MICREL MIC861BC5

MIC861
Micrel
MIC861
Teeny™ Ultra Low Power Op Amp
Final Information
General Description
Features
The MIC861 is a rail-to-rail output, input common-mode to
ground, operational amplifier in Teeny™ SC70 packaging.
The MIC861 provides 400kHz gain-bandwidth product while
consuming an incredibly low 4.6µA supply current.
The SC70 packaging achieves significant board space savings over devices packaged in SOT-23 or MSOP-8 packaging. The SC70 occupies approximately half the board area of
a SOT-23 package.
•
•
•
•
•
•
•
•
Teeny™ SC70 packaging
400kHz gain-bandwidth product
650kHz, –3dB bandwidth
4.6µA supply current
Rail-to-Rail output
Ground sensing at input (common mode to GND)
Drives large capactive loads (1000pF)
Unity gain stable
Applications
•
•
•
•
•
Portable equipment
PDAs
Pagers
Cordless Phones
Consumer Electronics
Ordering Information
Part Number
Marking
Ambient Temp. Range*
Package
MIC861BC5
A33
–40°C to +85°C
SC70-5
Pin Configuration
Functional Pinout
IN— V— IN+
IN— V— IN+
3
2
1
Part
Identification
3
2
1
A33
4
5
OUT
V+
4
5
OUT
V+
SC-70
Teeny is a trademark of Micrel, Inc.
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
July 2001
1
MIC861
MIC861
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – V–) ......................................... +6.0V
Differentail Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V
Lead Temperature (soldering, 5 sec.) ....................... 260°C
Output Short Circuit Current Duration .................. Indefinite
Storage Temperature (TS) ........................................ 150°C
ESD Rating, Note 3
Supply Voltage (V+ – V–) ........................ +2.43V to +5.25V
Ambient Temperature Range ..................... –40°C to +85°C
Package Thermal Resistance ............................... 450°C/W
Electrical Characteristics
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
Input Offset Voltage
Note 5
–10
2
10
mV
Input Offset Voltage Temp Coefficient
15
µV/°C
IB
Input Bias Current
20
pA
IOS
Input Offset Current
10
pA
VCM
Input Voltage Range
CMRR > 60dB
1.8
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1.35V
45
77
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change of 3V
50
83
dB
AVOL
Large-Signal Voltage Gain
RL = 100k, VOUT 2V peak to peak
60
74
dB
RL = 500k, VOUT 2V peak to peak
73
83
dB
VOUT
Maximum Output Voltage Swing
RL = 500k
VOUT
Minimum Output Voltage Swing
RL = 500k
GBW
Gain-Bandwidth Product
RL = 200kΩ, CL = 2pF, VOUT = 0
350
kHz
BW
–3dB Bandwidth
AV = 1, CL = 2pF, RL = 1MΩ
500
kHz
SR
Slew Rate
AV = 1, CL = 2pF, RL = 1MΩ
0.12
V/µs
ISC
Short-Circuit Output Current
Source
6
mA
Sink
5
mA
IS
Supply Current
V+–2mV V+–0.7mV
V
V–+0.2mV V–+ 2mV
No Load
4.2
V
µA
9
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
Note 5
–10
2
10
mV
Input Offset Voltage Temp Coefficient
15
µV/°C
IB
Input Bias Current
20
pA
IOS
Input Offset Current
10
pA
VCM
Input Voltage Range
CMRR > 60dB
4.2
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 3.5V
60
80
dB
PSRR
Power Supply Rejection Ratio
Supply voltage change of 1V
45
85
dB
AVOL
Large-Signal Voltage Gain
RL = 100k, VOUT 4.0V peak to peak
60
76
dB
RL = 500k, VOUT 4.0V peak to peak
68
83
dB
VOUT
Maximum Output Voltage Swing
RL = 500k
VOUT
Minimum Output Voltage Swing
RL = 500k
GBW
Gain-Bandwidth Product
RL = 200kΩ, CL = 2pF, VOUT = 0
400
kHz
BW
–3dB Bandwidth
AV = 1, CL = 2pF, RL = 1MΩ
650
kHz
MIC861
V+–2mV V+–0.7mV
V
V–+0.7mV V–+ 2mV
2
V
July 2001
MIC861
Micrel
Symbol
Parameter
Condition
SR
Slew Rate
AV = 1, CL = 2pF, RL = 1MΩ
ISC
Short-Circuit Output Current
Source
Sink
IS
Supply Current
Min
No Load
Typ
Max
Units
0.12
V/µs
10
24
mA
10
24
mA
4.6
µA
9
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Note 5.
The offset voltage distribution is centered around 0V. The typical offset number shown, is equal to the standard deviation of the voltage offset
distribution.
July 2001
3
MIC861
MIC861
Micrel
Test Circuits
200k
20k
V+
V+
0.1µF 10µF
0.1µF 10µF
20k
20k
MIC861
MIC861
RF
RF
FET
PROBE
0.1µF 10µF
50½
FET
PROBE
FET
PROBE
0.1µF 10µF
50½
RL
5k
FET
PROBE
VÐ
VÐ
Test Circuit 2:AV = 2
Test Circuit 1. AV = 11
20k
V+
V+
0.1µF 10µF
0.1µF 10µF
20k
RF
MIC861
MIC861
RF
FET
PROBE
FET
PROBE
0.1µF 10µF
50½
50½
50½
0.1µF 10µF
FET
PROBE
FET
PROBE
VÐ
VÐ
Test Circuit 4. AV = –1
Test Circuit 3. AV = 1
V+
10µF
100µF
50Ω
0.1µF
BNC
Input
10µF
170k
48k
BNC
10k
10k
MIC861
Output
50Ω
0.1µF
All resistors:
1% metal film
100µF
10µF
V—
Test Circuit 5. Positive Power Supply Rejection Ratio Measurement
MIC861
4
July 2001
MIC861
Micrel
DC Performance Characteristics
Output Voltage vs.
Output Current
3
-40°C
1
4
3
85°C
2
1
-40°C
0
0
1.1
15
85°C
10
5
OFFSET VOLTAGE (V)
0
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
SUPPLY VOLTAGE (±V)
1
0.9
0.8
25°C
0.7
–40°C
0.6
0.5
0
25°C
6
-40°C
4
3
2
1
OPEN LOOP GAIN (dB)
OFFSET VOLTAGE (V)
85°C
7
0
0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5
SUPPLY VOLTAGE (V)
80
60
-2
5V
-4
2.7V
-6
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
V+ = 5V
V+ = 2.7V
20
0
0.1
25°C
0.8
0.7
0.5
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
COMMON-MODE VOLTAGE (V)
Supply Current vs.
Temperature
Sourcing
25
20
5V
15
10
5
2.7V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
5
5V
6
5
2.7V
4
3
2
1
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
1
10
100 1000 10000
RESISTIVE LOAD (kΩ)
30
–40°C
0.6
Short Circuit Current
vs. Temperature
SHORT CIRCUIT CURRENT (mA)
OFFSET VOLTAGE (mV)
-1
July 2001
0.9
7
40
Offset Voltage vs.
Temperature
0
-5
85°C
100
8
-3
V+ = 5V
1
Open Loop Gain vs.
Resistive Load
9
5
1.1
0.5
1
1.5
2
2.5
COMMON-MODE VOLTAGE (V)
Offset Voltage vs.
Supply Voltage
85°C
5
SUPPLY CURRENT (µA)
OUTPUT CURRENT (mA)
20
25°C
10
Offset Voltage vs.
Common-Mode Voltage
85°C
V+ = 2.7V
Sinking
25°C
15
Offset Voltage vs.
Common-Mode Voltage
30
-40°C
20
0
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
SUPPLY VOLTAGE (±V)
OFFSET VOLTAGE (V)
Short Circuit Current vs.
Supply Voltage
25
25
5
10 15 20 25 30
OUTPUT CURRENT (mA)
-
-40°C
Sourcing
Short Circuit Current
vs. Temperature
SHORT CIRCUIT CURRENT (mA)
0
0
25°C
85°C
- 5 -10 -15 - 20 -25 -30 - 35 - 40
OUTPUT CURRENT (mA)
25°C
OUTPUT CURRENT (mA)
OUTPUT VOLTAGE (V)
5 Sinking
4
2
Short Circuit Current vs.
Supply Voltage
30
Sourcing
5
OUTPUT VOLTAGE (V)
Output Voltage vs.
Output Current
0
Sinking
-5
2.7V
-10
-15
-20
5V
-25
-30
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
MIC861
MIC861
Micrel
AC Perfomance Characteristics
Gain Bandwidth vs.
Capacitive Load
90
90
80
325
70
80
70
175
50
40
30
125
20
75
10
0
1
10
100
1000
CAPACITIVE LOAD (pF)
80
10
60
40
20
Gain Bandwidth
and Phase Margin
60
40
20
0
V+ = 2.7V
V+ = 2.7V
-20
1
100 1k 10k 100k 1M
FREQUENCY (Hz)
10
Gain Bandwidth
and Phase Margin
100 1k 10k 100k 1M
FREQUENCY (Hz)
50
40
225
180
30
20
135
90
10
0
45
0
-10 Av = 11
-20 V+ = 1.35V
V- = –1.35V
-30 C = 2pF
L
-40 R = 200kΩ
F
-50
10k
1k
100k
FREQUENCY (Hz)
Unity Gain
Frequency Response
-45
-90
-135
-180
1M
-225
Unity Gain
Frequency Response
225
50
225
40
30
180
135
40
30
180
135
20
10
90
45
20
10
90
45
20
10
90
45
0
-10
0
-45
0
-10
0
-45
-20 Av = 1
-30 V+ = 2.5V
V– = –2.5V
-40 R = 1MΩ
L
-50
10k
1k
100k
FREQUENCY (Hz)
-90
-135
-20 Av = 1
V+ = 1.35V
-30
V– = –1.35V
-40 RL = 1MkΩ
-50
10k
1k
100k
FREQUENCY (Hz)
-90
-135
0
-10 Av = 11
-20 V+ = 2.5V
V– = –2.5V
-30 C = 2pF
0
-45
-40 R = 200kΩ
F
-50
10k
1k
100k
FREQUENCY (Hz)
-180
-225
-90
-135
1M
1M
-180
-225
Gain Bandwidth
and Phase Margin
Gain Frequency Response
50
225
40
30
180
135
40
30
180
135
20
10
90
45
20
10
90
45
0
-45
-90
-135
1M
-180
-225
GAIN (dB)
225
PHASE (°)
50
0
-10 Av = 2
V+ = 1.35V
-20
V- = –1.35V
-30 C = 2pF
L
-40 RF = 20kΩ
-50
10k
1k
100k
FREQUENCY (Hz)
1M
-180
-225
0
-10 Av = 2
-20 V+ = 2.5V
V- = –2.5V
-30 C = 2pF
0
-45
-40 R = 20kΩ
F
-50
10k
1k
100k
FREQUENCY (Hz)
-180
-225
PHASE (°)
L
GAIN (dB)
50
180
135
PHASE (°)
225
40
30
GAIN (dB)
50
PHASE (°)
GAIN (dB)
100 1k 10k 100k 1M
FREQUENCY (Hz)
GAIN (dB)
PSRR (dB)
80
CMRR (dB)
100
GAIN (dB)
0
V+ = 5V
-10
1
10 100 1k 10k 100k 1M
FREQUENCY (Hz)
V+= 5V
PSRR vs.
Frequency
100
10
40
30
20
10
CMRR vs.
Frequency
0
1
60
50
PHASE (°)
225
60
PHASE (°)
CMRR (dB)
2.7V
275
PSRR (dB)
5V
25
1
MIC861
PSRR vs.
Frequency
375
425
GAIN BANDWIDTH (kHz)
CMRR vs.
Frequency
-90
-135
L
6
1M
July 2001
MIC861
Micrel
Close-loop Unity Gain Frequency Response
18
15
AV = 1
V+ = 2.5V
V- = -2.5V
0.1µF
1µF
GAIN (dB)
12
0.01µF
V+
1000pF
FET Probe
9
100pF
RF
CL
6
V—
3
3pF
0
-3
-6
100
July 2001
1k
10k
100k
FREQUENCY (Hz)
1M
10M
7
MIC861
MIC861
Micrel
Functional Characteristics
Small Signal Pulse Response
Test Circuit 3: AV = 1
INPUT
50mV/div
OUTPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
Small Signal Pulse Response
Test Circuit 3: AV = 1
Small Signal Pulse Response
Test Circuit 3: AV = 1
INPUT
50mV/div
TIME 10µs/div
OUTPUT
50mV/div
Small Signal Pulse Response
Test Circuit 4: AV = -1
Small Signal Pulse Response
Test Circuit 4: AV = -1
INPUT
50mV/div
TIME 250ms/div
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
OUTPUT
50mV/div
OUTPUT
50mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 50pF
RL = 1MΩ
TIME 10µs/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 50pF
RL = 1MΩ
TIME 10µs/div
MIC861
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
TIME 10µs/div
INPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
Small Signal Pulse Response
Test Circuit 3: AV = 1
TIME 10µs/div
8
July 2001
MIC861
Micrel
INPUT
50mV/div
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 10µs/div
Rail to Rail Output Operation
Rail to Rail Output Operation
INPUT
2V/div
∆VPP = 2.7V
OUTPUT
2V/div
AV = 2
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
∆VPP = 5V
TIME 250µs/div
TIME 250µs/div
Rail to Rail Output Operation
Rail to Rail Output Operation
INPUT
2V/div
OUTPUT
2V/div
INPUT
2V/div
TIME 10ms/div
INPUT
1V/div
AV = 2
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
∆VPP = 2.7V
OUTPUT
2V/div
OUTPUT
1V/div
AV = -1
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
OUTPUT
50mV/div
AV = -1
V+ = 1.35V
V- = -1.35V
CL = 2pF
RL = 1MΩ
RF = 20kΩ
OUTPUT
50mV/div
INPUT
50mV/div
Small Signal Pulse Response
Test Circuit 4: AV = -1
TIME 250µs/div
July 2001
AV = 2
V+ = 2.5V
V- = -2.5V
CL = 2pF
RL = 5kΩ
RF = 20kΩ
∆VPP = 5V
TIME 250µs/div
9
MIC861
MIC861
Micrel
Large Signal Pulse Response
Test Circuit 3: AV = 1
Large Signal Pulse Response
Test Circuit 3: AV = 1
OUTPUT
500mV/div
AV = 1
V+ = 2.5V
V- = -2.5V
CL = 100pF
RL = 5kΩ
OUTPUT
500mV/div
AV = 1
V+ = 1.35V
V- = -1.35V
CL = 100pF
RL = 5kΩ
Positive Slew Rate = 0.14V/µs
Negative Slew Rate = 0.22V/µs
TIME 10µs/div
MIC861
Positive Slew Rate = 0.13V/µs
Negative Slew Rate = 0.18V/µs
TIME 10µs/div
10
July 2001
MIC861
Micrel
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended. A
10µF capacitor in parallel with a 0.1µF capacitor on both the
positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to
the op amp as possible and all capacitors should be low ESL
(equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal.
July 2001
11
MIC861
MIC861
Micrel
Package Information
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094)
1.15 (0.045) 1.80 (0.071)
2.20 (0.087)
1.80 (0.071)
DIMENSIONS:
MM (INCH)
1.00 (0.039) 1.10 (0.043)
0.80 (0.032) 0.80 (0.032)
0.10 (0.004)
0.00 (0.000)
0.30 (0.012)
0.15 (0.006)
0.18 (0.007)
0.10 (0.004)
0.30 (0.012)
0.10 (0.004)
SC70-5
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
USA
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 2001 Micrel Incorporated
MIC861
12
July 2001