STMICROELECTRONICS ST6G3240TBR

ST6G3240
Dual supply level translator for dual memory cards
(mini SD/micro SD + managed NAND)
Features
■
High speed: tPD (A to B) = 5 ns at TA = 85 °C
with VCCA = 1.8 V, VCCBn = 3.0 V
■
Low power dissipation: ICCA = ICCBn = 5 µA
(max.) at TA = 85 °C
■
Balanced propagation delays: tPLH ≈ tPHL
■
Operating voltage range:
– VCCA (opr) = 1.4 to 3.6 V
– VCCBn (opr) = 1.4 to 3.6 V
■
B-side power supplies (VCCB1 and VCCB2) can
be different and separately controlled
■
Interchangeable voltage levels:
VCCA can either be greater than or less than
VCCBn
■
Low power mode:
when VCCBn is grounded or floating, there is
very low quiescent current on VCCA
μTFBGA 36
Description
■
Power down detection:
when either one of the B-side power supplies
(VCCB1 and VCCB2) is grounded or floating, the
corresponding port-n goes into high-Z state
automatically
■
Latch-up performance exceeds 500 mA
(JESD17)
■
ESD protection: 2 kV HBM
■
Integrated pull-up resistor and level translator
on the MS_Insert pin
■
Integrated pull-up resistor for card-detect pin
The ST6G3240 is a dual supply low voltage
CMOS level translator supporting the dual
function of mini SD/micro SD card and managed
NAND memories. It is designed for use as an
interface between three systems using 3.3, 2.5
and 1.8 V respectively.
The ST6G3240 is capable of achieving high
speed operation and at the same time maintaining
low power dissipation.
While the A port is designed to track VCCA, the Bn
port (nCMD, nDAT, nCLK) is designed to track
VCCBn.
The device is intended for a two-way
asynchronous communication between data
buses.
Table 1.
April 2008
Device summary
Order code
Package
Packing
ST6G3240TBR
μTFBGA36 (3.6 x 3.6 mm)
Tape and reel
Rev 2
1/29
www.st.com
29
Contents
ST6G3240
Contents
1
ST6G3240 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Pin settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2/29
ST6G3240
1
ST6G3240 general description
ST6G3240 general description
The ST6G3240 is a dual supply low voltage CMOS level translator supporting the dual
function of mini SD/micro SD card and managed NAND memories. It is designed for use as
an interface between three systems using 3.3, 2.5 and 1.8 V respectively.
The ST6G3240 is capable of achieving high speed operation and at the same time
maintaining low power dissipation.
While the A port is designed to track VCCA, the Bn port (nCMD, nDAT, nCLK) is designed to
track VCCBn.
The device is intended for a two-way asynchronous communication between data buses.
The direction of data transmission is determined by CMD-dir/DATA0-dir/DAT123-dir inputs.
In the typical application the Bn-port interfaces with the 3 V bus and the A-port with the 1.8V
bus.
With interchangeable voltage levels, there is no restriction on the voltage settings for each
supply. VCCA can be less than or greater than VCCB1 or VCCB2. For example, VCCA = 2.5 V,
VCCB1 = 3.6 V, VCCB2 = 1.8 V.
Full low power mode
This device can be entered into 'full lower power mode' by setting all the INn pins to low or
high, which will disable the device completely.
Partial low power mode
Alternatively, the device can be set into 'partial low power mode' by grounding or floating one
of the VCCBn power supplies. This will set all the corresponding output Port-n to High-Z.
However, it is important to note that VCCA power supply must not be grounded or floating
whenever VCCBn is connected to a power supply as this will lead to significant current
consumption increase.
3/29
Pin settings
ST6G3240
2
Pin settings
2.1
Pin connection
Figure 1.
Pin connection (top through view)
1
2
3
4
5
6
A
B
C
D
E
F
μTFBGA36
Table 2.
Pin mapping
1
Note:
4/29
2
3
4
5
6
A
VCCA
GND
IN1
CD
GND
VCCB1
B
CMD.h
CMD-dir
IN2
1CMD
1DAT0
2DAT0
C
DAT0.h
DAT0-dir
GND
2CMD
1DAT1
2DAT1
D
DAT1.h
DAT123-dir
GND
GND
1DAT2
2DAT2
E
DAT2.h
CLK-f
2CLK
1CLK
1DAT3
2DAT3
F
DAT3.h
CLK-h
MS_Insert
MS_InsertB
1
GND
VCCB2
It is required that VCC supply and ground pins are in close proximity, so as to allow for easy
capacitive coupling in application.
ST6G3240
2.2
Pin settings
Pin description
Table 3.
Pin description
Pin
Type
Side
Symbol
Name and function
A1
-
A
VCCA
A-side power supply
A2
-
-
GND
Ground (0 V)
A3
I
A
IN1
Output enable pin. Functions together
with IN2 pin. Refer to truth table for more
information on the settings
A4
-
A
CD
Card detect pin with 100 kΩ internal pullup resistor on the A-side
A5
-
-
GND
Ground (0 V)
A6
-
B1
VCCB1
B1-side power supply
B1
I/O
A
CMD.h
Command pin for A-side
B2
I
A
CMD-dir
B3
I
A
IN2
B4
I/O
B1
1CMD
Command pin for B1-side
B5
I/O
B1
1DAT0
Data0 pin for B1-side
B6
I/O
B2
2DAT0
Data0 pin for B2-side
C1
I/O
A
DAT0.h
Data0 pin for A-side
C2
I
A
DAT0-dir
C3
-
-
GND
C4
I/O
B2
2CMD
Command pin for B2-side
C5
I/O
B1
1DAT1
Data1 pin for B1-side
C6
I/O
B2
2DAT1
Data1 pin for B2-side
D1
I/O
A
DAT1.h
Data1 pin for A-side
Command direction pin
HIGH => CMD.h input, nCMD output
LOW => CMD.h output, nCMD input
Output enable pin. Functions together
with IN1 pin. Refer to truth table for more
information on the settings
Data direction pin for DAT0
HIGH => DAT0.h input, nDAT0 output
LOW => DAT0.h output, nDAT0 input
Ground (0 V)
Data direction pin for DAT1-DAT3
HIGH => DAT123.h input, nDAT123
output
LOW => DAT123.h output, nDAT123
input
D2
I
A
DAT123-dir
D3
-
-
GND
Ground (0 V)
D4
-
GND
Ground (0 V)
D5
I/O
B1
1DAT2
Data2 pin for B1-side
5/29
Pin settings
ST6G3240
Table 3.
Pin description (continued)
Pin
Type
Side
Symbol
Name and function
D6
I/O
B2
2DAT2
Data2 pin for B2-side
E1
I/O
A
DAT2.h
Data2 pin for A-side
E2
O
A
CLK-f
Feedback clock pin on A-side
E3
O
B2
2CLK
Clock Output pin for B2-side
E4
O
B1
1CLK
Clock Output pin for B1-side
E5
I/O
B1
1DAT3
Data3 pin for B1-side
E6
I/O
B2
2DAT3
Data3 pin for B2-side
F1
I/O
A
DAT3.h
Data3 pin for A-side
F2
I
A
CLK.h
Clock input pin for A-side
F3
-
A
MS_Insert
F4
O
B1
F5
-
-
GND
Ground (0V)
F6
-
B2
VCCB2
B2-side power supply
MS_Insert pin with 100 kΩ internal pullup resistor on A-side
MS_InsertB1 MS_Insert pin on B1-side
CMD
Command pin is a bidirectional line. The host and card drivers are operating in push-pull
configuration.
DAT0-3
All data lines are bi-directional lines. Host and card drivers operate in push-pull mode.
CLK
Clock is a host to card signal. CLK operates in push-pull mode.
Feedback (return) clock is a feedback clock signal from level shifter to the host for controlling
delays.
CD
Card detect with internal pull up resistor. Pin will be pulled to VCCA when it is in high state.
IN1, IN2
Selection pins. When IN1 and IN2 are set to disabled state, all the data bus will be in highimpedance. When enabled, all the data bus will be working as a level translator between
port A and port Bn (refer to the truth table for possible pin configuration).
6/29
ST6G3240
3
Logic diagram
Logic diagram
Figure 2.
ST6G3240 logic block diagram
V CCB1
VCCA
CMD-dir
1CMD
CMD.h
1DAT0
1DAT1
1DAT2
1DAT3
DATA0-dir
DAT0.h
1CLK
DAT123-dir
DAT1.h
V CCB2
DAT2.h
DAT3.h
2CMD
2DAT0
2DAT1
2DAT2
2DAT3
2CLK
CLK.h
CLK - f
IN1
VCCA
IN2
100kΩ
V CCB1
100kΩ
CD
MS_ InsertB1
MS_ Insert
GND
CS00091
7/29
Logic diagram
ST6G3240
Figure 3.
Input and output equivalent circuit
Table 4.
Truth table
DAT123dir
IN1
IN2
CMD-dir
DAT0-dir
CMD.h
DAT0.h
DAT1.h
DAT2.h
1CMD
2CMD
1DAT0
2DAT0
CLK.h
1DAT1
2DAT1
CLK-f.h
1DAT2
2DAT2
1DAT3
2DAT3
1CLK
2CLK
DAT3.h
H
H
H-Z
H-Z
H-Z
H-Z
H-Z
H-Z
L
H
Active
Active
Active
Active
Active
H-Z
H
L
Active
Active
Active
Active
H-Z
Active
L
L
H-Z
H-Z
H-Z
H-Z
H-Z
H-Z
H - Z: high impedance
Table 5.
8/29
MS_Insert truth table
MS_Insert (referenced to VCCA)
MS_InsertB1 (referenced to VCCB1)
H
H
L
L
ST6G3240
4
Maximum rating
Maximum rating
Stressing the device above the rating listed in the “absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality documents.
Table 6.
Absolute maximum ratings
Symbol
Value
Unit
VCCA
Supply voltage
-0.5 to 4.6
V
VCCB1
Supply voltage
-0.5 to 4.6
V
VCCB2
Supply voltage
-0.5 to 4.6
V
DC input voltage
-0.5 to 4.6
V
VI/OA
DC I/O voltage (output disabled)
-0.5 to 4.6
V
VI/OBn
DC I/O voltage (output disabled)
-0.5 to 4.6
V
VI
VOA
DC output voltage
-0.5 to VCCA +0.5
V
VOBn
DC output voltage
-0.5 to VCCBn +0.5
V
IIK
DC input diode current
- 20
mA
IOK
DC output diode current
- 50
mA
IOA
DC output current
± 50
mA
IOBn
DC output current
± 50
mA
ICCA
DC VCCA or ground current
± 100
mA
ICCBn
DC VCCBn or ground current
± 100
mA
400
mW
-65 to 150
°C
260
°C
PD
Power dissipation at TA = 70 ºC
Tstg
Storage temperature
TL
1.
Parameter
(1)
Lead temperature (10 sec)
Derate above 70ºC by 18.5 mW/C
Table 7.
Recommended operating conditions
Symbol
Parameter
Value
Unit
VCCA
Supply voltage
1.4 to 3.6
V
VCCB1
Supply voltage
1.4 to 3.6
V
VCCB2
Supply voltage
1.4 to 3.6
V
Input voltage
(/IN1, /IN2, CMD-dir, DAT0-dir, DAT123-dir)
0 to VCCA
V
VI/OA
I/O voltage
0 to VCCA
V
VI/OBn
I/O voltage
0 to VCCBn
V
VI
9/29
Maximum rating
ST6G3240
Table 7.
Recommended operating conditions (continued)
Symbol
10/29
Parameter
Value
Unit
Top
Operating temperature
-40 to 85
°C
dt/dv
Input rise and fall time
0 to 10
ns/V
ST6G3240
Electrical characteristics
5
Electrical characteristics
Table 8.
DC specifications for VCCA
Test conditions
Symbol
Parameter
VCCA
(V)
TA = 25 °C
VCCB
(V)
Min
1.4 − 1.95
VIH
High level
input voltage
1.95 − 2.7
Value
1.4 − 3.6
2.7 − 3.6
Low level
input voltage
1.95 − 2.7
0.65
VCCA
1.7
1.7
2.0
2.0
1.4 − 3.6
2.7 − 3.6
1.4 − 3.6
IOH = -100 µA
VOH
VOL
Low level
output
voltage
V
0.35
VCCA
0.35
VCCA
0.7
0.7
0.8
0.8
VCCA-0.1
IOH = -1 mA
1.20
1.20
IOH = -2 mA
1.40
1.40
IOH = -4 mA
2.30
2.30
3
IOH = -8 mA
2.45
2.45
3.6
IOH = -8 mA
3.05
3.05
1.4 − 3.6
IOL = 100µA
0.10
0.10
1.4
IOL = 1 mA
0.20
0.20
IOL = 2 mA
0.25
0.25
IOL = 4 mA
0.40
0.40
3
IOL = 8 mA
0.55
0.55
3.6
IOL = 8 mA
0.55
0.55
1.65
2.7
1.65
2.7
1.4 − 3.6
1.4 − 3.6
Unit
Max
VCCA-0.1
1.4
High level
output
voltage
Min
0.65
VCCA
1.4 − 1.95
VIL
Max
-40 to 85 °C
V
V
V
IIA
Input
leakage
current per
input channel
1.4 − 3.6
1.4 − 3.6
VIA = VCCA or
GND
±0.5
±5
µA
IDIR
Input
leakage
current per
control input
(DIR)
1.4 − 3.6
1.4 − 3.6
VDIR = VCCA
or GND
±0.1
±2
µA
11/29
Electrical characteristics
Table 8.
ST6G3240
DC specifications for VCCA (continued)
Test conditions
Symbol
Parameter
VCCA
(V)
Value
TA = 25 °C
VCCB
(V)
Min
Max
-40 to 85 °C
Min
Unit
Max
VIA = GND to
3.6 V
VIBn = GND
3.6 to 3.6 V
IN1, IN2 =
VCCA or IN1,
IN2 = GND
±1.0
±10
µA
VIA= 0 to
3.6 V
INn = 0,
DIR=0
±1.0
±10
µA
IOZA
High
impedance
output
leakage
current
IOFF
Power off
A-side I/O
leakage
current
ICD
CD pin input
leakage
current
3.6
1.4 − 3.6 VCD = 0
50
500
µA
IMS
MS pin input
leakage
current
3.6
1.4 − 3.6 VMS = 0
50
500
µA
12/29
1.4-3.6
0
1.4 −
0
1
All A-ports I/Os and control inputs are powered by VCCA.
2
All Bn-ports I/Os are powered by VCCBn.
3
There is no restriction on VCCA or VCCBn, either one can be greater than the other.
ST6G3240
Table 9.
Electrical characteristics
DC specification for VCCBn
Test conditions
Symbol
VIH
VIL
Parameter
High level input
voltage
Low level input
voltage
TA = 25 °C
High level
output voltage
VCCBn
(V)
(V)
Min
1.4 – 1.95
0.65
VCCBn
0.65
VCCBn
1.95 – 2.7
1.7
1.7
2.7 – 3.6
2.0
2.0
1.4 – 3.6
1.4 – 3.6
1.4 – 3.6
IIBn
Low level
output voltage
Input leakage
current per
input channel
Min
Unit
Max
V
0.35
VCCBn
0.35
VCCBn
1.95 – 2.7
0.7
0.7
2.7 – 3.6
0.8
0.8
V
VCCBn0.1
VCCBn0.1
1.4
IOH = -1 mA
1.10
1.10
1.65
IOH = -2 mA
1.20
1.20
2.7
IOH = -4 mA
2.20
2.20
3.0
IOH = -8 mA
2.30
2.30
3.6
IOH = -8 mA
3.00
3.00
V
0.20
0.20
1.4
IOL = 1 mA
0.35
0.35
1.65
IOL = 2 mA
0.45
0.45
2.7
IOL = 4 mA
0.55
0.55
3.0
IOL = 8 mA
0.70
0.70
3.6
IOL = 8 mA
0.70
0.70
1.4 – 3.6
VIBn = VCCBn or
GND
±0.5
±5
µA
±1.0
±10
µA
±1.0
±10
µA
1.4 – 3.6
1.4 – 3.6
Max
1.4 – 1.95
1.4 – 3.6 IOL = 100 µA
VOL
-40 to 85 °C
VCCA
1.4 – 3.6 IOH = -100 µA
VOH
Value
IOZBn
High
impedance
output leakage
current
3.6
3.6
VIA = GND to
3.6 V
VIBn = GND to
3.6
IN1,IN2 = VCCA
or
IN1,IN2 = GND
IOFF
Power off Bside I/O
leakage current
0
0
VIBn= 0 to 3.6 V
INn= 0,
DIR =0
V
13/29
Electrical characteristics
Table 10.
ST6G3240
DC quiescent current
Test conditions
Symbol
ICCA
ICCBn
ICCAZ
14/29
Parameter
Quiescent
supply
current for
A-side
Quiescent
supply
current for
Bn-side
High
impedence
quiescent
supply
current for Aside
VCCA
VCCB1
VCCB2
(V)
(V)
(V)
1.4 – 3.6
1.4 – 3.6
1.4 – 3.6
0
1.4 – 3.6
1.4-3.6
1.4 – 3.6
0
1.4 – 3.6 VIA = VCCA or
1.4 – 3.6 GND
VIBn = VCCBn or
0
GND
VCD = VMS = VCCA
0
Value
Unit
TA = 25 °C
-40 to 85 °C
Min
Min
Max
Max
1
5
1
5
1
5
1
5
1
5
1.4 – 3.6
1.4 – 3.6
VIA =VCCA or GND
or
V =V
1.4 – 3.6 IBn CCBn
GND
VCD = VMS = VCCA
1.4 – 3.6
1.4 – 3.6
1.4 – 3.6
IN1 = GND/VCCA
IN2 = GND/VCCA
0.2
1
1.4 – 3.6
1.4 – 3.6
1.4 – 3.6
IN1 = VCCA and
IN2 = GND
0.5
2
1.4 – 3.6
1.4 – 3.6
1.4 – 3.6
IN1 = GND and
IN2 = VCCA
0.5
2
μA
μA
μA
ST6G3240
Table 11.
Electrical characteristics
AC electrical characteristics (f = 10 MHz, 50% duty cycle(1))
VCCA = 1.5 V ±0.1 V
Paramete
r
From
To
(input)
(output)
VCCBn=1.8 V
± 0.15 V
Min
tPLHAB,
tPHLAB
tPLHBA,
tPHLBA
Propagation
delay time from
A to B
(CL= 15 pF,
RL= 2 kΩ)
Propagation
delay time from
B to A
(CL = 7 pF,
RL = 2 kΩ)
Max
VCCBn= 2.5
V ± 0.2 V
VCCBn = 3.0
± 0.3 V
Min
Min
Max
Max
VCCBn=3.3 V
± 0.3 V
Min
Unit
Max
CMD.h
nCMD
9
6
5.5
5.5
CLK.h
nCLK
9
6
5.5
5.5
CLK.h
CLK-f
18
12
11
11
DATx.h nDATx
9
6
5.5
5.5
nCMD
CMD.h
9
9
9
9
nDATx DATx.h
9
9
9
9
22
22
22
22
ns
ns
Output enable
time
(CL =7 pF,
RL = 2 kΩ)
INn
Output enable
time
(CL = 15 pF,
RL = 2 kΩ)
INn
Bn
22
22
22
22
Output disable
time (CL=7 pF,
RL= 2 kΩ )
INn
A
33
33
33
33
Output disable
time (CL= 15 pF,
RL= 2 kΩ)
INn
Bn
33
33
33
33
DIR
A
8
8
8
8
DIR
B
9
9
9
9
tDIR,
DIR
A
7
7
7
7
disable
DIR
B
8
8
8
8
tOSLH,tOS Output to output
skew time(2)
HL
1
1
1
1
ns
tCDLH,tCD Clock and data
skew time
HL
1
1
1
1
ns
tPZL, tPZH
tPLZ, tPHZ
tDIR, enable
A
ns
ns
ns
ns
A
Bn
52
52
52
52
Bn
A
52
52
52
52
A
Bn
104
104
104
104
Bn
A
104
104
104
104
Clock
fmax
MHz
Data
Mbps
1. Refer to figure 4.
2. Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the
same device switching in the same direction, either High or Low ( tOSLH = | tPLHm - tPLHn |, tOSHL = | tPHLm – tPHLn | )
15/29
Electrical characteristics
Table 12.
ST6G3240
VCCA = 1.8 V ± 0.15 V
Parameter
From
To
(input)
(output)
VCCBn = 1.8
V ± 0.15 V
Min
tPLHAB,
tPHLAB
tPLHBA,
tPHLBA
Propagation
delay time from
A to B
(CL= 15 pF,
RL= 2 kΩ)
Propagation
delay time from
B to A (CL=7 pF,
RL= 2 kΩ )
Max
VCCBn= 2.5V
± 0.2V
Min
Max
VCCBn= 3.0
± 0.3 V
VCCBn = 3.3
V ± 0.3V
Min
Min
Max
Unit
Max
CMD.h
nCMD
8.5
5.5
5
5
CLK.h
nCLK
8.5
5.5
5
5
CLK.h
CLK-f
17
11
10
10
DATx.h nDATx
8.5
5.5
5
5
CMD.h
7
7
7
7
nDATx DATx.h
7
7
7
7
15
15
15
15
ns
nCMD
ns
Output enable
time (CL=7pF,
RL=2 kΩ )
INn
Output enable
time (CL= 15 pF,
RL=2 kΩ )
INn
Bn
15
15
15
15
Output disable
time (CL= 7 pF,
RL= 2 kΩ )
INn
A
22
22
22
22
Output disable
time (CL= 15 pF,
RL= 2 kΩ )
INn
Bn
22
22
22
22
DIR
A
7
7
7
7
DIR
B
8
8
8
8
DIR
A
5
5
5
5
DIR
B
6
6
6
6
tOSLH,tOSH Output to output
skew time(1)
L
1
1
1
1
ns
tCDLH,tCDH Clock and data
skew time
L
1
1
1
1
ns
tPZL, tPZH
tPLZ, tPHZ
tDIR, enable
A
ns
ns
ns
tDIR, disable
ns
A
Bn
52
52
52
52
Bn
A
52
52
52
52
A
Bn
104
104
104
104
Bn
A
104
104
104
104
Clock
fmax
MHz
Data
1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the
same device switching in the same direction, either HIGH or LOW ( tOSLH = | tPLHm - tPLHn |, tOSHL = | tPHLm – tPHLn | )
16/29
Mbp
s
ST6G3240
Table 13.
Electrical characteristics
VCCA = 2.5 ± 0.2 V
From
To
(input) (output)
Parameter
tPLHAB,
tPHLAB
tPLHBA,
tPHLBA
tPZL, tPZH
tPLZ, tPHZ
VCCBn=2.5V
± 0.2V
Min
Min
Max
Max
VCCBn=3.0 ±
0.3V
Min
Max
VCCBn=3.3V
± 0.3V
Min
Unit
Max
CMD.h
nCMD
7.5
5
4.5
4.5
CLK.h
nCLK
7.5
5
4.5
4.5
CLK.h
CLK-f
15
10
9
9
DATx.h
nDATx
7.5
5
4.5
4.5
Propagation nCMD
delay time
from B to A
nDATx
(CL= 7 pF,
RL= 2 kΩ)
CMD.h
5
5
5
5
DATx.h
5
5
5
5
A
11
11
11
11
Propagation
delay time
from A to B
( CL= 15 pF,
RL= 2 kΩ)
ns
ns
Output
enable time
(CL= 7 pF,
RL= 2 kΩ )
INn
Output
enable time
(CL=15 pF,
RL= 2 kΩ)
INn
Bn
11
11
11
11
Output
disable time
(CL=7 pF,
RL=2 kΩ )
INn
A
21
21
21
21
ns
Output
disable time
(CL= 15 pF,
RL=2 kΩ)
INn
Bn
21
21
21
21
ns
DIR
A
5
5
5
5
DIR
B
6
6
6
6
DIR
A
5
5
5
5
DIR
B
6
6
6
6
1
1
1
1
ns
1
1
1
1
ns
ns
ns
tDIR, enable
tDIR, disable
ns
Output to
tOSLH,tOSHL output skew
time(1)
tCDLH,tCDHL Clock and
data skew
time
fmax
VCCBn=1.8V
± 0.15V
A
Bn
52
52
52
52
Bn
A
52
52
52
52
A
Bn
104
104
104
104
Bn
A
104
104
104
104
Clock
MHz
Data
Mbps
1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the
same device switching in the same direction, either HIGH or LOW ( tOSLH = | tPLHm - tPLHn |, tOSHL = | tPHLm – tPHLn | )
17/29
Electrical characteristics
Table 14.
ST6G3240
VCCA = 3.3 V ± 0.3 V
Parameter
From
To
VCCBn =
1.8 V ±
0.15 V
Min
tPLHAB,
tPHLAB
tPLHBA,
tPHLBA
CMD.h nCMD
Propagation
delay time from CLK.h nCLK
A to B
CLK.h CLK-f
(CL = 15 pF,
RL= 2 kΩ)
DATx.h nDATx
Propagation
delay time from
B to A
(CL= 7 pF,
RL= 2 kΩ )
Output enable
time (CL= 7 pF,
RL= 2 kΩ )
tPZL, tPZH
tPLZ, tPHZ
Max
Min
Max
VCCBn =
Unit
3.3 V ± 0.3 V
Min
Max
7
4.5
4.3
4.3
7
4.5
4.3
4.3
14
9
8.6
8.6
7
4.5
4.3
4.3
CMD.h
4
4
4
4
nDATx DATx.h
4
4
4
4
9
9
9
9
nCMD
ns
ns
INn
A
ns
INn
Bn
9
9
9
9
Output disable
time (CL = 7 pF,
RL= 2 kΩ)
INn
A
20
20
20
20
Output disable
time
(CL= 15 pF,
RL=2 kΩ)
ns
INn
Bn
20
20
20
20
DIR
A
4
4
4
4
DIR
B
5
5
5
5
DIR
A
4
4
4
4
DIR
B
5
5
5
5
1
1
1
1
ns
1
1
1
1
ns
ns
tDIR, disable
L
Min
VCCBn =
3.0 ± 0.3 V
Output enable
time
(CL = 15 pF,
RL = 2 kΩ)
tDIR, enable
tOSLH,tOSH
Max
VCCBn =
2.5 V ± 0.2 V
ns
Output to
output skew
time(1)
tCDLH,tCDH Clock and data
skew time
L
A
Bn
52
52
52
52
Bn
A
52
52
52
52
A
Bn
104
104
104
104
Bn
A
104
104
104
104
Clock
fmax
MHz
Data
1. Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the
same device switching in the same direction, either HIGH or LOW ( tOSLH = | tPLHm - tPLHn |, tOSHL = | tPHLm – tPHLn | )
18/29
Mbp
s
ST6G3240
Table 15.
Electrical characteristics
Output slew rate (f = 1 MHz, 50% duty cycle, CL=15 pF on Bn-side; CL=7 pF on A-side)
Test condition TA = -40 to 85 °C
Symbol
Parameter
From
VCCA = 1.8 V ± 0.15V
To
Unit
VCCBn = 3.0 V ± 0.3V
Min
Max
tr
Rise time
10%
90%
3.5
ns
tf
Fall time
10%
90%
3.5
ns
Table 16.
Capacitance characteristics
Test condition
Symbol
Parameter
VCCA
(V)
VCCBn
(V)
Open
Open
CINBn
Input capacitance
CI/OA
Input/output
capacitance for
A-side
1.8
3.0
CI/OBn
Input/output
capacitance for
Bn-side
1.8
3.0
Power dissipation
capacitance
2.5
3.3
CPD
Value
TA = 25 °C
Min
Typ
3.3
Max
Min
Unit
Max
9
pF
f = 1 MHz
VBIAS = 250 mV
VPP = 500 mV
5
pF
f = 1 MHz
VBIAS = 250 mV
VPP = 500 mV
11
pF
29
f = 10 MHz
1.8
-40 to 85 °C
pF
29
19/29
Test circuit
6
ST6G3240
Test circuit
Figure 4.
Test circuit
Table 17.
Test circuit switches
RL/R1
(kΩ)
CL
(pF)
Test
Switch
A-side
B-side
tPLH, tPHL
7
15
2
Open
tPZL, tPLZ
7
15
2
2 VCC
tPZH, tPHZ
7
15
2
GND
RT is the Zout of the pulse generator, typically 50Ω.
Table 18.
Waveform symbol value
VCC
Symbol
20/29
3.0 to 3.6 V
2.3 to 2.7 V
1.65 to 1.95 V
VIH
VCC
VCC
VCC
VM
1.5 V
VCC/2
VCC/2
VX
VOL + 0.3 V
VOL + 0.15 V
VOL + 0.15 V
VY
VOH - 0.3 V
VOH - 0.15 V
VOH - 0.15 V
ST6G3240
Test circuit
Figure 5.
Waveform - propagation delay (f = 1 MHz, 50% duty cycle)
Figure 6.
Waveform - output enable/disable (f = 1 MHz, 50% duty cycle)
IN 1, IN2
21/29
Base Band
22/29
100kΩ
100kΩ
VCCA
01
10
VCCB1
2DAT0
2DAT1
2DAT2
2DAT3
2CMD
2CLK
MS_InsertB1
6
6
VCCB2
Auto short to ground via the M2 card internal circuitry
when card is inserted.
(1)
MS_Insert
CD
IN1
IN2
10
ST6G3240
...
R R R
Card Detection
external switch
Combocard holder (MicroSD + M2)
MS_Insert (1)
CD
1DAT0
1DAT1
1DAT2
1DAT3
1CMD
1CLK
Figure 7.
GPIO option
DAT0
DAT1
DAT2
DAT3
DAT0 DIR
DAT123 DIR
CMD
CMD DIR
CLK
CLK-f
VCCA
Test circuit
ST6G3240
Application block diagram
ST6G3240
7
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
Figure 8.
μTFBGA package outline
23/29
Package mechanical data
Table 19.
ST6G3240
μTFBGA 36 mechanical data
Millimeters
Symbol
A
Min
Typ
Max
1
1.1
1.16
A1
0.25
A2
0.78
b
0.25
0.30
0.35
D
3.50
3.60
3.70
D1
E
Figure 9.
24/29
0.86
2.50
3.50
3.60
E1
2.50
e
0.50
F
0.55
Recommended footprint
3.70
ST6G3240
Package mechanical data
Figure 10. Carrier tape information
25/29
Package mechanical data
ST6G3240
Figure 11. Reel dimensions
Table 20.
26/29
Reel dimensions
Tape width
N
W1
W2 max
C
12
178 ± 5 mm
12.4 (+2,-0)
18.4
13 ± 0.25
ST6G3240
Package mechanical data
Figure 12. Reel information
27/29
Revision history
8
ST6G3240
Revision history
Table 21.
28/29
Document revision history
Date
Revision
Changes
27-Mar-2008
1
Initial release.
18-Apr-2008
2
Minor text changes.
Modified fmax values in Table 11, Table 12, Table 13 and Table 14.
ST6G3240
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
29/29