STMICROELECTRONICS EMIF06

EMIF06-SD03F3
6-line IPAD™, EMI filter and ESD protection for SD card
Features
■
ESD protection (IEC standard)
■
EMI Filtering
■
Level translator
■
Signal conditionning
■
Integrated power supply with:
– Thermal shutdown (TSD)
– Under voltage lockout (UVLO)
– Short-circuit current limitation (ISC)
– Power on/off feature with Enable pin
Flip Chip
(24 bumps)
Benefits
Figure 1.
Pin configuration (bump side)
■
EMI Low-pass-filter and ESD protection (up to
15 kV on external pins)
■
Integrated pull up resistors prevent bus floating
A
■
50 MHz clock frequency compatible with
Cline< 40 pF
B
■
Lead-free package in 400 µm pitch
C
■
Low power consumption
■
Very low PCB space consumption
■
High reliability offered by monolithic integration
■
Reduction of parasitic elements thanks to CSP
integration
5
4
3
2
1
D
E
Complies with the following standards:
Applications
■
IEC 61000-4-2, Level 4: External pins
– 15 kV (air discharge)
– 8 kV (contact discharge)
■
Removable memory cards in mobile phones,
communication systems, and portable
applications
■
HBM IEC 61340-3-1: All pins
– 2 kV (air discharge)
– 2 kV (contact discharge)
■
Memory cards compliant with: SD (standard
and high speed), MiniSD, µSD and
MMC/Trans-flash standards
Description
TM: IPAD is a trademark of STMicroelectronics.
February 2010
The EMIF06-SD03F3 is a highly integrated
device, based on IPAD technology, combining the
5 functions described under Features.
Doc ID 15194 Rev 2
1/23
www.st.com
23
Contents
EMIF06-SD03F3
Contents
1
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
Passive integration and low pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5
4.1
Test circuit from host to SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2
Test circuit from SD to host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3
Measurement of tskew (host to SD) from rising edge CLK.h . . . . . . . . . . . 12
4.4
Measurement of tskew.f (read mode) from rising edge CLK.h . . . . . . . . . . 13
Low drop out voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1
Line regulation and transient line regulation . . . . . . . . . . . . . . . . . . . . . . . 17
5.2
Load regulation and transient load regulation . . . . . . . . . . . . . . . . . . . . . 18
5.3
Dropout definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2/23
Doc ID 15194 Rev 2
EMIF06-SD03F3
1
Functional description
Functional description
A SIDE (Host-CPU) pin list:
VccA, Enable, Dat123.dir, CMD.dir, CMD.h, CLK.h, CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h,
Dat3.h, Vbat
B SIDE (SD-Card) pin list:
WP, CD, VccB, CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
Table 1.
Pin name
Note:
Pin definition
Bump
Type
Side
Description
VccA
B3
Power input
A
Power supply (1.8v)
VccB
B4
Power output
B
Power supply (internally generated, 2.9 V)
Vbat
A4
Power input
A
Battery power supply
GND
C4
Ground
-
Ground
GND
C3
Ground
-
Ground
Enable
C2
Input
A
Internal power supply enable
CMD.dir
A2
Input
A
Command direction
CMD.h
D2
IO
A
A side command
CLK.h
C1
Input
A
Clock input
CLK-f
E2
Output
A
Clock feedback
Dat0.dir
A3
Input
A
Data direction
Dat0.h
D1
IO
A
Data host
Dat123.dir
E3
Input
A
Data direction
Dat1.h
E1
IO
A
Data host
Dat2.h
A1
IO
A
Data host
Dat3.h
B1
IO
A
Data host
WP
E4
Input to CPU
A
Write protect
CD
D3
Input to CPU
A
Card detect
CMD-B
D4
IO
B
Command direction
CLK-B
C5
Output
B
Clock output
Dat0-B
D5
IO
B
Data SD
Dat1-B
E5
IO
B
Data SD
Dat2-B
A5
IO
B
Data SD
Dat3-B
B5
IO
B
Data SD
In Table 5, 6, 7, and 10, collective names are used for groups of pins. The names used are:
*.dir = CMD.dir, Dat0.dir, Dat123.dir
*.h = CMD.h, CLK.h, Dat0.h, Dat1.h, Dat2.h, Dat3.h
*-B = CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
ViA = All A side input pins
ViB = All B side input pins.
Doc ID 15194 Rev 2
3/23
Functional description
Table 2.
EMIF06-SD03F3
Function table
Command signals
A side signals direction
B side signal direction
Dat1.h
Enable
CMD. dir Dat0.dir Dat123.dir CMD.h
CLK.h
CLK-f
Dat0.h
Dat2.h
Dat1-B
CMD-B CLK-B
Dat0-B
Dat3.h
Dat2-B
Dat3-B
H
H
X
X
IN
IN
OUT
X
X
OUT
OUT
X
X
H
L
X
X
OUT
IN
OUT
X
X
IN
OUT
X
X
H
X
H
X
X
IN
OUT
IN
X
X
OUT
OUT
X
H
X
L
X
X
IN
OUT
OUT
X
X
OUT
IN
X
H
X
X
H
X
IN
OUT
X
IN
X
OUT
X
OUT
H
X
X
L
X
IN
OUT
X
OUT
X
OUT
X
IN
L
X
X
X
X
X
Z
X
X
L*
Z
L*
L*
Note:
1
When A side signals direction is INPUT, SD-CARD is WRITTEN by CPU-Host (i.e B side
signals direction is OUTPUT)
When A side signals direction is OUTPUT, SD-CARD is READ by CPU-Host (i.e B side
signals direction is INPUT)
2
For B side signals when Enable = L:
* Defined by internal pull-down (see Figure 3 for pins CMD.B and data bus Dat[0…3].B)
Figure 2.
Configuration
VccA 1.8 V
Vbat
IPAD
Feedback Clk
Low drop out
voltage regulator
CMD
VccB
CMD Dir
ESD
2 kV
CPU
Dir0
Dir1-3
Clk
CMD
Data 0 - 3
WP, CD
4/23
Clk
Doc ID 15194 Rev 2
CMD
ESD (15 kV)
and EMI
Data 0 - 3
Mini
SD
EMIF06-SD03F3
Functional description
Figure 3.
Block diagram
Vbat
VccA
VccA
VCCA
15KV
2
kV
LDO
V
REF
VREF
2KV
2
kV
A
Enable
2KV
2
kV
VccB
VCCB
R,C
500
500KW
kΩ
VccA
VCCA
CMD.dir
15 kV
15KV
REN
REF
VccB
VCCB
VccB
OTP
UVLO
VccB
VCCB
2KV
2
kV
R9
15KW
15
kΩ
CMD.h
CMD-B
2KV
2
kV
15 kV
15KV
CLK-B
CLK.h
2KV
2
kV
15 kV
15KV
CLK-f
2KV
2
kV
Dat0.dir
VccB
VCCB
2KV
2
kV
R10
EMI
Filters
70KW
70
kΩ
Dat0.h
Dat0-B
2KV
2
kV
15 kV
15KV
Dat123.dir
VccB
VCCB
2KV
2
kV
R11
70KW
70
kΩ
Dat1.h
Dat1-B
2KV
2
kV
VccB
VCCB
R12
15 kV
15KV
70KW
70
kΩ
Dat2.h
Dat2-B
2KV
2
kV
15 kV
15KV
Dat3.h
Dat3-B
2KV
2kV
R7
VccA
VCCA
R14
470KW
470k
Ω
15KV
15
kV
VccA
VCCA
Level-Shifters
Level-shifters
-
100KW
100k
Ω
R13
100KW
100
kΩ
WP
CD
15KV
15kV
15KV
15
kV
EMIF06
-SD02F3
EMIF06-SD03F3
GND
Doc ID 15194 Rev 2
5/23
Characteristics
EMIF06-SD03F3
2
Characteristics
Table 3.
Absolute maximum ratings
Symbol
Parameter
A SIDE (Host-CPU)
All pins: HBM IEC61340-3-1
VccA, Enable, Dat123.dir, CMD.dir, CMD.h, CLK.h,
CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h, Dat3.h, Vbat
Value
Air discharge
Contact discharge
2
2
ESD
kV
B SIDE (SD-Card)
External pins : IEC 61000-4-2, level 4
VccB, CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B,
Dat3-B, WP, CD
Tjmax
Rth (j-a) (1)
Pdmax
Tstg
Air discharge
Contact discharge
15
8
Maximum junction temperature
150
°C
Thermal resistance from junction to ambient
Board: Epoxy FR4, copper thickness = 40 µm, 4 layers
64
°C/
W
Maximum power dissipation:
Pdmax= (Tjmax - Taopmax)/ Rth (j-a)
1
W
Storage temperature range
-55 to +150
°C
Vbat, VccB, Enable
-0.3 to 5.5V
CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
Voltage
Unit
-0.3 to VccB + 0.3
-0.3 to 3.3
VccA
Dat123.dir, CMD.dir, CMD.h, CLK.h, CLK -f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h,
Dat3.h, WP, CD
V
-0.3 to VccA+0.3
1. VccB is an internally generated power supply, no external voltage should be applied on this pin other than a current clamp.
The thermal resistance depends on printed circuit board layout. To dissipate the heat efficiently away from Flip Chip bumps,
it is better to make copper planes the largest possible as well as considering thermal vias usage.
6/23
Doc ID 15194 Rev 2
EMIF06-SD03F3
Table 4.
Symbol
Characteristics
Recommended operating conditions
Parameter
Conditions
Min.
Typ.
Max.
Unit
VccA
Power supply
1.62
1.8
1.92
V
Vbat
Battery power supply
3.1
-
5
V
Iout
VccB output current
0.10
100
200
mA
Cbat
External battery
capacitance
Ceramic capacitor
-
2.20
-
µF
Cout(1)
External output
capacitance
Ta = -40 °C to +85 °C, Vbias = 0 V to 3.3 V
Multi-layer ceramic capacitor type like:
C20RX7R1C225K
1.4
(-35%)
2.20
3.0
(+35%)
µF
ESR(2)
Equivalent series
resistance for Cout
F = 1 Hz to 10 MHz
Multi-layer ceramic capacitor type like:
C2012X7R1C225KT
-
3
200
mΩ
Taop
Ambient operating temperature
-30
25
85
°C
Tjop
Juntion operating temperature
-30
25
125
°C
Pdop
Maximum power
dissipation
-
-
625
mW
Enable
Enable input voltage
0
-
VccA
V
External
pins (without CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B
WP and CD)
0
-
VccB
V
Internal pins
(except
WP, CD, Dat123.dir, CMD.dir, CMD.h, CLK.h,
Enable, with CLK-f, Dat0.dir, Dat0.h, Dat1.h, Dat2.h, Dat3.h
WP and CD)
0
-
VccA
V
Pdop = (Tjop - Taop)/Rth (j-a)
1. Cout = 2.2 µF is minimum allowable capacitance value to guarantee LDO stability
2. Values for ESR include the VccB - Cout resistance path and Cout - GND resistance path. These resistance paths need to be
minimized in PCB design.
Doc ID 15194 Rev 2
7/23
Passive integration and low pass filter
Table 5.
LDO - current levels in recommended operating conditions
Symbol
Test conditions(1)
Parameter
Min. Typ. Max. Unit
Quiescent current consumption
IccA_OFF
VEN = 0.4 V, Vbat = 3.4 V, VccA = 1.92 V
*.dir, *.h, *-B = GND, WP = CD = VccA
All other pins floating
-
-
1
µA
Quiescent current consumption
Ibat_OFF
VEN = 0.4 V, Vbat = 5 V, VccA = 1.92 V
*.dir, *.h, *-B = GND
All other pins floating
-
-
1
µA
-
160
220
µA
Quiescent current consumption
(Ground pin current) Ibat + IccA
Iout = 100 µA
Level shifter disactivated
Iout = 50 mA
*.dir = 0 V, Vbat = 3.4 V
VEN = VccA = VCLK.h = 1.8 V I = 100 mA
out
All other pins floating
Iout = 200 mA
-
320
375
µA
-
470
550
µA
-
750
900
µA
IQ_OFF
IQ_ON
EMIF06-SD03F3
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
Table 6.
Level shifter - current levels in recommended operating conditions
Symbol
Test conditions(1)
Parameter
Min.
Typ.
Max.
Unit
IccA_ON
Quiescent current on VccA
VEN = VccA = 1.92 V, Vbat = 3.4 V
*.dir = VccA, ViA = *.h = VccA
-
3
10
µA
IccB_ON
Quiescent current on VccB
VEN = VccA = 1.92 V, Vbat = 3.4 V
*.dir = 0 V, VccB = 3.05 V, ViB = VccB
-
15
30
µA
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
3
Passive integration and low pass filter
Figure 4.
Circuit diagram of EMIF06-SD03F3 (without LDO)
R14
R13
VccA
CLK.h
CMD.h
Data0.h
Data1.h
Data2.h
Data3.h
Enable
R12
R11
R9
level
Shifter
Host side
R10
VccB
Card side
ESD
2 kV
R3
R4
R5
R6
15 kV
R7
ESD 15 kV
REN
ESD 15 kV
WP
CD
15 kV
15 kV
G ND
GND
Note:
8/23
CLK B
CMD B
Data0 B
Data1 B
Data2 B
Data3 B
R1
R2
G ND
GND
VBR in 14 V technology for pins: CMD-B, CLK-B, Dat0-B, Dat1-B, Dat2-B, Dat3-B, WP, CD
VBR in 8 V technology for pins: Vcc-B, CLK.h, CLK-f, CMD.h, Dat0.h, Dat1.h, Dat2.h, Dat3.h
Doc ID 15194 Rev 2
15 kV
EMIF06-SD03F3
Table 7.
Passive integration and low pass filter
Components
Symbol
Test conditions(1)
Parameter
Min.
Typ. Max.
Unit
Cin-A
Input capacitance for A Vbat = 3.4 V, *.dir = VEN = VccA
side
F = 1 MHz, Vdc = 0 V, ±30 mV, VAC = 30mV
-
5
10
pF
Cin-B
Input capacitance for B Vbat = 3.4 V, *.dir = GND, VEN = VccA
side
F = 1 MHz, Vdc = 0 V, ±30 mV, VAC = 30mV
-
25
35
pF
CEMIF
Capacitance seen on B side from EMIF filter
-
15
-
pF
Tj = 25 °C
-
40
-
Ω
at 20 mA
40
50
60
Ω
R1, R2, R3, R4,
EMIF resistors(3)
R5, R6(2)
Rline
Line resistance
(4)
Tj = 25 °C
49
70
91
kΩ
EMIF resistor
(4)
Tj = 25 °C
10.5
15
19.5
kΩ
R7
EMIF resistor
(4)
Tj = 25 °C
329
470
611
kΩ
R13
EMIF resistor(4)
Tj = 25 °C
70
100
130
kΩ
R14
(4)
EMIF resistor
Tj = 25 °C
70
100
130
kΩ
REN
resistor(4)
Tj = 25 °C
-
500
-
kΩ
R10, R11, R12 EMIF resistors
R9
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
2.
These values are guaranteed by design and statistical process control.
3. 20% tolerance in resistance value
4. 30% tolerance in resistance value
Figure 5.
Frequency response with level
shifters internally bypassed(1)
Figure 6.
Crosstalk response with level
shifters internally bypassed(1)
dB
dB
0.00
0.00
- 5.00
- 20.00
- 10.00
- 40.00
- 15.00
- 60.00
- 20.00
- 80.00
- 25.00
- 100.00
F (Hz)
F (Hz)
- 30.00
100.0k
1.0M
10.0M
100.0M
f/Hz
a1- a5
c1 - c5
e1- e5
1.0G
- 120.00
100.0k
b1- b5
d1- d5
1.0M
a1- b5
d1- e5
10.0M
100.0M
1.0G
c1 - d5
1. Measurement in 50 Ω environment
Doc ID 15194 Rev 2
9/23
Data transmission
4
EMIF06-SD03F3
Data transmission
All values in the tables below are guaranteed across the operating temperature and voltage
range unless otherwise specified.
Table 8.
DC voltage levels on host side
Symbol
Parameter
VIHA
Test
conditions
Min.
Typ.
Max.
Unit
High level input voltage
0.65 x VccA
VccA
-
V
VILA
Low level input voltage
0
0
0.35 x VccA
V
VOHA
High level output
voltage
Ioh = -6 mA
VccA - 0.45
-
-
V
VOLA
Low level output voltage
Iol = 7 mA
-
0
0.45
V
Min.
Typ.
Max.
0.7 x VccB(1)
VccB
-
Table 9.
Symbol
VIHB
DC voltage levels on SD side
Test
conditions
Parameter
High level input voltage
VILB
Low level input voltage
VOHB
High level output voltage
Ioh = -8 mA
VOLB
Low voltage output voltage
Iol = 8 mA
0.3 x VccB
Unit
V
(1)
-
0
V
VccB(1) - 0.7
2.9
-
V
-
0
0.7
V
1. VccB is defined in power supply block.
Table 10.
Symbol
DC current levels
Parameter
Test conditions(1)
ILH
Leakage current on
host pin
VEN = *.dir = VccA = 1.92 V,
ViA = VccA or GND, Vbat = 3.4 V
-
-
5
µA
ILSD
Leakage current on
SD pin
Vbat = 3.4 V, VCLK.h = VccA,
VCMD = VDat0 = VDat1 = VDat2 = VccB
VDat3 = *.dir = GND
-
-
5
µA
ISCH
Short circuit current
on host side
SD input = H, host= 0 V
SD input = 0 V, host = VccA = 1.8 V
*.dir = 0 V, Vbat = 3.4 V, Tj = 25 °C
-
25
-
mA
ISCSD
Short circuit current
on SD side
Host input = H, SD = 0 V
Host input= L, SD = VccB, Tj = 25 °C
*.dir = VccA = 1.8 V, Vbat = 3.4 V
-
60
-
mA
1. See Note: on page 3 for definition of collective names of pins, for example *.dir
10/23
Min. Typ. Max. Unit
Doc ID 15194 Rev 2
EMIF06-SD03F3
Data transmission
Figure 7.
Symbol definitions of tplh, tphl, tr and tf for AC characteristics in Table 11
VccA or VccB
INPUT
50%
50%
0V
tphl
tplh
70%
VccA or VccB
70%
50%
OUTPUT 20%
50%
20%
0V
tr
Table 11.
tf
AC characteristics(1)
Symbol
Parameter
tphl
Propagation delay hl from host to SD
tplh
Propagation delay lh from host to SD
tphl
Propagation delay hl from SD to host
tplh
Propagation delay lh from SD to host
Test conditions
Min. Typ. Max. Unit
-
3.5
6
-
3.5
6
-
3
6
-
3
6
Section 4.1
ns
Section 4.2
ns
Rise time from host to SD
Section 4.1
-
1.5
3
Rise time from SD to host
Section 4.2
-
0.5
2
Fall time from host to SD
Section 4.1
-
1.9
3
Fall time from SD to host
Section 4.2
-
0.5
2
tskew
Delay differences from host to SD
Section 4.1,Section 4.3
-1.0
0
1.0
ns
tskew.f
tskew delay from SD to host
Section 4.2, Section 4.4
-1.5
0
1.5
ns
tp_clkf
Propagation delay for CLK feedback
-
6.5
12
ns
tr_clkf
Rise time for CLK feedback
Section 4.2
-
0.5
2
ns
tf_clkf
Fall time for CLK feedback
Section 4.2
-
0.5
2
ns
tr
tf
ns
ns
1. Taop -30 to 85 °C, Iout = 1 mA, Cbat = 2.2 µF, Cout = 2.2 µF
4.1
Test circuit from host to SD
Test circuit from host to SD is shown in Figure 8. Timings are measured for the whole line
cell (shifter + EMI + ESD) on an external load Csd = 15 pF (board capacitance 5 pF + SD
card capacitance 10 pF).
Figure 8.
Test circuit from host to SD
HOST
SD
Csd =15 pF
Doc ID 15194 Rev 2
11/23
Data transmission
4.2
EMIF06-SD03F3
Test circuit from SD to host
Test circuit from SD to host is shown in Figure 9. Timings are measured for the whole line
cell (shifter + EMI + ESD) on an external load Chost = 5 pF (board capacitance + host
capacitance).
Figure 9.
Test circuit from SD to host
HOST
SD
Chost = 5 pF
4.3
Measurement of tskew (host to SD) from rising edge CLK.h
Figure 10. Example of measurement of tskew (host to SD) from rising edge of CLK.h
CLK.h
CLK-B
15pF
CLK.f
DAT.dir = « 1 »
Dat-B
DAT.h
15pF
CPU
EMIF06-SD02F3
EMIF06-SD03F3
MiniSD card
tskew= Tp(CLK.h CLK -B) - Tp(Datx.h Datx-B)
VccA
Dat.h
50%
0V
Tp(Datx.h Datx -B)
VccB
50%
Dat x- B
0V
VccA
CLK.h
50%
0V
Tp(CLK.h
CLK -B)
VccB
CLK -B
50%
0V
12/23
Doc ID 15194 Rev 2
EMIF06-SD03F3
4.4
Data transmission
Measurement of tskew.f (read mode) from rising edge CLK.h
Figure 11. Example of measurement of tskew.f for read mode from rising edge of CLK.h
CLK.h
CLK-B
delay
CLK.f
15pF
DAT.dir = « 0 »
5pF
Dat-B
DAT.h
5pF
CPU
EMIF06-SD03F3
CLK.f ) – [ Tp(CLK.h
tskew.f = Tp (CLK.h
MiniSD card
CLK -B) + Tp(Datx-B Datx.h)]
VccA
CLK.h
50%
0V
Tp(CLK.h
CLK -B)
VccB
CLK -B
50%
0V
VccB
50%
Datx-B
0V
Tp(Datx-B Datx .h)
VccA
Datx .h
50%
0V
Tp ( CLK.h
CLK. f )
VccA
50%
CLK. f
0V
Datx.h = Dat0.h, Dat1.h, Dat2.h, Dat3.h, CMD.h
Datx-B = Dat0-B, Dat1-B, Dat2-B, Dat3-B, CMD.B
Doc ID 15194 Rev 2
13/23
Low drop out voltage regulator
5
EMIF06-SD03F3
Low drop out voltage regulator
Figure 12. Low drop out voltage regulator
Power
Management
ASIC
Vbat
VBAT
VCCA
V
ccA
CBAT
C
bat
BAT
CVCCA
C
VccA
VCCA
V
ccA
VBAT
V
bat
2kV
2
kV
vref
V
ref
UVLO
+
A
TSD
Base Band
ASIC
VEN
VEN
V
VCCA
ccA
EN
LOGIC
VccB
VCCB
Vbat
VBAT
Level
LS
Shifter
R,C
15kV
15
kV
VCCB
VccB
COUT
C
out
2kV
2 kV
REN
Req = 135 Ω
500 kΩ
EMIF06-SD02F3 (LDO part only)
EMIF06-SD03F3
Gnd
GND
14/23
Doc ID 15194 Rev 2
GND
Gnd
Mini-SD
Card
EMIF06-SD03F3
Table 12.
Symbol
Vout
Low drop out voltage regulator
Static parameters, VEN = VccA unless otherwise specified(1)
Parameter
Regulated output
voltage (VccB)
Test conditions
Min.
Typ.
Max.
Unit
Vbat = 3.4 V, Iout = 100 mA, Tj = 25 °C
2.81
(-3%)
2.90
2.99
(+3%)
V
Vbat = 3.4 V, Iout = 100 mA,
Tj = -30 to 125 °C
2.81
(-3%)
-
2.99
(+3%)
V
Vbat = 3.1 to 5 V, Iout = 0.1 to 200 mA,
Tj = -30 to 125 °C
2.75
(-5%)
-
3.05
(+5%)
V
LiR
Line regulation
Vbat = 3.4 to 5 V (Section 5.1),
Iout = 100 mA, Tj = 25 °C
-
3
20
mV
LdR
Load regulation
Vbat = 3.4 V, Iout = 1 to 200 mA
(Section 5.2), Tj = 25 °C
-
50
100
mV
Iout = 50 mA
-
25
37
mV
Dropout voltage
Vout(nom) - 100 mV
(Section 5.3),
Tj = -30 to 85 °C
Iout = 100 mA
-
50
75
mV
Iout = 200 mA
-
100
150
mV
-
500
-
mA
Shutdown
(Temp ↑)
-
150
-
°C
Reset
(Temp ↓)
-
130
-
°C
Hysteresis
-
20
-
°C
Shutdown
(Vbat ↓)
2.3
2.5
2.7
V
Reset
(Vbat ↑)
2.35
2.55
2.75
V
-
50
-
mV
VDO
ISC
TSD
UVLO
Short circuit current
limitation
Thermal shutdown
temperature
Under voltage lockout
Vbat = 5 V, Vout = 0 V, Tj = 25 °C
Vbat = 3.4 V
Tj = -30 to 125 °C
Hysteresis
1. Level shifter disactivated, *.dir = 0, CLK.h = VccA , all other pins floating.
Doc ID 15194 Rev 2
15/23
Low drop out voltage regulator
Table 13.
Symbol
EMIF06-SD03F3
Dynamic parameters (VEN = VccA unless otherwise specified)
Parameter
Test conditions
Min. Typ. Max. Unit
LiTr
Line transient peak voltage
Vbat = 3.4 V ↑↓ 4 V, ttr = 30 µs, Iout = 200 mA
Tj = 25 °C (Section 5.1)
Cout = 2.2 µF, ESR = 5 mΩ
LdTr
Load transient peak voltage
Iout = 1 mA ↑↓ 200 mA, ttr = 10 µs, Vbat = 3.4 V
Tj = 25 °C (Section 5.2)
Cout = 2.2 µF, ESR = 5 mΩ
PSRR
Power supply rejection ratio
Vbat = 3.4 V, Iout = 100 mA,
Tj = 25 °C, Cout = 2.2 µF,
ESR = 5 mΩ
-
4.2
-
mV
-
9
-
mV
F = 1 kHz
-
45
-
dB
F = 10 kHz
-
35
-
dB
tstart
Settling time
Vout ↑ 95% Nom, Vbat = 5 V, Iout = 200 mA
Tj = -30 °C to 125 °C, Cout = 2.2 µF,
Enable L → H
-
30
200
µs
tstop
Discharge time
Vout ↓ 10% Nom, Vbat = 3.4 V, Iout = 1 mA
Tj = 25 °C, Cout = 2.2 µF, Enable H → L
-
600
-
µs
16/23
Doc ID 15194 Rev 2
EMIF06-SD03F3
5.1
Low drop out voltage regulator
Line regulation and transient line regulation
The line regulation (LiR) is a static variable that indicates the change in the output voltage of
the voltage controller ΔVout (at constant load) when there is a change ΔVbat at the input
voltage. By contrast the line transient response (LiTr) represents dynamic peak value to be
observed during the change in input voltage
Thermal effects due to changes in the junction temperature are circumvented with pulsed
voltage during the test and are to be taken into account separately.
The figure shows the boundary conditions for trise, tfall, and ΔVbat to be taken as the basis of
the measurement of the line transient response without additional decoupling of the supply
voltage by a buffer capacity Cbat. The values defined in the specification apply, however,
only in the case of decoupling of the supply voltage with such a capacity Cbat, as a result of
which the values for trise and tfall are influenced to some extent.
Figure 13. Line regulation and transient line regulation
Vbat
Static and dynamic line regulation
VbatH
VbatL
trise = ttr
tfall = ttr
Time
Vout
Vrise
LiR
Vfall
Time
Line Regulation: LiR=f(VbatH,VbatL)
Line Transient: LiTr = MAX( Vrise, Vfall) –LiR(VbatH,VbatL)
Transient line regulation measurement
Typcial values at 25° C
Vbat
4V
X: 0.2 ms/div
Y: 100 mV/div
3.4 V
Vout
X: 0.2 ms/div
Y: 4 mV/div
5
Line regulation (LiR) and Line transient (LiTr)
versus temperature (typical values
4
3
LiR (mV)
LiTr (mV)
2
1
0
-10
25
Doc ID 15194 Rev 2
85
Temperature ( °c)
17/23
Low drop out voltage regulator
5.2
EMIF06-SD03F3
Load regulation and transient load regulation
The load regulation (LdR) is a static variable that indicates the change in output voltage of
the voltage controllor ΔVout (at constant input voltage) in the event of a change in the load
current ΔIout. By contrast the load transient response (LdTr) represents the dynamic peak
value to be observed during load variation.
Thermal effects due to changes in the junction temperature are circumvented by testing with
pulsed load and are to be taken into account separately.
The figure shows the boundary conditions for trise, tfall, and ΔIout to be taken as the basis for
the measurement of the load transient response.
Figure 14. Load regulation and transient load regulation
Iout
Static and dynamic load regulation
IoutH
IoutL
tfall = ttr
trise = ttr
Time
Vout
Vrise
LdR
Vfall
Load Regulation: LdR=f(IoutH,IoutL)
Load Transient: LdTr = MAX( Vrise, Vfall) –LdR(IoutH,IoutL)
Time
Transient load regulation measurement
(typical values at 25° C)
X: 50µs/div
Y: 50mA/div
Iout
Vccb
X: 50µs/div
Y: 10mV/div
Load regulation (LdR) and Load transient (LdTr)
versus temperature (typical values
60
50
40
LdR (mV)
LdTr (mV)
30
20
10
0
-10
18/23
25
Doc ID 15194 Rev 2
85
Temperature ( °c)
EMIF06-SD03F3
5.3
Application schematic
Dropout definition
The dropout voltage (VDO) is measured by decreasing the input voltage till the output
voltage will drop by 100 mV compared to the output voltage measured at the specified
minimum supply voltage (3.1 V).
Worst case for dropout is maximum die temperature and maximum current load. This is
done statically.
Figure 15. Dropout definition
V(Vbat)
V(Vout)
3.100e+00
2.888e+00
2.873e+00
VDO
100 mV
2.772e+00
2.888e+00
-2.122e-01
6
3.100e+00
Base
Application schematic
Figure 16. Application schematic
1.8 V
Vbat
B3
A4
VccA
Vbat
CVccA
Enable
C2
Enable
Cbat
VccB
B4
Cout
EMIF06-SD03F3
A3
E3
D1
E1
A1
B1
DATA 0 -3
CMD.dir
CMD.h
CLK.h
CLK.f
CD
WP
DAT0.dir
DAT123.dir
CMD-B
CLK-B
DAT0.h
DAT1.h
DAT2.h
DAT3.h
DAT0 -B
DAT1 -B
DAT2 -B
DAT3 -B
C3
GND
DATA dir
A2
D2
C1
C1
GND
CMD dir
CMD
CLK
CLK feedback
3.0 V
D3
E4
26
36
3
12
12
10
C4
Doc ID 15194 Rev 2
9
1
2
3
4
5
6
7
8
DAT2
DAT3/CD/CS
CMD
VSS1
VDD
CLK
VSS2
DAT0
DAT1
19/23
Ordering information scheme
7
EMIF06-SD03F3
Ordering information scheme
Figure 17. Ordering information scheme
EMIF
yy
-
xx zz
F3
EMI filter
Number of lines
Information
x = resistance value (ohm)
z = capacitance value / 10 (pF)
or
2 letters = application
2 digits = version
Package
F = Flip Chip
3 = Lead-free, pitch = 400 µm
8
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 18. Flip Chip dimensions
255 µm± 40
2.1 mm ± 30 µm
400 µm ± 40
400 µm ± 40
2.1 mm ± 30 µm
20/23
Doc ID 15194 Rev 2
605 µm ± 55
EMIF06-SD03F3
Ordering information
Figure 19. Footprint recommendations
Figure 20. Marking
Dot, ST logo
ECOPACK status
xx = marking
z = manufacturing location
yww = datecode
(y = year
ww = week)
Copper pad Diameter:
220 µm recommended
260 µm maximum
Solder mask opening:
300 µm minimum
x x z
y ww
Solder stencil opening :
220 µm recommended
Dot identifying Pin A1 location
Ø 1.55 ± 0.1
4.0 ± 0.1
2.0 ± 0.05
ST
ST
ST
xxz
yww
xxz
yww
xxz
yww
2.25
3.5 ± 0.1
8.0 ± 0.3
2.25
0.20 ± 0.02
1.75 ± 0.1
Figure 21. Flip Chip tape and reel specifications
4.0 ± 0.1
0.69 ± 0.05
User direction of unreeling
All dimensions in mm
9
Ordering information
Table 14.
Note:
Ordering information
Order code
Marking
Package
Weight
Base qty
Delivery mode
EMIF06-SD03F3
HY
Flip Chip
5.46 mg
5000
Tape and reel (7”)
More information is available in the application notes:
AN2348 :"Flip Chip : Package description and recommendations for use"
AN1751 : EMI Filters: Recommendations and measurements
Doc ID 15194 Rev 2
21/23
Revision history
10
EMIF06-SD03F3
Revision history
Table 15.
22/23
Document revision history
Date
Revision
Changes
21-Nov-2008
1
First issue
11-Feb-2010
2
AC timing characteristics updated in Table 11.
Doc ID 15194 Rev 2
EMIF06-SD03F3
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 15194 Rev 2
23/23