : 3/ (2n) × tCYC + 45 tCYC VOH VOH VOH VOH SYSCLK tASLCH ASX tCHASH VOH VOL tCSLCH tCSDLCH CS0X to CS3X tCHCSH VOH VOL tASCH A00 to A15 tCHAX VOH VOL VOH VOL tCHRL tCHRH tRLRH RDX VOL tRHAX tASRL tRLDV tDSRH tRHDX tAVDV D00 to D15 VOH VOH VOL VOL tCHWH tCHWL tWLWH VOL WR0X, WR1X tASWL VOH tWHAX tWHDX D00 to D15 74 VOH VOL VOH VOL MB91220/S Series (6) Ready Input Timing (VCC = 4.5 V to 5.5 V, VSS = AVSS = 0.0 V) Parameter Symbol Pin name RDY setup time →SYSCLK↓ tRDYS SYSCLK RDY SYSCLK↑→ RDY hold time tRDYH SYSCLK RDY Value Condition Unit Min Max 15 ⎯ ns 0 ⎯ ns ⎯ tcyc VoH SYSCLK VoL tRDYS With RDY wait Without RDY wait VoH VoL tRDYH tRDYS VoH tRDYH VoH VoL VoL VoH VoH VoL VoL 75 MB91220/S Series (7) UART Timing (TA : − 40 °C to + 105 °C; VCC = 5.0 V ±10%, VSS = AVSS = 0.0 V) Parameter Symbol Pin name tSCYC SCK↓→ SOT delay time tSLOV Valid SIN→ SCK↑ tIVSH SCK↑→ Valid SIN hold time tSHIX Serial clock “H” pulse width tSHSL Serial clock “L” pulse width tSLSH Serial clock Cycle time SCK↓→ SOT delay time tSLOV Valid SIN→ SCK↑ tIVSH SCK↑→ Valid SIN hold time tSHIX Condition Value Max SCK0, SCK3 to SCK5 8 tCP ⎯ ns SCK0, SCK3 to SCK5, SOT0, SOT3 to SOT5 − 80 + 80 ns 100 ⎯ ns 60 ⎯ ns 4 tCP ⎯ ns 4 tCP ⎯ ns ⎯ 150 ns 60 ⎯ ns 60 ⎯ ns ⎯ SCK0, SCK3 to SCK5, SIN0, SIN3 to SIN5 SCK0, SCK3 to SCK5 SCK0, SCK3 to SCK5, SOT0, SOT3 to SOT5 SCK0, SCK3 to SCK5, SIN0, SIN3 to SIN5 ⎯ Notes : • The above ratings are the values for clock synchronous mode. • CL is a load capacitance connected to pins during testing. 76 Unit Min Remarks In internal shift clock mode, output pin; CL = 80 pF+1 TTL In internal shift clock mode, output pin; CL = 80 pF+1 TTL MB91220/S Series • Internal Shift Clock Mode tSCYC 2.4 V SCK 0.8 V 0.8 V tSLOV 2.4 V SOT 0.8 V tIVSH SIN tSHIX 0.8 Vcc 0.8 Vcc 0.5 Vcc 0.5 Vcc • External Shift clock Mode tSLSH tSHSL 0.8 Vcc SCK 0.5 Vcc 0.8 Vcc 0.5 Vcc tSLOV SOT 2.4 V 0.8 V tIVSH SIN tSHIX 0.8 Vcc 0.8 Vcc 0.5 Vcc 0.5 Vcc 77 MB91220/S Series (8) Timer Input Timing (TA : − 40 °C to + 105 °C; VCC = 5.0 V ±10%, VSS = AVSS = 0.0 V) Parameter Symbol Pin name Condition tTIWH tTIWL TIN0 to TIN2, PWC0 IN0 to IN3 ⎯ Input pulse width Value Min Max 4 tCP ⎯ Unit ns • Timer Input Timing tTIWL tTIWH 0.8 Vcc TINx INx 0.8 Vcc 0.5 Vcc 0.5 Vcc (9) Trigger input Timing (TA : − 40 °C to + 105 °C; VCC = 5.0 V ±10%, VSS = AVSS = 0.0 V) Parameter Symbol Pin name Condition Input pulse width tTRGH, tTRGL INT0 to INT7, ATGX, RX0, RX1 ⎯ Value Max 5 tCP ⎯ ns 1 ⎯ µs • Timer input timing tTRGH INT0 to INT7 ATGX RX0,RX1 78 0.8 Vcc tTRGL 0.8 Vcc 0.5 Vcc Unit Min 0.5 Vcc Remarks At STOP mode MB91220/S Series 6. A/D Converter Electrical Characteristics (1) Electrical Characteristics (TA : − 40 °C to + 105 °C; VCC = AVCC = 5.0 V ±10%, VSS = AVSS = 0.0 V) Symbol Pin name Resolution ⎯ Total error Parameter Value Unit Remarks Min Typ Max ⎯ ⎯ ⎯ 10 bit ⎯ ⎯ ⎯ ⎯ ±3.0 LSB Non-linearity error ⎯ ⎯ ⎯ ⎯ ±2.5 LSB Differential linearity error ⎯ ⎯ ⎯ ⎯ ±1.9 LSB Zero transition voltage VOT AN0 to AN23 AVSS − 1.5 LSB AVSS + 0.5 LSB AVSS + 2.5 LSB V AVRH − 3.5 LSB AVRH − 1.5 LSB AVRH + 0.5 LSB V 600 ⎯ ⎯ ns AVCC ≥ 4.5 V*1 1200 ⎯ ⎯ ns 4.0 V ≤ AVCC < 4.5 V*2 990 ⎯ ⎯ ns AVCC ≥ 4.5 V*1 1980 ⎯ ⎯ ns 4.0 V ≤ AVCC < 4.5 V*2 1 LSB = (AVRH − AVSS) / 1024 Full-scale transition voltage VFST AN0 to AN23 Sampling time tSMP ⎯ Compare time tCMP ⎯ A/D conversion time tCNV ⎯ 3 ⎯ ⎯ µs tSMP + tCMP Analog port input current IAIN AN0 to AN23 ⎯ ⎯ 10 µA AVCC ≤ VAIN ≤ AVSS Analog input voltage VAIN AN0 to AN23 0 ⎯ AVRH V AVR + AVRH 4.0 ⎯ AVcc V ⎯ 2.4 4.7 mA ⎯ ⎯ 5 µA *3 Standard voltage Power supply current IA IAH AVCC Standard voltage supply current IR AVRH ⎯ 500 900 µA VAVRH = 5.0 V IRH AVRH ⎯ ⎯ 5 µA *3 Variation between channels ⎯ AN0 to AN23 ⎯ ⎯ 5 LSB *1 : Assume that the output impedance of the external analog signal is 2.74 kΩ or less. If the output impedance is high, the sampling time is longer than the standard value (refer to note) . For actual use, set tCNV ≤ tSMP + tCMP. *2 : Assume that the output impedance of the external analog signal is 0.7 kΩ or less. If the output impedance is high, the sampling time is longer than the standard value (refer to note) . For actual use, set tCNV ≤ tSMP + tCMP. *3 : This defines the power supply current when the A/D converter is not in operation and the CPU is stopped (at VCC = AVCC = AVRH = 5.0 V) . (Continued) 79 MB91220/S Series (Continued) Note : The external impedance of the analog input and its sampling time A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sampling and hold capacitor is insufficient. Therefore, it adversely affects A/D conversion precision . • Analog input circuit model R Analog input Comparator C During sampling : ON Note : The values are reference values. 80 R C 3.95 kΩ (max) 17 pF (max) MB91220/S Series To satisfy the A/D conversion precision standard, adjust the register value and operating frequency, or decrease the external impedance in accordance with the relationship between the external impedance and minimum sampling time, in order to make the sampling time longer than the minimum value. • The relationship between the external impedance and minimum sampling time • At 4.5 V ≤ AVCC ≤ 5.5 V [External impedance = 0 kΩ to 20 kΩ] 100 20 90 18 External impedance (kΩ) External impedance (kΩ) [External impedance = 0 kΩ to 100 kΩ] 80 70 60 50 40 30 20 10 0 0 5 10 16 14 12 10 8 6 4 2 0 0 15 Minimum sampling time (µs) 1 2 3 Minimum sampling time (µs) • At 4.0 V ≤ AVCC < 4.5 V [External impedance = 0 kΩ to 20 kΩ] 100 20 90 18 External impedance (kΩ) External impedance (kΩ) [External impedance = 0 kΩ to 100 kΩ] 80 70 60 50 40 30 20 10 0 0 5 10 Minimum sampling time (µs) 15 16 14 12 10 8 6 4 2 0 0 1 2 3 4 Minimum sampling time (µs) • If the sampling time is not sufficient, connect a capacitor of about 0.1 µF to the analog input pin. • Measure against noise for reference power supply (AVRH pin) It is recommended that a bypass capacitor of several µF be input to the reference power supply (AVRH) . • About errors |AVRH − AVSS| becomes smaller, values of relative errors grow larger. • Others When placing a DC blocking capacitor between the external circuit and input pin,set the capacitance value by multiplying CSH and several thousands as a guideline in order to minimize the impact from dividing voltage capacitance with CSH. 81 MB91220/S Series • Analog Input Equivalent Circuit Circuit in microcontroller rs Input pin AN0 RSH CSH Comparator Vs Input pin AN7 External circuit S/H circuit Analog channel selector <Recommended parameter values for each element> rS = 5 kΩ or less RSH = approx. 2.5 kΩ CSH = approx. 10 pF Note : These element parameters should be regarded as tentative values used only for design purposes. They do not guarantee the operation. 82 MB91220/S Series (2) Term Definitions • Resolution Level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, the analog voltage can be resolved into 210 = 1024. • Total error Difference between actual and theoretical values, which is a total value derived from an offset error, gain error, non-linearity error and noise. • Linearity error Deviation between the value along a straight line connecting the zero transition point (“00 0000 0000”←→“00 0000 0001”) of a device and the full-scale transition point (“11 1111 1110”←→“11 1111 1111”) compared with the actual conversion values obtained. • Differential linearity error Deviation of input voltage, which is required for changing output code by1 LSB, from an ideal value. Total error 3FFH 3FEH 0.5 LSB Actual conversion characteristics Digital output 3FDH {1 LSB × (N − 1) + 0.5 LSB} 004H VNT (Actually-measured value) 003H Actual conversion characteristics Ideal characteristics 002H 001H 0.5 LSB AVSS (AVRL) AVCC (AVRH) Analog input VNT − {1 LSB × (N − 1) + 0.5 LSB} 1 LSB AVCC − AVSS [V] 1024 Total error of digital output “N” = 1 LSB (Ideal value) = [LSB] VOT (Ideal value) = AVSS + 0.5 LSB [V] VFST (Ideal value) = AVCC − 1.5 LSB [V] VNT : A voltage at which digital output transits from (N − 1) H to NH. (Continued) 83 MB91220/S Series (Continued) Non linearity error Differential linearity error Ideal characteristics 3FFH Actual conversion characteristics {1 LSB × (N − 1) + VOT } Digital output 3FDH (N + 1)H VFST (actual measurement value) VNT (actual measurement value) 004H Actual conversion characteristics 003H Digital output 3FEH Actual conversion characteristics NH V (N + 1) T (actual measurement value) VNT (actual measurement value) (N − 1)H 002H Ideal characteristics Actual conversion characteristics (N − 2)H 001H VOT (actual measurement value) AVSS (AVRL) Analog input AVCC (AVRH) Non linearity error of digital output N = Differential linearity error of digital output N = 1 LSB = AVSS (AVRL) VNT − {1 LSB × (N − 1) + VOT} 1 LSB V (N+1) T − VNT 1 LSB VFST − VOT 1022 −1 LSB [LSB] [V] N : A/D converter digital output value VOT : Voltage at which digital output transits from “000H” to “001H.” VFST : Voltage at which digital output transits from “3FEH” to “3FFH.” 84 AVCC (AVRL) Analog input [LSB] MB91220/S Series 7. Electrical Characteristics for the D/A Converter Parameter Symbol (TA : − 40 °C to + 105 °C; VCC = AVCC = 5.0 V ±10%, VSS = AVSS = 0.0 V) Value Pin Unit Remarks Min Typ Max Resolution ⎯ ⎯ ⎯ ⎯ 8 bit Differential linearity error ⎯ ⎯ ⎯ ⎯ ±3 LSB ⎯ ⎯ ⎯ 0.45 ⎯ µs At load capacitance 20 pF ⎯ ⎯ ⎯ 2.00 ⎯ µs At load capacitance 100 pF Conversion time Reference power supply current IDVR AVCC ⎯ 162 920 µA TA = + 25 °C IDVRS AVCC ⎯ ⎯ 0.1 µA At power down Analog output impedance ⎯ ⎯ 2.0 3.0 3.9 kΩ 85 MB91220/S Series ■ ORDERING INFORMATION Part number 86 Package Remarks MB91V220ACR-ES 401-pin ceramic PGA (PGA-401C-A02) Evaluation product MB91F223PFV-GSE1 144-pin plastic LQFP (FPT-144P-M08) Sub clock support MB91F223SPFV-GSE1 144-pin plastic LQFP (FPT-144P-M08) Sub clock not yet support MB91220/S Series ■ PACKAGE DIMENSION 144-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 20.0 × 20.0 mm Lead shape Gullwing Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 1.20g Code (Reference) P-LFQFP144-20×20-0.50 (FPT-144P-M08) 144-pin plastic LQFP (FPT-144P-M08) Note 1) *:Values do not include resin protrusion. Resin protrusion is +0.25(.010)Max(each side). Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 22.00±0.20(.866±.008)SQ * 20.00±0.10(.787±.004)SQ 108 0.145±0.055 (.006±.002) 73 109 72 0.08(.003) Details of "A" part +0.20 1.50 –0.10 +.008 .059 –.004 0˚~8˚ INDEX 144 37 "A" LEAD No. 1 36 0.50(.020) C 0.22±0.05 (.009±.002) 0.08(.003) 0.50±0.20 (.020±.008) 0.60±0.15 (.024±.006) (Mounting height) 0.10±0.10 (.004±.004) (Stand off) 0.25(.010) M 2003 FUJITSU LIMITED F144019S-c-4-6 Dimensions in mm (inches). Note: The values in parentheses are reference values. Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html 87 MB91220/S Series The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html FUJITSU LIMITED All Rights Reserved. The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering. The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information. Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party’s intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite). Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan. The company names and brand names herein are the trademarks or registered trademarks of their respective owners. Edited Business Promotion Dept. F0703