ST72682 USB 2.0 high-speed Flash drive controller Features ■ ■ USB 2.0 interface compatible with mass storage device class – Integrated USB 2.0 PHY – Supports USB high speed and full speed – Suspend and Resume operations Mass storage controller interface (MSCI) – Supports all types of NAND Flash devices including ST, Hynix, Samsung, Toshiba, Renesas, and Micron – Reed-Solomon encoder/decoder: on-thefly correction (4 bytes of a 512-byte block) – Flash identification support – Up to 21 Mbyte/s for read and 11 Mbyte/s for write operations in dual channel ■ Embedded ST7 8-bit MCU ■ Supply management – 3.3V operation – Integrated 3.3 -1.8 V voltage regulator ■ USB 2.0 low-power device compliant – Less than 100 mA during write operation with two NAND Flash devices – Less than 500 µA in suspend mode ■ LQFP64 10x10 Clock management – Integrated PLL for generating core and USB 2.0 clock sources using external 12 MHz crystal Table 1. ■ AutoRun CDROM partition support ■ Data protection – Write protect switch control – Public/Private partitions support ■ Bootability support (HDD mode) ■ Production tool device configurability: – USB vendor ID/product ID (VID/PID), serial number and USB strings with foreign language support – SCSI strings – One or two LED outputs – Adjustable NAND Flash bus frequency to reach highest performance ■ Code update in the NAND Flash ■ LQFP64 10x10 lead-free package ■ Development support – Complete reference design including schematics, BOM and gerber files ■ Supports Windows (Vista, XP, 2000, ME), Linux and MacOS. Drivers available for Windows 98 SE Device summary Orderable part numbers Features ST72682/R20 USB interface ST72682/R21 USB 2.0 high speed Number of NAND devices supported up to 8 Read/write speed 21MBps/11MBps Operating supply 3.0 to 3.6 V Operating Temperature 0°C to +70°C Package LQFP64 10x10 / die form August 2007 Rev 2 1/36 www.st.com 1 Contents ST72682 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4 NAND Flash memory interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.1 4.2 5 Hardware error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.1.2 Firmware error management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Bad block management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.1 Bad Block identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.2 Bad block replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2.3 Late Fail block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Wear levelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.4 NAND Flash interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Mass storage implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.1 USB characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 BOT/SCSI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.4 2/36 4.1.1 4.3 5.3 6 NAND Flash error correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5.2.1 BOT specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.2 SCSI specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2.3 Bootability specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Multi-LUN device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.3.1 Public drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3.2 Private drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3.3 Additional drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 5.3.4 CD-ROM considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Mass storage interface configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Human interface implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.1 LED behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.2 Read-only switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 ST72682 7 Contents Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 7.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 7.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7.5 Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7.5.1 7.6 7.7 7.8 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 7.6.1 Functional EMS (Electromagnetic Susceptibility) . . . . . . . . . . . . . . . . . 23 7.6.2 Electromagnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7.6.3 Absolute Maximum Ratings (Electrical Sensitivity) . . . . . . . . . . . . . . . . 24 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.7.1 General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.7.2 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Control pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8.1 7.9 Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Asynchronous RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Other communication interface characteristics . . . . . . . . . . . . . . . . . . . . 30 7.9.1 MSCI parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.9.2 USB (Universal Bus Interface) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 8 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 9 Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3/36 List of tables ST72682 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. 4/36 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Power supply pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Control and system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 USB 2.0 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 USB 2.0 and core clock system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 General Purpose I/O ports / Mass Storage I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Known NAND Flash memory compatibility guide for ST72682/R20 and ST72682/R21. . . 12 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 RUN and SUSPEND modes current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Supply and Clock managers current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Typical CL and RS values by crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Output driving current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Asynchronous RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 MSCI parallel interface DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 USB Interface DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 USB Interface AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 USB high speed transmit waveform requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 64-pin Thin Quad Flat Package (10 x10) mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . 33 Feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ST72682 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 64-pin LQFP package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Clock frequency versus supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Typical application with a crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Two typical applications with unused I/O pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Typical VIL and VIH standard I/Os . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Typical RPU vs. VDD33 with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Typical VOL at VDD33=3.3 V (I/O D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical VOL at VDD33=3.3 V (I/O D4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Typical VOL at VDD33=3.3 V (I/O D8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical VDD33-VOH vs. VDD33 (I/O D2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical VDD33-VOH vs. VDD33 (I/O D4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical VDD33-VOH vs. VDD33 (I/O D8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical RON on RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Timing diagrams for input mode (with max load on CTRL signal = 50 pf) . . . . . . . . . . . . . 30 Timing diagrams for output mode (with max CTRL signal = 50 pf, DATA) . . . . . . . . . . . . . 30 USB signal eye diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 64-pin Thin Quad Flat Package (10 x10) package outline . . . . . . . . . . . . . . . . . . . . . . . . . 33 5/36 Introduction 1 ST72682 Introduction The ST72682 is a USB 2.0 high-speed Flash drive controller. The USB 2.0 high-speed interface includes PHY and function and supports USB 2.0 mass storage device class. The Mass storage controller interface (MSCI), combined with the Reed-Solomon encoder/decoder on-the-fly correction (4 bytes on 512-byte data blocks), provides a flexible high transfer rate solution for interfacing a wide of range NAND Flash memory devices. The internal 60 MHz PLL driven by the 12 MHz oscillator is used to generate the 480 MHz frequency required for the USB 2.0 PHY. The ST7 8-bit CPU runs the application program from the internal ROM and RAM. USB data and patch code are stored in internal RAM. The I/O ports provide allow to connect EEPROM, LEDs and a write protect switch control. The internal 3.3 to 1.8 V voltage regulator provides the 1.8 V supply voltage to the digital part of the circuit. Figure 1. Device block diagram 12 MHz OSC 8-bit CPU USB 2.0 USB 2.0 Function PHY 3.3 V to 1.8 V voltage regulator 6/36 ROM RAM Mass ReedStorage Solomon Controller Error Interface Correction GPIO NAND I/F ST72682 Pin description Figure 2 shows the LQPF64 package pinout, while Table 2, Table 3, Table 4, Table 5, and Table 6 give the pin description. The legend and abbreviations used in these tables are the following: ● Type – I = input – O = output – S = supply ● Input level: A = Dedicated analog input ● In/Output level ● – CT = CMOS 0.3VDD/0.7VDD with input trigger – TT= TTL 0.8V / 2V with Schmitt trigger Output level – D8 = 8mA drive – D4 = 4mA drive – D2 = 2mA drive 64-pin LQFP package pinout VSS_1 VDD33_1 NC* NAND D[14] NAND D[15] NAND D[0] NAND D[1] NAND D[2] NAND D[3] NAND D[4] VSS_5 VDD33_5 NAND D[5] NAND D[6] NAND D[7] NAND RnB Figure 2. NAND D[13] NAND D[12] NAND D[11] NAND D[10] VDDA OSCIN OSCOUT VSSA RREF VSSC VDDC VDD3 USBDP USBDM VSSBL VDDBL 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ST72682 NAND WP READ ONLY NC(1) VSS_2 VDD33_2 NC(1) NC(1) RESET NC(1) NC(1) NC(1) LED2 LED1 PE4 NAND ALE VSS_3 VDDOUSB VSS_4 VDD33_4 NAND D[9] NAND D[8] NAND CE4 NAND CE3 NAND CE2 NAND CE1 NAND RE NAND WE NAND CLE NC(1) NC(1) NC(1) VDD33_3 2 Pin description 1. Must remain NOT connected in the application. 7/36 Pin description ST72682 Power supply pins Pin Pin name LQFP64 64 VSS_1 63 VDD33_1 45 VSS_2 44 VDD33_2 33 VSS_3 32 VDD33_3 18 VSS_4 19 VDD33_4 54 VSS_5 53 VDD33_5 17 VDDOUSB Description S Ground S I/Os and regulator supply voltage S Ground S I/Os and regulator supply voltage S Ground S I/Os and regulator supply voltage S Ground S I/Os and regulator supply voltage S Ground S I/Os and regulator supply voltage O USB2 PHY, OSC and PLL power supply output (1.8V) Control and system 41 Table 4. RESET I/O 3.3 CT Description Reset input with filter with internal pull-up USB 2.0 Interface Pin name Type Pin 16 VDDBL S Supply voltage for buffers and deserialisation flip flops (1.8 V) 15 VSSBL S Ground for buffers and deserialisation flip flops (1.8 V) 14 USBDM I/O USB2 DATA - 13 USBDP I/O USB2 DATA + 12 VDD3 S Supply voltage for the FS compliance (3.3 V) 11 VDDC S Supply voltage for DLL & XOR tree (1.8 V) 10 VSSC S Ground for DLL & XOR tree (1.8 V) 9 RREF I/O LQFP64 8/36 Output Pin name LQFP64 Power Level Type Pin Input Table 3. Type Table 2. Description Ref. resistor for integrated impedance process adaptation (11.3 kOhms 1% Pull Down) ST72682 Pin description USB 2.0 and core clock system Pin Pin name LQFP64 Type Table 5. Description 8 VSSA 7 OSCOUT 6 OSCIN I 5 VDDA S Supply voltage for oscillator & PLL (1.8 V) Table 6. S Ground for oscillator & PLL (1.8 V) O 12MHz oscillator output 12MHz oscillator input General Purpose I/O ports / Mass Storage I/Os Level Input Outputs Main function (after reset) Pin name Type Pin 59 NAND D[0] I/O TT D4 NAND data [0] 58 NAND D[1] I/O TT D4 NAND data [1] 57 NAND D[2] I/O TT D4 NAND data [2] 56 NAND D[3] I/O TT D4 NAND data [3] 55 NAND D[4] I/O TT D4 NAND data [4] 52 NAND D[5] I/O TT D4 NAND data [5] 51 NAND D[6] I/O TT D4 NAND data [6] 50 NAND D[7] I/O TT D4 NAND data [7] 21 NAND D[8] I/O TT D4 NAND data [8] 20 NAND D[9] I/O TT D4 NAND data [9] 10 NAND D[10] I/O TT D4 NAND data [10] 11 NAND D[11] I/O TT D4 NAND data [11] 12 NAND D[12] I/O TT D4 NAND data [12] 13 NAND D[13] I/O TT D4 NAND data [13] 14 NAND D[14] I/O TT D4 NAND data [14] 15 NAND D[14] I/O TT D4 NAND data [15] 34 NAND ALE I/O TT D8 NAND address latch enable 35 PE4 I/O TT D2 28 NAND CLE O TT D8 NAND command latch enable 27 NAND WE O TT D8 NAND write enable 26 NAND RE O TT D8 NAND read enable 25 NAND CE1 O TT D4 NAND enable 1 24 NAND CE2 O TT D4 NAND enable 2 23 NAND CE3 O TT D4 NAND enable 3 LQFP64 9/36 Pin description ST72682 Table 6. General Purpose I/O ports / Mass Storage I/Os (continued) Level Input Outputs 22 NAND CE4 O TT D4 NAND enable 4 49 NAND RnB I TT D2 NAND Ready/Busy 48 NAND WP O TT D2 NAND Write Protect 47 READ ONLY I TT D2 Read-only switch (“0”: Read/Write; “1”: Read only) EEPROM SCL O TT D2 EEPROM serial clock 37 LED2 O TT D8 Green LED (USB access) 36 LED1 O TT D8 Red LED (NAND access) LQFP64 10/36 Main function (after reset) Pin name Type Pin C12 18pF 510 R6 USB CON GND D+ DVBUS J1 XT1 1 2 4 3 2 1 USB_V5 V33 DP DM C13 18pF C3 10nF V18_USB 100nF 1uF V18_USB 12MHz_NX4025DA 3 4 V18_USB C10 C4 USB_V5 D[15..8] 2 NAND D[13] NAND D[12] NAND D[11] NAND D[10] VDDA OSCI N OSCOUT VSSA RREF VSSC VDDC VDD3 USBDP USBDM VSSBL VDDBL C5 470nF 4 5 V33 LD3985M33R_SOT235L R5 11.3K 1% D9 D8 Vout Vout AME8800_SOT23 INHI BI T BYPASS GND Vin 1 2 3 4 5 OSCIN 6 OCSOUT 7 8 9 RREF 10 11 12 13 14 15 16 D13 D12 D11 D10 3 2 1 U1a 1 GND C1 10nF + C6 4.7uF V33 V33 C7 220nF ST72682_QF P64 NAND WP READ ONL Y NC VSS_2 VDD33_2 NC NC RESET NC NC NC LED2 LED1 NC NAND AL E VSS_3 V33 V33 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 U4 C9 100nF D[7..0] C8 100nF C2 10nF NAND_AL E LED2 LED1 RESET V33 C11 100nF Read Only S1 NAND_WP RO R1 330 LED1 RED L ED V33 R2 330 NAND_RnB NAND_WP R4 10K NAND_RnB NAND_WP NAND_WP LED2 GREENL ED R_T 0 R_Toshiba_config GND/NAND_RnB2 R_SW 0 R_Samsung W_config NAND_RnB R3 4.7K V33 LED1 Vin NAND_WP NAND_CE3 NAND_CE4 NAND_CL E NAND_AL E NAND_WE NAND_WP V33 NAND_CE3 NAND_CE4 NAND_CL E NAND_AL E NAND_WE NAND_WP NAND_RnB NAND_RnB GND/NAND_RnB2 NAND_RnB NAND_RE NAND_CE1 NAND_CE2 V33 NAND_RnB NAND_RnB GND/NAND_RnB2 NAND_RnB NAND_RE NAND_CE1 NAND_CE2 NAND_WP NAND_FLASH_TSOP 48 NC/#RES NC NC NC NC NC NC/#RB4 NC NC/#RB3 I/O 7 GND/#RB2/NC I/O 6 #RB/#RB1 I/O 5 #RE I/O 4 #CE/#CE1 NC NC/#CE2 NC NC NC/PRE VCC VCC VSS VSS NC/#CE3 NC NC/#CE4 NC CL E NC AL E I/O 3 #WE I/O 2 #WP I/O 1 NC I/O 0 NC NC NC NC NC NC NC NC U2 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 D3 D2 D1 D0 D7 D6 D5 D4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 NAND_FLASH_TSOP 48 NC/#RES NC NC NC NC NC NC/#RB4 NC NC/#RB3 I/O 7 GND/#RB2/NC I/O 6 #RB/#RB1 I/O 5 #RE I/O 4 #CE/#CE1 NC NC/#CE2 NC NC NC/PRE VCC VCC VSS VSS NC/#CE3 NC NC/#CE4 NC CL E NC AL E I/O 3 #WE I/O 2 #WP I/O 1 NC I/O 0 NC NC NC NC NC NC NC NC U3 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 D11 D10 D9 D8 D15 D14 D13 D12 On Board Flash2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 On Board Flash1 V33 V33 D[7..0] D[15..8] U1b D14 D15 D0 D1 D2 D3 D4 3 D5 D6 D7 NAND_RnB 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 NAND_CE4 NAND_CE3 NAND_CE2 NAND_CE1 NAND_RE NAND_WE NAND_CLE Application schematic VSS_1 VDD33_1 NC NAND D[14] NAND D[15] NAND D[0] NAND D[1] NAND D[2] NAND D[3] NAND D[4] VSS_5 VDD33_5 NAND D[5] NAND D[6] NAND D[7] NAND RnB Figure 3. VDDOUSB VSS_4 VDD33_4 NAND D[9] NAND D[8] NAND CE4 NAND CE3 NAND CE2 NAND CE1 NAND RE NAND WE NAND CLE NC NC NC VDD33_3 Application schematics LED2 3 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ST72682 Application schematics 11/36 NAND Flash memory interface 4 ST72682 NAND Flash memory interface Table 7 gives the list of NAND Flash memory devices compatible with ST72682/R20 and ST72682/R21 devices. This list is only provided as a guide as it is not possible to automatically guarantee support for all the additions and updates across the listed ranges of manufacturers’ devices. Table 7. Known NAND Flash memory compatibility guide for ST72682/R20 and ST72682/R21 NAND Flash part number NAND Flash size (Mbytes or Gbytes) and type Number of NAND Flash devices supported ST72682/R20 device ST72682/R21 device Samsung K9F1G08U 128 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9F2G08U 256 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9F4G08U 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9K4G08U 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9W4G08U 512 MB; SLC2K; Dual CE 2 or 4 1, 2 or 4 Samsung K9K8G08U 1 GB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9W8G08U 1 GB; SLC2K; Dual CE 2 or 4 1, 2 or 4 Samsung K9WAG08U 2 GB; SLC2K; Dual CE 2 or 4 1, 2 or 4 Samsung K9NBG08U 4 GB; SLC2K; Quad CE 2 1 or 2 Samsung K9G4G08U 512 MB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9L8G08U 1 GB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Samsung K9HAG08U 2 GB; MLC2K; Dual CE 2 or 4 1, 2 or 4 Samsung K9MBG08U 4 GB; MLC2K; Quad CE 2 1 or 2 Toshiba TH58NVG0S3 128 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Toshiba TH58NVG1S3 256 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Toshiba TH58NVG2S3 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Toshiba TH58NVG1D4 256 MB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Toshiba TH58NVG2D4 512 MB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Toshiba TH58NVG3D4 1 GB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 ST NAND01GW3B 128 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 ST NAND02GW3B 256 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 ST NAND04GW3B 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 ST NAND08GW3B 1 GB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 ST NAND04GW3C 512 MB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UF081G2M 128 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UG082G2M 256 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UG084G2M 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UH084G5M 512 MB; SLC2K; Dual CE 2 or 4 1, 2 or 4 12/36 ST72682 Table 7. NAND Flash memory interface Known NAND Flash memory compatibility guide for ST72682/R20 and ST72682/R21 NAND Flash part number NAND Flash size (Mbytes or Gbytes) and type Number of NAND Flash devices supported ST72682/R20 device ST72682/R21 device Hynix HY27UH088G2M 1 GB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UT084G2M 512 MB; MLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Hynix HY27UU088G5M 1 GB; MLC2K; Dual CE 2 or 4 1, 2 or 4 Micron 29F2G08AA 256 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Micron 29F4G08BA 512 MB; SLC2K; Single CE 1, 2, 4, 6 or 8 1, 2, 4, 6 or 8 Micron 29F8G08FA 1 GB; SLC2K; Dual CE 2 or 4 1, 2 or 4 4.1 NAND Flash error correction No NAND Flash memory arrays are guaranteed by manufacturers to be error-free. Error occurrence depends on the Flash cell type (MLC or SLC). The ST72682 embeds hardware and firmware mechanisms to correct the errors. 4.1.1 Hardware error correction The ST72682 embeds a Reed-Solomon algorithm-based hardware cell. This cell directly manages 512-byte data packets on the NAND I/O system. Based on the data packet content, the cell generates an 80-bit Error Correction Code (ECC) consisting of 8 words, each containing 10 bits. During write operations to NAND memory, the 512-bytes of data and the ECC are stored together in the same page. The ECC is stored in the corresponding Redundant Area (RA), using 10 bytes. During read operations, the 512-bytes of data and the 8 ECC words are read back and are passed through the Reed-Solomon cell for decoding. The cell allows the correction of 4 symbols in this 520-symbol packet (512 symbols from data + 8 symbols from ECC). The hardware cell gives three possible results: 4.1.2 ■ No error detected: the data packet can be used as it is. ■ Correctable error detected: the corrected data are available in a specific 512-byte buffer in the Reed-Solomon cell and are ready to be used. ■ Uncorrectable error detected: data corruption cannot be repaired. Firmware error management The firmware defines the error correction possibilities with the corrected data packet. When data cannot be repaired, the block is considered as a bad block and is replaced by another one. See Section 4.2 for further information on bad block management. 13/36 NAND Flash memory interface 4.2 ST72682 Bad block management NAND memory manufacturers deliver their devices with factory-marked bad blocks. This marking depends on the manufacturer and the NAND memory type (page size, memory technology, etc.). The ST72682 supports all bad block markings currently available on the market. 4.2.1 Bad Block identification During firmware initialization, the MCU scans the entire NAND memory configuration to identify bad blocks. A bad block is defined as follows: 4.2.2 ● Five different block status bytes are considered: 4 status bytes from page 0 and 1 from an other page (page 127 for MLC NAND; page 1 for SLC NAND). ● The considered block is marked as a bad block if one out of these five bytes contains at least four bits set to ‘0’. Bad block replacement The firmware works on groups of 1024 blocks, called zones. A complete NAND configuration can contain several zones: ● Each zone is described in a Look Up Table (LUT) containing 1024 entries. A LUT is composed of 3 parts: used blocks, free blocks and bad blocks. ● The “bad blocks” part contains as many entries as the number of bad blocks identified in that zone. ● The “used blocks” part can have a size of 1000, 900 or 500 entries. This size is configurable and also depends on the number of identified bad blocks. ● The “free blocks” part contains the remaining entries. The used blocks part is used to do a correspondence between NAND blocks and logical address ranges. This system allows all bad blocks to be masked from the Host. As a result, bad blocks are never seen. Only a range of logical addresses are visible which correspond to the sum of the used blocks part of all zones. 4.2.3 Late Fail block During normal application life, defects may appear in the NAND memory. Under certain conditions, these defects are not correctable and the corresponding block is declared as “bad”. In this case, new bad blocks are identified in the bad blocks part of the LUT and replaced by new blocks from the “free blocks” part. 14/36 ST72682 4.3 NAND Flash memory interface Wear levelling During normal application life, the NAND memory is written and erased (at block level) many times. The NAND device is guaranteed for a limited number of write operations (about 100 000 cycles). As a consequence, the controller must keep write/erase operations to a minimum for any individual block. A method to limit these cycles is to use a “Wear Levelling” scheme between all NAND memory blocks. LUT usage The LUT is used for transfers between a logical address range and a block. It contains free blocks which are used in the “wear levelling” scheme. During write command treatment, the firmware calculates the zones, blocks and pages for data write access. In a block write operation, the firmware applies the following scheme to avoid block wearing: ● The least recently-used block is chosen from the free block part of the LUT. ● Valid data from the old block is copied to the new block. ● New data from the write command is written to the new block. ● The old block is erased. ● The LUT is updated after identifying the new block in the used block part and the old block in the free block part. Using this scheme, a logical address range doesn’t correspond to a constant block. A write command repeated several times to the same logical address writes physically into different blocks. This method shares the wearing evenly across all blocks of the concerned zone. 4.4 NAND Flash interface configuration Applications based on ST72682 can be configured through a dedicated PC software tool. The NAND memory RE and WE signals frequencies can be independently configured to 30 MHz, 20 MHz, 15 MHz, 12 MHz and 10 MHz. The logical size reduction factor can be configured to 90% or 50% in the event of having too many bad blocks. this option resizes the used blocks part of the LUT to 900 or 500. 15/36 Mass storage implementation 5 Mass storage implementation 5.1 USB characteristics ST72682 The ST72682 is compliant with USB 2.0 specification. It is able to operate in both high speed and full speed modes using a bidirectional control endpoint 0 and a bidirectional bulk endpoint 2. It automatically recognizes the speed to use on the bus by a process of negotiation with USB Host. 5.2 BOT/SCSI implementation 5.2.1 BOT specification The USB Mass Storage Class Bulk Only Transport (BOT) specification version 1.0 is implemented. It allows the device to be recognized by the host as a mass-storage USB device. 5.2.2 SCSI specification Moreover, inside BOT transfers, SCSI commands are encapsulated for mass storage operations. The related specifications are SBC-2 revision 10 (SCSI Block Commands 2) and SPC-4 revision 7a (SCSI Primary Commands 4). 5.2.3 Bootability specification The USB mass storage specification for bootability revision 1.0 is implemented. It allows the PC host to boot the operating system from the USB mass storage application. In this case, the Host uses BOT LUN 0 (logical unit number). A specific tool must be used to format the logical drive in order to make it bootable by programming the correct information. 5.3 Multi-LUN device characteristics The application can be configured with a dedicated PC software tool as a multi-LUN device. In this case, up to 3 different drives are available: public drive, additional drive and private drive. Public and additional drives can be configured as removable drive, hard disk drive or CDROM drive. 16/36 ST72682 5.3.1 Mass storage implementation Public drive The public drive is the default configuration in a mono-LUN mode. In this default case, it is declared as a removable drive. The public drive is mandatory and can not be removed from the configuration. By customization (using PC software), it can be declared as a removable drive, a CD-ROM drive or a hard disk drive. This drive is the LUN 0 in BOT commands. 5.3.2 Private drive The Private drive is optional. Its type is “removable drive” and is not configurable. This drive is protected by password and cannot be directly accessed through the PC operating system. A PC software tool is necessary to send a command with the password to unlock the device. The device is then open and accessible by the PC operating system until reset or reception of a new command to lock the drive. This drive is the LUN 1 in BOT commands. 5.3.3 Additional drive The additional drive is optional. Its type can be “removable drive”, “hard disk drive” or “CDROM drive”. This drive is LUN 1 in BOT commands if the private drive option is not active, and is LUN 2 if the private drive option is active. 5.3.4 CD-ROM considerations When a drive is declared as CD-ROM, the ST72682/R21 manages this drive with a logical block size of 2 Kbytes. To be correctly recognized by the host, it is preferable to build a CDFS partition on this CD-ROM. See the ‘ST7268x Production Tool User Manual’ for more information. Note that the ST72682/R20 doesn’t consider the CD-ROM partition as a specific case. The logical block size is 512 bytes and any file system can be used. In both cases, the CD-ROM partition allows the use of the AutoRun operating system feature. During device connection, the CD-ROM partition is recognized and the host tries to run the application corresponding to the autorun.inf file present into this CD-ROM partition. 5.4 Mass storage interface configuration In addition to the parameters already described as configurable in the previous chapters, additional customizable information includes: ● USB parameters: VID, PID, all string information. ● SCSI parameters: strings for inquiry commands. 17/36 Human interface implementation 6 Human interface implementation 6.1 LED behavior ST72682 The application is designed to manage 2 LEDs. This behavior is configurable through PC dedicated software: ‘ST7268x Production Tool’. By default, LED 1 responds to NAND memory access activity and LED 2 responds to USB activity. Use of LED 1 is optional. When this option is not active, LED 2 reacts to both USB and NAND memory activity. 6.2 Read-only switch The READ ONLY pin of the ST72682 is an input pin to be connected to VDD or GND depending on the behavior of the device. 18/36 ● When this pin is connected to GND, no limitations are applied on the PC command received. ● When this pin is connected to VDD or unconnected, the firmware filters all accesses to the NAND memory which modify the NAND memory state (write, erase, etc.) and returns an error to the PC. ST72682 Electrical characteristics 7 Electrical characteristics 7.1 Parameter conditions Unless otherwise specified, all voltages are referred to VSS. 7.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the Devices with an ambient temperature at TA=25 °C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 7.1.2 Typical values Unless otherwise specified, typical data are based on TA=25 °C, VDD33=3.3 V. They are given only as design guidelines and are not tested. 7.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 7.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 4. Figure 4. Pin loading conditions DEVICE PIN CL 19/36 Electrical characteristics 7.1.5 ST72682 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 5. Figure 5. Pin input voltage DEVICE PIN VIN 7.2 Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the Device. This is a stress rating only and functional operation of the Device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 8. Voltage characteristics Symbol VDD33 - VSS VIN(1)(2) VESD(HBM) Ratings Supply voltage Input voltage on any other pin Electrostatic discharge voltage (Human Body Model) Maximum value Unit 4.0 V VSS−0.3 to VDD33+0.3 V see Section 7.6.3: Absolute Maximum Ratings (Electrical Sensitivity) 1. Directly connecting the RESET and I/O pins to VDD33 or VSS could damage the Device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to VDD33 or VSS. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD33 while a negative injection is induced by VIN<VSS. Table 9. Symbol IVDD33 IVSS Current characteristics Ratings Maximum value Total current into VDD33 power lines (source)(1) Total current out of VSS ground lines (sink)(1) Unit 200 200 Output current sunk by any I/O D2 type 25 Output current sunk by any I/O D4 type 35 Output current sunk by any I/O D8 type 50 Output current source by any I/Os and control pin −25 mA IIO(2) 1. All power supply (VDD33) and ground (VSS) lines must always be connected to the external supply. 2. Refer to Table 6 for the output drive capability of each of the I/Os. 20/36 ST72682 Electrical characteristics Table 10. Thermal characteristics Symbol 7.3 Ratings TSTG Storage temperature range TJMAX Maximum junction temperature Value Unit −65 to +150 °C 120 °C Operating conditions Table 11. General operating conditions Symbol VDD33 TA Figure 6. Parameter Conditions Min Max Unit 3.0 3.6 V 0 70 °C Power Supply Ambient temperature range Clock frequency versus supply voltage fCPU [MHz] FUNCTIONALITY GUARANTEED IN THIS AREA 30 FUNCTIONALITY T GUARANTEED 15 IN THIS AREA 6 3 SUPPLY VOLTAGE [VDD33] 0 2.0 7.4 2.5 2.7 3.3 3.0 3.6 Supply current characteristics Table 12. Symbol IDD Table 13. RUN and SUSPEND modes current Parameter Conditions Min Typ Max Unit Supply current in RUN mode fOSC=12MHz 15 25 35 mA Supply current in SUSPEND mode VDD33=3.3V, TA=+25°C 60 90 190 µA Supply and Clock managers current Symbol Parameter IDD(CK) Supply current of crystal oscillator(3) Conditions Typ(1) Max(2) 1000 2000 Unit µA 1. Typical data are based on TA=25 °C and fCPU=12 MHz. 2. Data based on characterization results, not tested in production. 3. Data based on characterization results done with the external components specified in Section 7.5.1, not tested in production. 21/36 Electrical characteristics 7.5 ST72682 Clock and timing characteristics Subject to general operating conditions for VDD33, fOSC, and TA. 7.5.1 Crystal oscillator The Device internal clock is supplied from a crystal oscillator. All the information given in this paragraph are based on characterization results with specified typical external components. In the application the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal manufacturer for more details (frequency, package, accuracy...). Table 14. Clock characteristics Symbol Parameter fOSC Conditions Min Oscillator frequency CKACC αOSC Typ Max Unit 12 Total crystal oscillator accuracy Absolute value + temperature + aging Crystal oscillator duty cycle(1) 45 50 MHz ±60 ppm 55 % 1. The crystal oscillator duty cycle has to be adjusted through the two CL capacitors. Refer to the crystal manufacturer for more details. Figure 7. VDDA Typical application with a crystal CL OSCIN CRYSTAL CL OSCOUT RSOSCOUT Device (1) 1. Depending on the crystal power dissipation, a serial resistor RsOscout may be added. Refer to the crystal manufacturer for more details. Table 15. 22/36 Typical CL and RS values by crystal Supplier Typical Crystal CL (pF) RSOSCOUT (Ω) NDK AT51 or AT41 16 560 ST72682 7.6 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during product characterization. 7.6.1 Functional EMS (Electromagnetic Susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs). ● ESD: Electrostatic Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD33 and VSS33 through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. ● Software recommendations The software flowchart must include the management of runaway conditions such as: ● – Corrupted program counter – Unexpected reset – Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Table 16. Symbol EMS characteristics Parameter Conditions Level/Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD33=3.3 V, TA=+25 °C, fOSC=12 MHz compliant with IEC 1000-4-2 4B VFFTB Fast transient voltage burst limits to be applied through 100pF on VDD33 and VSS33 pins to induce a functional disturbance VDD33=3.3 V, TA=+25 °C, fOSC=12 MHz compliant with IEC 1000-4-4 4A 23/36 Electrical characteristics 7.6.2 ST72682 Electromagnetic Interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Table 17. EMI characteristics Symbol Parameter SEMI Peak level Monitored Frequency Band (fOSC at 12 MHz) 0.1 to 30 MHz 20 30 to 130 MHz 25 130 MHz to 1 GHz 25 SAE EMI Level 4 Conditions VDD33=3.3 V, TA=+25 °C, conforming to SAE J 1752/3(1) Max vs. Unit dBµV - 1. Refer to Application Note AN1709 for data on other package types. 7.6.3 Absolute Maximum Ratings (Electrical Sensitivity) Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181. Electrostatic Discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. Table 18. Symbol VESD(HBM) Absolute maximum ratings Ratings Electrostatic discharge voltage (Human Body Model) Conditions TA=+25°C Maximum value(1) Unit 2000 V 1. Data based on characterization results, not tested in production. Static and Dynamic Latch-Up 24/36 ■ LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181. ■ DLU: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181. ST72682 Electrical characteristics Table 19. Electrical sensitivities Parameter Conditions Class(1) Static latch-up class TA=+25 °C A VDD33=3.3 V, fOSC=12 MHz, TA=+25 °C A Symbol LU DLU Dynamic latch-up class 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 7.7 I/O port pin characteristics 7.7.1 General characteristics Subject to general operating conditions for VDD33, fOSC, and TA unless otherwise specified. Table 20. I/O port characteristics Symbol Parameter VIL Min Typ Input low level voltage(1) voltage(1) VIH Input high level Vhys Schmitt trigger voltage hysteresis(2) IL Input leakage current RPU Conditions Weak pull-up equivalent resistor(1) Max Unit 0.16VDD33 400 mV VSS ≤ VIN ≤ VDD33, standard I/Os VIN=VSS V 0.85VDD33 TTL ports VDD33= 3.3 V 32 50 1 µA 75 kΩ 1. The RPU pull-up equivalent resistor is based on a resistive transistor. This data is based on characterization results, tested in production at VDD33 max. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production. Figure 8. Two typical applications with unused I/O pin VDD33 Device 10kΩ UNUSED I/O PORT UNUSED I/O PORT 10kΩ Device 25/36 Electrical characteristics Figure 9. Typical VIL and VIH standard I/Os ST72682 Figure 10. Typical RPU vs. VDD33 with VIN=VSS I/ O s pull- up re s is t a nc e I/Os pull-up resistance (kW) V IL/ V IH ( V ) VIL/VIH (V) 2.5 2 1.5 1 0.5 0 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VD D (V) 26/36 60 50 40 30 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 VD D (V) ST72682 7.7.2 Electrical characteristics Output driving current Subject to general operating conditions for VDD33, fOSC, and TA unless otherwise specified. Table 21. Output driving current Symbol VOL(1) Parameter Conditions Max Output low level voltage for a D2 I/O pin when 8 pins are sunk at same time (see Figure ) IIO=2mA 300 Output low level voltage for a D4 I/O pin when 8 pins are sunk at same time (see Figure 12) IIO=4mA 400 IIO=8mA 500 IIO=2mA 600 Output high level voltage for a D4 I/O pin when 8 pins are sourced at same time (see Figure 15) IIO=4mA 600 Output high level voltage for a D8 I/O pin when 8 pins are sourced at same time (see Figure 16) IIO=8mA 600 VDD33=3.3 V Output low level voltage for a D8 I/O pin when 8 pins are sunk at same time (see Figure 13) Output high level voltage for a D2 I/O pin when 8 pins are sourced at same time (see and Figure 14) VDD33VOH(2) Min Unit mV mV 1. The IIO current sunk must always respect the absolute maximum rating specified in Section Table 9. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Section Table 9. and the sum of IIO (I/O ports and control pins) must not exceed IVDD33. True open drain I/O pins does not have VOH. Figure 11. Typical VOL at VDD33=3.3 V (I/O D2) Figure 12. Typical VOL at VDD33=3.3 V (I/O D4) V O L I/ O s D 4 a t V D D =3 .3 V 150 100 50 0 0 1 2 IO L ( m A ) 3 4 VOL 4mA (mV) VOL 2mA (mV) V O L I/ O s D 2 a t V D D =3 .3 V 150 100 50 0 0 2 4 6 IO L ( m A ) 27/36 Electrical characteristics ST72682 V O L I/ O s D 8 a t V D D =3 .3 V V D D - V O H I/ O s D 2 a t V D D =3 .3 V 150 100 50 0 0 5 10 VOH 2mA (mV) Figure 14. Typical VDD33-VOH vs. VDD33 (I/O D2) VOL 8mA (mV) Figure 13. Typical VOL at VDD33=3.3 V (I/O D8) 200 150 100 50 0 0 2 4 IO H ( m A ) IO L ( m A ) Figure 15. Typical VDD33-VOH vs. VDD33 (I/O D4) Figure 16. Typical VDD33-VOH vs. VDD33 (I/O D8) 150 100 50 0 0 2 IO H ( m A ) 28/36 V D D - V O H I/ O s D 8 a t V D D =3 .3 V 4 6 VOH 8mA (mV) VOH 4mA (mV) V D D - V O H I/ O s D 4 a t V D D =3 .3 V 200 150 100 50 0 0 5 IO H ( m A ) 10 ST72682 Electrical characteristics 7.8 Control pin characteristics 7.8.1 Asynchronous RESET pin TA ranges between 0 and +55 °C unless otherwise specified. . Table 22. Symbol Asynchronous RESET pin characteristics Parameter Conditions VIL Input low level voltage(1) VIH Input high level voltage Vhys Schmitt trigger voltage hysteresis(1) RON Pull-up equivalent resistor Min Unit V 0.85VDD33 450 VDD33 = 3.3 V 20 40 mV 80 kΩ VDD33 = 2 V Filtered glitch Max 0.16VDD33 teh(RSTL) External reset pulse hold time(2) tg(RSTL) Typ 100 2.5 duration(3) µs 200 tew(RSTL) External reset pulse duration(4) 500 tiw(RSTL) Internal reset pulse duration ns µs 2 Tcpu 1. The level on the RESET pin must be free to go below the VIL max. level specified in Section 7.8.1. Otherwise the reset will not be taken into account internally. 2. To guarantee the reset of the Device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on RESET pin with a duration below teh(RSTL) can be ignored. Not tested in production, guaranteed by design. 3. The reset network protects the device against parasitic resets. 4. The external reset duration must respect this timing to guarantee a correct start-up of the internal regulator at power-up. Not tested in production, guaranteed by design. Figure 17. Typical RON on RESET pin NRESET pull-up (kOhms) NRESET pull-up (kOhms) 100 80 60 40 2 3 VDD (V) 29/36 Electrical characteristics ST72682 7.9 Other communication interface characteristics 7.9.1 MSCI parallel interface Figure 18. Timing diagrams for input mode (with max load on CTRL signal = 50 pf) CTRL external DATA DATA(i) ext device DATA(i+1) tDS(1) 1. tDS is the setup time for data sampling. Figure 19. Timing diagrams for output mode (with max CTRL signal = 50 pf, DATA) CTRL external DATA DATA(i) external DATA(i+1) tDO(1) 1. tDO is the data output time for data sampling. Table 23. MSCI parallel interface DC characteristics MSCI DC Electrical Characteristics Conditions Symbol Data setup time tDS 11 ns Data output time tDO 6 ns CTRL line capacitance Cctrl 50 pF Data line capacitance Cdata 50 pF 1. Data based on design simulation and not tested in production. 30/36 Min. Typ(1) Parameter Max. Unit ST72682 7.9.2 Electrical characteristics USB (Universal Bus Interface) Table 24. USB Interface DC characteristics Symbol Parameter Conditions IDDsuspend Suspend current RPU Min. Typ. VDD33=3.3 V, regulator and PHY ON 0.5(1) 1.5 6(1) mA VDD33=3.3 V, Powerdown mode, 25 °C (2) 60 90 190 µA Pull-up resistor(1) Max. Unit 1.5 kΩ Full Speed Mode VTERM Termination voltage 0.8 2.0 V VOH High level output voltage 2.8 3.6 V VOL Low level output voltage 0.8 V VCRS Crossover voltage 2.0 V 1.3 High Speed Mode VHSOH HS data signalling high 400 mV VHSOL HS data signalling low 5 mV 1. Not tested in production, guaranteed by characterization. 2. In order to reach this value, the software must force the regulator into power-down mode and the I/Os compensation cell off. Table 25. Symbol USB Interface AC timing Parameter Conditions Min. Max. Unit Full Speed Mode TFR Rise Time CL=50pF 4 20 ns TFF Fall Time CL=50pF 4 20 ns High Speed Mode THSR Rise Time 500(1) ps THSF Fall Time 500(1) ps 480.24 Mb/ s THSDRAT HS Data Rate 479.76 1. Not tested in production, guaranteed by characterization. 31/36 Electrical characteristics ST72682 Figure 20. USB signal eye diagram Table 26. 32/36 USB high speed transmit waveform requirements Voltage Level (DP - DN) Time Unit Interval (UI) - 2.082 to 2.084 ns Level 1 475 mV - Level 2 −475 mV - Point 1 0V 5% UI Point 2 0V 95% UI Point 3 300 mV 35% UI Point 4 300 mV 65% UI Point 5 −300 mV 35% UI Point 6 −300 mV 65% UI ST72682 8 Package mechanical data Package mechanical data Figure 21. 64-pin Thin Quad Flat Package (10 x10) package outline A A2 D D1 A1 b E1 E e c L1 L Table 27. θ 64-pin Thin Quad Flat Package (10 x10) mechanical data mm inches Dim. Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 Max 0.063 0.15 0.002 0.006 1.40 1.45 0.053 0.055 0.057 0.22 0.27 0.007 0.009 0.011 0.20 0.004 0.008 D 12.00 0.472 D1 10.00 0.394 E 12.00 0.472 E1 10.00 0.394 e 0.50 0.020 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039 Number of pins N 64 33/36 Device ordering information 9 ST72682 Device ordering information Table 28. Feature comparison Features added in the ST72682/R21 versus ST72682/R20 Continued AutoRun CDROM partition support Table 29. AutoRun runs a program when the USB Flash drive is inserted into a computer. Ordering Information Package Operating voltage Temperature range ST72682/R20 LQFP64 10x10mm 3.0V to 3.6V 0°C to +70 °C ST72682/R21 (latest firmware revision LQFP64 10x10mm 3.0V to 3.6V 0°C to +70 °C Orderable part number 34/36 Description ST72682 10 Revision history Revision history Table 30. Document revision history Date Revision Description of Changes 09-Feb-2006 1.0 Initial release 14-Aug-2007 2.0 Firmware revision updated to R21. References to TQFP64 updated to LQFP64. Datasheet reformatted. 35/36 ST72682 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 36/36