ONSEMI BAT54WT1G

BAT54WT1
Preferred Device
Schottky Barrier Diode
These Schottky barrier diodes are designed for high speed switching
applications, circuit protection, and voltage clamping. Extremely low
forward voltage reduces conduction loss. Miniature surface mount
package is excellent for hand held and portable applications where
space is limited.
http://onsemi.com
Features
• Extremely Fast Switching Speed
• Extremely Low Forward Voltage − 0.35 V (Typ) @ IF = 10 mAdc
• Pb−Free Package is Available
30 VOLT
SCHOTTKY BARRIER
DETECTOR AND SWITCHING
DIODE
3
CATHODE
MAXIMUM RATINGS (TJ = 125°C unless otherwise noted)
Symbol
Value
Unit
Reverse Voltage
Rating
VR
30
V
Forward Power Dissipation
@ TA = 25°C
Derate above 25°C
PF
Forward Current (DC)
200
1.6
mW
mW/°C
IF
200 Max
mA
Junction Temperature
TJ
−55 to 125
°C
Storage Temperature Range
Tstg
−55 to +150
°C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1
ANODE
MARKING
DIAGRAM
3
B4M G
G
SOT−323
CASE 419
1
2
1
B4
= Device Code
M
= Date Code*
G
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation may vary depending
upon manufacturing location.
ORDERING INFORMATION
Package
Shipping †
BAT54WT1
SOT−323
3000 / Tape & Reel
BAT54WT1G
SOT−323
(Pb−Free)
3000 / Tape & Reel
Device
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Preferred devices are recommended choices for future use
and best overall value.
© Semiconductor Components Industries, LLC, 2005
October, 2005 − Rev. 8
1
Publication Order Number:
BAT54WT1/D
BAT54WT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Reverse Breakdown Voltage
(IR = 10 mA)
V(BR)R
30
−
−
V
Total Capacitance
(VR = 1.0 V, f = 1.0 MHz)
CT
−
7.6
10
pF
Reverse Leakage
(VR = 25 V)
IR
−
0.5
2.0
mAdc
Forward Voltage
(IF = 0.1 mAdc)
VF
−
0.22
0.24
Vdc
Forward Voltage
(IF = 30 mAdc)
VF
−
0.41
0.5
Vdc
Forward Voltage
(IF = 100 mAdc)
VF
−
0.52
0.8
Vdc
Reverse Recovery Time
(IF = IR = 10 mAdc, IR(REC) = 1.0 mAdc, Figure 1)
trr
−
−
5.0
ns
Forward Voltage
(IF = 1.0 mAdc)
VF
−
0.29
0.32
Vdc
Forward Voltage
(IF = 10 mAdc)
VF
−
0.35
0.40
Vdc
Forward Current (DC)
IF
−
−
200
mAdc
Repetitive Peak Forward Current
IFRM
−
−
300
mAdc
Non−Repetitive Peak Forward Current
(t < 1.0 s)
IFSM
−
−
600
mAdc
http://onsemi.com
2
BAT54WT1
820 W
+10 V
2k
0.1 mF
IF
100 mH
tr
tp
IF
T
10%
0.1 mF
trr
T
DUT
50 W OUTPUT
PULSE
GENERATOR
50 W INPUT
SAMPLING
OSCILLOSCOPE
90%
iR(REC) = 1 mA
IR
VR
OUTPUT PULSE
(IF = IR = 10 mA; measured
at iR(REC) = 1 mA)
INPUT SIGNAL
Notes: 1. A 2.0 kW variable resistor adjusted for a Forward Current (IF) of 10 mA.
Notes: 2. Input pulse is adjusted so IR(peak) is equal to 10 mA.
Notes: 3. tp » trr
Figure 1. Recovery Time Equivalent Test Circuit
100
1000
TA = 150°C
IR, REVERSE CURRENT (mA)
85°C
10
1 50°C
1.0
25°C
0.1
0.0
−40°C
−55°C
100
TA = 125°C
10
1.0
TA = 85°C
0.1
0.01
TA = 25°C
0.001
0.2
0.3
0.4
0.1
0.5
VF, FORWARD VOLTAGE (VOLTS)
0
0.6
5
15
25
10
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 2. Forward Voltage
Figure 3. Leakage Current
14
CT, TOTAL CAPACITANCE (pF)
IF, FORWARD CURRENT (mA)
1 25°C
12
10
8
6
4
2
0
0
5
10
15
20
VR, REVERSE VOLTAGE (VOLTS)
Figure 4. Total Capacitance
http://onsemi.com
3
25
30
30
BAT54WT1
PACKAGE DIMENSIONS
SOT−323 (SC−70)
CASE 419−04
ISSUE M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
D
e1
3
E
HE
1
2
b
e
A
0.05 (0.002)
c
A2
L
A1
DIM
A
A1
A2
b
c
D
E
e
e1
L
HE
MIN
0.80
0.00
0.30
0.10
1.80
1.15
1.20
2.00
MILLIMETERS
NOM
MAX
0.90
1.00
0.05
0.10
0.7 REF
0.35
0.40
0.18
0.25
2.10
2.20
1.24
1.35
1.30
1.40
0.65 BSC
0.425 REF
2.10
2.40
MIN
0.032
0.000
0.012
0.004
0.071
0.045
0.047
0.079
INCHES
NOM
0.035
0.002
0.028 REF
0.014
0.007
0.083
0.049
0.051
0.026 BSC
0.017 REF
0.083
MAX
0.040
0.004
0.016
0.010
0.087
0.053
0.055
0.095
STYLE 2:
PIN 1. ANODE
2. N.C.
3. CATHODE
SOLDERING FOOTPRINT*
0.65
0.025
0.65
0.025
1.9
0.075
0.9
0.035
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
4
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
BAT54WT1/D