MIC860 Micrel, Inc. MIC860 Teeny™ Ultra Low Power Op Amp General Description Features The MIC860 is a rail-to-rail output, operational amplifier in Teeny™ SC70 packaging. The MIC860 provides 4MHz gain-bandwidth product while consuming an incredibly low 30µA supply current. The SC70 packaging achieves significant board space savings over devices packaged in SOT-23 or MSOP-8 packaging. The SC70 occupies approximately half the board area of a SOT-23 package. • • • • • • • Teeny™ SC70 packaging 4MHz gain-bandwidth product 30µA supply current Rail-to-Rail output Ground sensing at input common mode to GND Common mode to GND Drive large capactive loads Applications • • • • • Portable equipment PDAs Pagers Cordless Phones Consumer Electronics Ordering Information Part Number Standard Marking MIC860BC5 A32 Pb-Free Marking* Ambient Temp. Range Package A32 –40ºC to +85ºC SC-70-5 MIC860YC5 * Underbar marking may not be to scale. Pin Configuration Functional Pinout IN− V− IN+ 3 2 1 A32 4 5 OUT V+ IN− V− Part Identification 3 2 IN+ 1 4 5 OUT V+ SC-70 Teeny is a trademark of Micrel, Inc. Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com February 2006 1 M9999-022706 MIC860 Micrel, Inc. Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – V–) .......................................... +6.0V Differentail Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V Input Voltage (VIN+ – VIN–) ...................V+ + 0.3V, V– –0.3V Lead Temperature (soldering, 5 sec.) ........................ 260°C Output Short Circuit Current Duration ...................Indefinite Storage Temperature (TS) ......................................... 150°C ESD Rating, Note 3 Supply Voltage (V+ – V–) ........................ +2.43V to +5.25V Ambient Temperature Range...................... –40°C to +85°C Package Thermal Resistance................................ 450°C/W Electrical Characteristics V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage –20 –25 Input Offset Voltage Temp Coefficient IB –5 15 20 20 mV mV µV/°C Input Bias Current 20 pA IOS Input Offset Current 10 pA Input Voltage Range CMRR > 60dB 1 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 38 76 dB VCM PSRR Power Supply Rejection Ratio Supply voltage change of 3V 40 78 dB AVOL Large-Signal Voltage Gain RL = 5k, VOUT 2V peak to peak 50 66 dB 66 81 dB RL = 500k, VOUT 2V peak to peak 76 91 dB RL = 100k, VOUT 2V peak to peak VOUT Maximum Output Voltage Swing VOUT Minimum Output Voltage Swing GBW Gain-Bandwidth Product SR Slew Rate ISC Short-Circuit Output Current IS Supply Current RL = 5k RL = 500k V+–70mV V+–34mV V V+–2mV V+–0.7mV V RL = 5k RL = 500k V–+11mV V–+ 50mV mV V–+0.2mV V–+ 2mV mV 4 MHz 3 V/µs Source 4.5 6 mA Sink 10 16 mA No Load 30 50 V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage Input Offset Voltage Temp Coefficient 20 µV/°C IB Input Bias Current 20 pA 10 pA 4.2 V IOS VCM Input Offset Current Input Voltage Range CMRR Common-Mode Rejection Ratio PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain M9999-022706 –20 CMRR > 60dB 3.5 –5 20 µA mV 0 < VCM < 3.5V 44 77 dB Supply voltage change of 1V 40 79 dB RL = 5k, VOUT 4.8V peak to peak 52 66 dB 67 80 dB RL = 500k, VOUT 4.8V peak to peak 75 90 dB RL = 100k, VOUT 4.8V peak to peak 2 February 2006 MIC860 Micrel, Inc. Symbol Parameter VOUT Maximum Output Voltage Swing VOUT Minimum Output Voltage Swing GBW Gain-Bandwidth Product SR Slew Rate ISC Short-Circuit Output Current IS Supply Current Condition Min RL = 5k RL = 500k Typ Max Units V+–75mV V+–37mV V V+–35mV V RL = 5k RL = 500k V+–4mV V–+14mV V–+ 40mV mV V–+0.4mV V–+ 5mV mV 4 MHz 3 V/µs Source 15 23 mA Sink 30 47 mA No Load 33 55 µA Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. February 2006 3 M9999-022706 MIC860 Micrel, Inc. Test Circuits Test Circuit 1. AV = 10 Test Circuit 2. AV = 2 Test Circuit 3. AV = 1 Test Circuit 4. AV = –1 V+ 10µF 100µF Input 0.1µF 50Ω BNC 10µF 48k 10k 10k 170k 4 3 2 MIC860 1 BNC Output 5 50Ω 0.1µF All resistors: 1% metal film 100µF 10µF V— Test Circuit 5. Positive Power Supply Rejection Ratio Measurement M9999-022706 4 February 2006 MIC860 Micrel, Inc. Typical Characteristics Supply Current vs. Temperature 39 -3 37 5V 33 -4 29 2.7V 27 25 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Short Circuit Current (sink) vs. Temperature 0 2.7V -10 5V 5 -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Supply Current vs. Supply Voltage 41 39 -40°C 33 27 +85°C -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Output Voltage vs. Output Current (Sinking) +85°C -40°C 5 25 0.5 V+ = 5V 1 1.5 2 2.5 3 SUPPLY VOLTAGE (±V) Short Circuit Current vs. Supply Voltage (Sourcing) 30 -40°C 25 +25°C 4 20 3 15 2 10 1 Offset Voltage vs. Common-Mode Voltage V+ = 5V 2 -40°C 1.5 1 0.5 +25°C +85°C 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 COMMON-MODE VOLTAGE (V) February 2006 0 0 2.7V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) Output Voltage vs. Output Current (Sourcing) 5 4.5 4 -40°C 3.5 3 2.5 2 +25°C 1.5 1 0.5 V+ = 5V +85°C 0 0 5 10 15 20 25 30 OUTPUT CURRENT (mA) Short Circuit Current vs. Supply Voltage (Sinking) 60 -40°C 50 40 +25°C +85°C 30 +25°C +85°C 20 5 V+ = 5V 10 20 30 40 50 60 OUTPUT CURRENT (mA) 5V 15 -5.5 29 -50 25 10 31 +25°C -40 2.5 2.7V 35 -30 30 -5 37 -20 Short Circuit Current (source) vs. Temperature 20 -4.5 31 0 0 5V -3.5 35 6 Offset Voltage vs. Temperature 10 V+ = 5V 0.5 1 1.5 2 2.5 3 SUPPLY VOLTAGE (±V) Offset Voltage vs. Common-Mode Voltage 2.2 2.0 1.8 -40°C 1.6 1.4 1.2 +25°C 1.0 0.8 +85°C 0.6 0.4 0.2 Supply = 2.7V 0 0 0.54 1.08 1.62 2.16 2.7 COMMON-MODE VOLTAGE (V) 5 0 0 V+ = 5V 0.5 1 1.5 2 2.5 3 SUPPLY VOLTAGE (±V) Output Voltage Swing vs. Resistive Load (Sinking) 4.5 4 3.5 3 VCC = 5V 2.5 2 1.5 1 0.5 0 V = 2.7V -0.5 CC 0.1 1 10 100 1000 10000 RESISTIVE LOAD (kΩ) M9999-022706 MIC860 Micrel, Inc. Output Voltage Swing vs. Resistive Load (Sourcing) 5.5 4.5 100 Open Loop Gain vs. Resistive Load VCC = 5V VCC = 5.0V 3.5 2.5 VCC = 2.7V VCC = 2.7V 80 1.5 0.5 -0.5 0.1 M9999-022706 1 10 100 1000 10000 RESISTIVE LOAD (kΩ) 60 1 10 100 1000 10000 RESISTIVE LOAD (kΩ) 6 February 2006 MIC860 Micrel, Inc. Functional Characteristics Gain Bandwidth and Phase Margin Gain Frequency Response Unity Gain Frequency Response 225 25 225 25 40 180 20 180 20 180 30 135 15 135 15 135 20 90 10 90 10 90 10 45 5 45 5 45 0 0 0 0 0 0 3 5 45 2.5 0 0 -5 -90 -135 -225 2x107 1x107 -180 1x106 1x105 1x104 V CC = 2.7V -10 R = 5k Ω L -15 C = 2pF L -20 A = 1 V -25 -45 2x107 1x107 1x106 60 2 VCC = 2.7V 1.5 Note: To drive capacitive load, 1 a 500Ω series resistor would 0.5 help stablize the circuit 0 1 10 100 1000 CAPACITIVE LOAD (pF) 90 1x105 70 50 40 30 20 10 VCC = 2.7V 0 FREQUENCY (Hz) 1x10 90 80 6 10 VCC = 5.0V 3.5 1x105 135 -225 PSRR vs. Frequency 1x10 180 15 90 -180 4 20 Gain Bandwidth vs. Capacitve Load -135 1x103 4 -225 -90 1x102 225 -180 -45 V CC = 5V -10 R L = 5k Ω -15 C = 2pF L -20 A = 1 V -25 1x101 Unity Gain Frequency Response -135 225 -5 1x104 -225 2x107 1x107 1x106 -180 -90 2x107 -135 -45 V CC = 5V -10 A = 2 V -15 C = 2pF L -20 R = 5k Ω L -25 1x107 -90 -5 1x106 -45 1x100 25 1x105 1x104 V CC = 5V -20 A V = 10 -30 R = 1M Ω L -40 C = 2pF L -50 1x105 -10 1x104 50 PSRR vs. Frequency 80 70 60 50 40 30 20 February 2006 7 1x10 FREQUENCY (Hz) 6 1x105 1x10 4 1x103 1x102 1x100 0 1x101 10 VCC = 5V M9999-022706 MIC860 Micrel, Inc. Small Signal Response Test Circuit 3: AV = 1 Small Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 5V CL = 2 pF RL = 5kΩ AV = 1 V+ = 2.7V CL = 2 pF RL = 5kΩ TIME 500ns/div TIME 500ns/div Small Signal Response Test Circuit 3: AV = 1 Small Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 2.7V CL = 50pF RL = 5kΩ AV = 1 V+ = 5V CL = 50pF RL = 5kΩ TIME 500ns/div TIME 500ns/div Smal Signal Response Test Circuit 3: AV = 1 Smal Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 2.7V CL = 50pF RL = 500Ω AV = 1 V+ = 5V CL = 50pF RL = 500Ω TIME 500ns/div M9999-022706 TIME 500ns/div 8 February 2006 MIC860 Micrel, Inc. Smal Signal Response Test Circuit 3: AV = 1 AV = 1 V+ = 2.7V CL = 2pF RL = 1MΩ V+ RL V− CL TIME 500ns/div Small Signal Response Test Circuit 4: AV = −1 Small Signal Response Test Circuit 4: AV = −1 AV = −1 V+= 5V CL = 2pF RL = 1MΩ OUTPUT 50mV/div AV = −1 V+= 2.7V CL = 2pF RL = 1MΩ TIME 500ns/div TIME 500ns/div Small Signal Response Test Circuit 4: AV = −1 Small Signal Response Test Circuit 4: AV = −1 AV = −1 V+= 5V CL = 2pF RL = 5kΩ AV = −1 V+= 2.7V CL = 2pF RL = 5kΩ TIME 500ns/div TIME 500ns/div February 2006 9 M9999-022706 MIC860 Micrel, Inc. Rail to Rail Output Operation Test Circuit 2: AV = 2 Rail to Rail Output Operation Test Circuit 2: AV = 2 ∆VP-P = 2.7V ∆VP-P = 5V AV = 2 V+ = 2.7V CL = 2pF RL = 1MΩ AV = 2 V+ = 5V CL = 2pF RL = 1MΩ TIME 250µs/div TIME 250µs/div Rail to Rail Output Operation Test Circuit 2: AV = 2 Rail to Rail Output Operation Test Circuit 2: AV = 2 ∆VP-P = 2.7V ∆VP-P = 5V AV = 2 V+ = 2.7V CL = 2pF RL = 5kΩ AV = 2 V+ = 5V CL = 2pF RL = 5kΩ TIME 250µs/div TIME 250µs/div Large Signal Pulse Response Test Circuit 3: AV = 1 Large Signal Pulse Response Test Circuit 3: AV = 1 AV = 1 CL = 2pF RL = 5kΩ V+ = 5V AV = 1 CL = 50pF RL = 5kΩ V+ = 2.7V ∆V = 730mV ∆t = 300ns OUTPUT 50mV/div ∆V = 2.84V ∆t = 700ns Rise Slew Rate = 4.1V/µs Fall Slew Rate = 2.9V/µs Rise Slew Rate = 2.4V/µs Fall Slew Rate = 4.7V/µs TIME 5µs/div M9999-022706 TIME 5µs/div 10 February 2006 MIC860 Micrel, Inc. Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Supply and Loading Considerations The MIC860 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC860 with either: 1). A grounded load and split supplies (+/-V) or 2). A single supply where the load is terminated above ground. Under the above conditions, if the load is less than 20kOhm and the output swing is greater than 1V(peak), there may be some instability when the output is sinking current. February 2006 11 M9999-022706 MIC860 Micrel, Inc. Package Information SC70-5 MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2002 Micrel, Inc. M9999-022706 12 February 2006