STMICROELECTRONICS STM32F205XX

STM32F205xx
STM32F207xx
ARM-based 32-bit MCU, 150DMIPs, up to 1 MB Flash/128+4KB RAM,
USB OTG HS/FS, Ethernet, 17 TIMs, 3 ADCs, 15 comm. interfaces & camera
Features
■
■
■
■
■
■
■
■
■
FBGA
Core: ARM 32-bit Cortex™-M3 CPU with
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
performance from Flash memory, frequency up
to 120 MHz, memory protection unit,
150 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1)
Memories
– Up to 1 Mbyte of Flash memory
– 512 bytes of OTP memory
– Up to 128 + 4 Kbytes of SRAM
– Flexible static memory controller that
supports Compact Flash, SRAM, PSRAM,
NOR and NAND memories
– LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
– From 1.65 to 3.6 V application supply and
I/Os
– POR, PDR, PVD and BOR
– 4 to 26 MHz crystal oscillator
– Internal 16 MHz factory-trimmed RC (1%
accuracy at 25 °C)
– 32 kHz oscillator for RTC with calibration
– Internal 32 kHz RC with calibration
Low power
– Sleep, Stop and Standby modes
– VBAT supply for RTC, 20 × 32 bit backup
registers, and optional 4 KB backup SRAM
3 × 12-bit, 0.5 µs A/D converters
– up to 24 channels
– up to 6 MSPS in triple interleaved mode
2 × 12-bit D/A converters
General-purpose DMA
– 16-stream DMA controller with centralized
FIFOs and burst support
Up to 17 timers
– Up to twelve 16-bit and two 32-bit timers,
up to 120 MHz, each with up to 4
IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
Debug mode
– Serial wire debug (SWD) & JTAG interfaces
– Cortex-M3 Embedded Trace Macrocell™
December 2011
FBGA
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
LQFP144 (20 × 20 mm)
LQFP176 (24 × 24 mm)
■
■
■
■
■
■
UFBGA176
(10 × 10 mm)
WLCSP64+2
(0.400 mm pitch)
Up to 140 I/O ports with interrupt capability:
– Up to 136 fast I/Os up to 60 MHz
– Up to 138 5 V-tolerant I/Os
Up to 15 communication interfaces
– Up to 3 × I2C interfaces (SMBus/PMBus)
– Up to 4 USARTs and 2 UARTs (7.5 Mbit/s,
ISO 7816 interface, LIN, IrDA, modem
control)
– Up to 3 SPIs (30 Mbit/s), 2 with muxed I2S
to achieve audio class accuracy via audio
PLL or external PLL
– 2 × CAN interfaces (2.0B Active)
– SDIO interface
Advanced connectivity
– USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
– USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
– 10/100 Ethernet MAC with dedicated DMA:
supports IEEE 1588v2 hardware, MII/RMII
8- to 14-bit parallel camera interface: up to
48 Mbyte/s
CRC calculation unit, 96-bit unique ID
Analog true random number generator
Table 1.
Reference
Device summary
Part number
STM32F205xx
STM32F205RB, STM32F205RC, STM32F205RE,
STM32F205RF, STM32F205RG, STM32F205VB,
STM32F205VC, STM32F205VE, STM32F205VF
STM32F205VG, STM32F205ZC, STM32F205ZE,
STM32F205ZF, STM32F205ZG
STM32F207xx
STM32F207IC, STM32F207IE, STM32F207IF,
STM32F207IG, STM32F207ZC, STM32F207ZE,
STM32F207ZF, STM32F207ZG, STM32F207VC,
STM32F207VE, STM32F207VF, STM32F207VG
Doc ID 15818 Rev 8
1/170
www.st.com
1
Contents
STM32F205xx, STM32F207xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2/170
2.1
Full compatibility throughout the family . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1
ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 18
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . 18
2.2.3
Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.5
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 19
2.2.6
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.7
Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.8
DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.9
Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.10
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 21
2.2.11
External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.12
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.13
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.14
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.15
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.16
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.17
Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . 25
2.2.18
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.19
VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.20
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.21
Inter-integrated circuit interface (I²C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.22
Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.23
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.24
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.25
SDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.26
Ethernet MAC interface with dedicated DMA and IEEE 1588 support . 31
2.2.27
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.28
Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . 32
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Contents
2.2.29
Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . 32
2.2.30
Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.31
Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.32
True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.33
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.34
ADCs (analog-to-digital converters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.35
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.36
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.37
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.38
Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2
VCAP1/VCAP2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.3
Operating conditions at power-up / power-down (regulator ON) . . . . . . 66
5.3.4
Operating conditions at power-up / power-down (regulator OFF) . . . . . 66
5.3.5
Embedded reset and power control block characteristics . . . . . . . . . . . 67
5.3.6
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.7
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.8
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.9
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.10
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.11
PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 88
Doc ID 15818 Rev 8
3/170
Contents
6
7
STM32F205xx, STM32F207xx
5.3.12
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.14
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 93
5.3.15
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.16
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.17
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.18
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.19
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.20
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.3.21
DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.3.24
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.25
FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3.26
Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 140
5.3.27
SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 140
5.3.28
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8
4/170
A.1
Main applications versus package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.2
Application example with regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.3
USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 153
A.4
USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 155
A.5
Complete audio player solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.6
Ethernet interface solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F205xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
STM32F207xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STM32F20x pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 63
VCAP1/VCAP2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 66
Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 66
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM . . . . . . . . . . . . . . . . . . . 70
Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 73
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 76
Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 76
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Doc ID 15818 Rev 8
5/170
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
6/170
STM32F205xx, STM32F207xx
Characteristics of TIMx connected to the APB1 domain . . . . . . . . . . . . . . . . . . . . . . . . . 100
Characteristics of TIMx connected to the APB2 domain . . . . . . . . . . . . . . . . . . . . . . . . . 101
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
ULPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Ethernet DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Dynamics characteristics: Ethernet MAC signals for SMI. . . . . . . . . . . . . . . . . . . . . . . . . 112
Dynamics characteristics: Ethernet MAC signals for RMII . . . . . . . . . . . . . . . . . . . . . . . . 112
Dynamics characteristics: Ethernet MAC signals for MII . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 123
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 124
Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 130
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Switching characteristics for PC Card/CF read and write cycles in
attribute/common space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Switching characteristics for PC Card/CF read and write cycles in I/O space . . . . . . . . . 137
Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . 143
WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . 144
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data. . . . . . . 145
LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data. . . . . . . . 146
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data . 147
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data . 148
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Main applications versus package for STM32F2xxx microcontrollers . . . . . . . . . . . . . . . 151
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Compatible board design between STM32F10xx and STM32F2xx
for LQFP64 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Compatible board design between STM32F10xx and STM32F2xx
for LQFP100 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Compatible board design between STM32F10xx and STM32F2xx
for LQFP144 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Compatible board design between STM32F10xx and STM32F2xx
for LQFP176 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
STM32F20x block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . 24
Startup in regulator OFF: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . 25
STM32F20x LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32F20x WLCSP64+2 ballout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32F20x LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32F20x LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32F20x LQFP176 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32F20x UFBGA176 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Number of wait states versus fCPU and VDD range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON . . . . . . . . . . . . . . . 72
Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF . . . . . . . . . . . . . . 72
Typical current consumption vs temperature in Sleep mode,
peripherals ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical current consumption vs temperature in Sleep mode,
peripherals OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Typical current consumption vs temperature in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 75
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Doc ID 15818 Rev 8
7/170
List of figures
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
8/170
STM32F205xx, STM32F207xx
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 110
ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Ethernet SMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Ethernet RMII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Ethernet MII timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 118
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 118
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 123
Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 124
Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 125
Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 126
Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 130
Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
PC Card/CompactFlash controller waveforms for common memory read access . . . . . . 132
PC Card/CompactFlash controller waveforms for common memory write access . . . . . . 133
PC Card/CompactFlash controller waveforms for attribute memory read
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
PC Card/CompactFlash controller waveforms for attribute memory write
access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
PC Card/CompactFlash controller waveforms for I/O space read access . . . . . . . . . . . . 135
PC Card/CompactFlash controller waveforms for I/O space write access . . . . . . . . . . . . 136
NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 139
NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 139
SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 143
Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . 144
LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 145
Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline . . . . . . . . 147
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline . 148
Regulator OFF/internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Regulator OFF/ internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Figure 86.
Figure 87.
Figure 88.
Figure 89.
Figure 90.
Figure 91.
Figure 92.
Figure 93.
Figure 94.
Figure 95.
Figure 96.
Figure 97.
Figure 98.
List of figures
USB OTG FS (full speed) device-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
USB OTG FS (full speed) host-only connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
OTG FS (full speed) connection dual-role with internal PHY . . . . . . . . . . . . . . . . . . . . . . 154
OTG HS (high speed) device connection, host and dual-role
in high-speed mode with external PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Complete audio player solution 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Complete audio player solution 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Audio player solution using PLL, PLLI2S, USB and 1 crystal . . . . . . . . . . . . . . . . . . . . . . 157
Audio PLL (PLLI2S) providing accurate I2S clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Master clock (MCK) used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . . . . 158
Master clock (MCK) not used to drive the external audio DAC. . . . . . . . . . . . . . . . . . . . . 158
MII mode using a 25 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
RMII with a 50 MHz oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
RMII with a 25 MHz crystal and PHY with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Doc ID 15818 Rev 8
9/170
Introduction
1
STM32F205xx, STM32F207xx
Introduction
This datasheet provides the description of the STM32F205xx, and STM32F207xx lines of
microcontrollers. For more details on the whole STMicroelectronics STM32™ family, please
refer to Section 2.1: Full compatibility throughout the family.
The STM32F205xx, and STM32F207xx datasheet should be read in conjunction with the
STM32F20x/STM32F21x reference manual. They will be referred to as STM32F20x devices
throughout the document.
For information on programming, erasing and protection of the internal Flash memory,
please refer to the STM32F20x/STM32F21x Flash programming manual (PM0059).
The reference and Flash programming manuals are both available from the
STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/.
10/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2
Description
Description
The STM32F20x family is based on the high-performance ARM® Cortex™-M3 32-bit RISC
core operating at a frequency of up to 120 MHz. The family incorporates high-speed
embedded memories (Flash memory up to 1 Mbyte, up to 128 Kbytes of system SRAM), up
to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals
connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.
The devices also feature an adaptive real-time memory accelerator (ART Accelerator™)
which allows to achieve a performance equivalent to 0 wait state program execution from
Flash memory at a CPU frequency up to 120 MHz. This performance has been validated
using the CoreMark benchmark.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
a true number random generator (RNG). They also feature standard and advanced
communication interfaces. New advanced peripherals include an SDIO, an enhanced
flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins
and more), and a camera interface for CMOS sensors. The devices also feature standard
peripherals.
Note:
●
Up to three I2Cs
●
Three SPIs, two I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external PLL to allow
synchronization.
●
4 USARTs and 2 UARTs
●
A USB OTG full-speed with high-speed capability (with the ULPI)
●
A second USB OTG (full-speed) is available on STM32F207xx devices only,
●
Two CANs
●
An SDIO interface
●
Ethernet and camera interface available on STM32F207xx devices only.
The STM32F205xx and STM32F207xx devices operate in the –40 to +105 °C temperature
range from a 1.8 V to 3.6 V power supply. The supply voltage can drop to 1.65 V when the
device operates in a reduced temperature range.
A comprehensive set of power-saving modes allow the design of low-power applications.
STM32F205xx and STM32F207xx devices are offered in four packages ranging from 64
pins to 176 pins. The set of included peripherals changes with the device chosen.These
features make the STM32F205xx and STM32F207xx microcontroller family suitable for a
wide range of applications:
●
Motor drive and application control
●
Medical equipment
●
Industrial applications: PLC, inverters, circuit breakers
●
Printers, and scanners
●
Alarm systems, video intercom, and HVAC
●
Home audio appliances
Figure 5 shows the general block diagram of the device family.
Doc ID 15818 Rev 8
11/170
STM32F205xx features and peripheral counts
Peripherals
Flash memory in Kbytes
System
(SRAM1+SRAM2)
SRAM in Kbytes
STM32F205Rx
128
256
64
(48+16)
96
(80+16)
Backup
512
768
1024
128
(112+16)
256
64
(48+16)
96
(80+16)
768
1024
128
(112+16)
No
256
512
96
(80+16)
768
128
(112+16)
4
Yes
General-purpose
10
Advanced-control
2
Basic
2
Yes
SPI/(I2S)
3 (2)
Doc ID 15818 Rev 8
I2C
3
USART
UART
4
2
USB OTG FS
No
USB OTG HS
1
CAN
2
Camera interface
No
GPIOs
51
SDIO
82
114
16
24
Yes
3
16
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency
120 MHz
1.8 V to 3.6 V(1)
Operating voltage
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Operating temperatures
Junction temperature: –40 to + 125 °C
LQFP64
LQFP64
WLCSP64+2
LQFP64
LQFP64
WLCSP64+2
1. VDD minimum value of 1.65 V is obtained when the device operates in a reduced temperature range.
LQFP100
LQFP144
STM32F205xx, STM32F207xx
12-bit ADC
Number of channels
Package
1024
No
Random number generator
Comm.
interfaces
512
4
Ethernet
Timers
128
4
FSMC memory controller
STM32F205Zx
STM32F205Vx
Description
12/170
Table 2.
STM32F207xx features and peripheral counts
Peripherals
STM32F207Vx
Flash memory in Kbytes
SRAM in Kbytes
256
512
768
STM32F207Zx
1024
256
512
768
1024
System
(SRAM1+SRAM2)
128
(112+16)
Backup
4
FSMC memory controller
Yes
Ethernet
Yes
Timers
General-purpose
10
Advanced-control
2
Basic
768
1024
3 (2)
Doc ID 15818 Rev 8
I2C
3
USART
UART
4
2
USB OTG FS
1
USB OTG HS
1
CAN
2
Camera interface
Yes
82
114
SDIO
12-bit ADC
Number of channels
512
Yes
SPI/(I2S)
GPIOs
256
2
Random number generator
Comm. interfaces
STM32F207Ix
STM32F205xx, STM32F207xx
Table 3.
140
Yes
3
16
24
24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency
120 MHz
1.8 V to 3.6 V(1)
Operating voltage
Ambient temperatures: –40 to +85 °C/–40 to +105 °C
Operating temperatures
Junction temperature: –40 to + 125 °C
LQFP100
LQFP144
13/170
1. VDD minimum value of 1.65 V is obtained when the device operates in a reduced temperature range.
LQFP176/
UFBGA176
UFBGA176
LQFP176
Description
Package
Description
2.1
STM32F205xx, STM32F207xx
Full compatibility throughout the family
The STM32F205xx and STM32F207xx constitute the STM32F20x family whose members
are fully pin-to-pin, software and feature compatible, allowing the user to try different
memory densities and peripherals for a greater degree of freedom during the development
cycle.
The STM32F205xx and STM32F207xx devices maintain a close compatibility with the
whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The
STM32F205xx and STM32F207xx, however, are not drop-in replacements for the
STM32F10xxx devices: the two families do not have the same power scheme, and so their
power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F20x
family remains simple as only a few pins are impacted.
Figure 3, Figure 4, and Figure 1 provide compatible board designs between the
STM32F20x and the STM32F10xxx family.
Figure 1.
Compatible board design between STM32F10xx and STM32F2xx
for LQFP64 package
VSS
VSS
48
33
32
47
49
31
VSS
VSS
64
0 Ω resistor or soldering bridge
present for the STM32F10xx
configuration, not present in the
STM32F2xx configuration
17
1
16
ai15962b
14/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Figure 2.
Description
Compatible board design between STM32F10xx and STM32F2xx
for LQFP100 package
633
633
633
2&5
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
633
6$$ 6
33
4WO Ω RESISTORSCONNECTEDTO
6$$ 633
6 33FORTHE34-&XX
6 $$6 33OR.#FORTHE34-&XX
633FOR34-&XX
6$$FOR34-&XX
AIC
Figure 3.
Compatible board design between STM32F10xx and STM32F2xx
for LQFP144 package
633
633
633
ΩRESISTORORSOLDERINGBRIDGE
PRESENTFORTHE34-&XX
CONFIGURATIONNOTPRESENTINTHE
34-&XXCONFIGURATION
2&5
633
6$$ 6
33
4WO Ω RESISTORSCONNECTEDTO
6$$
6 33FORTHE34-&XX
6 $$6 33OR.#FORTHE34-&XX
633
AIC
1. RFU = reserved for future use.
Doc ID 15818 Rev 8
15/170
Description
STM32F205xx, STM32F207xx
Figure 4.
Compatible board design between STM32F10xx and STM32F2xx
for LQFP176 package
2&5
6$$ 6
33
4WO Ω RESISTORSCONNECTEDTO
6 33FORTHE34-&XX
6 $$6 33OR.#FORTHE34-&XX
-36
1. RFU = reserved for future use.
16/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Description
2.2
Device overview
Figure 5.
STM32F20x block diagram
32!-032!-./2&LASH
0##ARD!4!.!.$&LASH
$0$5,0)#+$$)2340.84
3#,3$!).4.)$6"533/&
%THERNET-!# $-!
&)&/
0(9
-))OR2-))AS!&
-$)/AS!&
$-!
&)&/
53"
/4'(3
3TREAMS
$-!
&)&/
&LASH
-BYTE
2.'
32!-+"
32!-+"
!("-(Z
6$$
&)&/
'0)/0/24!
0";=
'0)/0/24"
2#(3
2#,3
0/2
2ESET
)NT
0,,
0#;=
'0)/0/24#
0$;=
'0)/0/24$
0%;=
'0)/0/24%
2ESET
'0)/0/24&
CLOCK
-!.!'4
CONTROL
0OWERMANAGMT
6OLTAGE
REGULATOR
6TO6
6$$
6$$!
0!;=
53"
/4'&3
3UPPLY
SUPERVISION
0/20$2
"/2
06$
84!,/3#
-(Z
0);=
'0)/0/24)
84!,K(Z
,3
24#
!75
"ACKUP REGISTER
$-!
4)-
!("!0" !("!0"
4)- B
4)-
B
SMCARD
53!24
IR$!
2848#+
#43243AS!&
SMCARD
53!24
IR$!
-/3)-)3/
3#+.33AS!&
30)
4)-
4)-
B
B
ANALOGINPUTSCOMMON
TOTHE!$#S
ANALOGINPUTSCOMMON
TOTHE!$#
ANALOGINPUTSTO!$#
53!24-"PS
4EMPERATURESENSOR
6$$!
!$#
!$#
!$#
$!#
)&
)4&
2848#+
#43243AS!&
53!24
SMCARD
IR$!
2848#+
#43243AS!&
5!24
2848AS!&
5!24
2848AS!&
30))3
-/3)$/54 -)3/$).3#+#+
.3373-#+AS!&
30))3
-/3)$/54 -)3/$).3#+#+
.3373-#+AS!&
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
)#3-"53
3#,3$!3-"!AS!&
BX#!.
$!#
BX#!.
$!#?/54
AS!&
$!#?/54
AS!&
CHANNEL AS!&
SMCARD
IR$!
)#3-"53
6$$!
6$$2%&?!$#
CHANNEL AS!&
53!24
77$'
B
2848#+
#43243AS!&
CHANNELSAS!&
&)&/
CHANNELAS!&
CHANNELS%42AS!&
4)- B
4)-07- B
4)-
CHANNELS%42AS!&
B
4)- B
4)-07-
24#?!&
24#?!&
CHANNELS%42AS!&
4)-
!0"-(Z
!0"-(Z
CHANNELAS!&
4)-
B
/3#?).
/3#?/54
B
3$)/--#
!0"-(Z
!0"-(Z
COMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
COMPLCHANNELS4)-?#(;=.
CHANNELS4)-?#(;=%42
"+).AS!&
CHANNELSAS!&
/3#?).
/3#?/54
B
%84)47+50
&)&/
$;=
#-$#+AS!&
6$$!633!
.234
CHANNELS%42AS!&
B
4)-
!&
6#!06#!0
+""+302!-
4)- B
$-!
633
6"!4TO6
6"!4
,3
'0)/0/24(
6$$TO6
)7$'
3TANDBY
INTERFACE
0#,+X
0(;=
&#,+
'0)/0/24'
(#,+X
0';=
$0
$3#,3$!).4.)$6"533/&
6$$
6$$!
0&;=
(39.#639.#
0)8#,+$;=
!("-(Z
3TREAMS
$-!
#AMERA
INTERFACE
0(9
3"53
&)&/
!2-#ORTEX-
)"53
-(Z
!24ACCELERATOR $"53
&)&/
%4-
#,+.%;=!;=
$;=/%.7%.
.",;=.,.2%'
.7!)4)/2$9#$
.)/2$)/72).4;=
).4..))3AS!&
%XTERNALMEMORY
CONTROLLER&3-#
-05
.6)#
!##%,
#!#(%
*4!'37
!("BUSMATRIX3-
.*4234*4$)
*4#+37#,+
*4$/37$
*4$/42!#%37/
42!#%#,+
42!#%$;=
4828
4828
AIB
1. The timers connected to APB2 are clocked from TIMxCLK up to 120 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 60 MHz.
Doc ID 15818 Rev 8
17/170
Description
2.2.1
STM32F205xx, STM32F207xx
ARM® Cortex™-M3 core with embedded Flash and SRAM
The ARM Cortex-M3 processor is the latest generation of ARM processors for embedded
systems. It was developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M3 32-bit RISC processor features exceptional code-efficiency, delivering
the high-performance expected from an ARM core in the memory size usually associated
with 8- and 16-bit devices.
With its embedded ARM core, the STM32F20x family is compatible with all ARM tools and
software.
Figure 5 shows the general block diagram of the STM32F20x family.
2.2.2
Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industrystandard ARM® Cortex™-M3 processors. It balances the inherent performance advantage
of the ARM Cortex-M3 over Flash memory technologies, which normally requires the
processor to wait for the Flash memory at higher operating frequencies.
To release the processor full 150 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 120 MHz.
2.2.3
Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
2.2.4
Embedded Flash memory
The STM32F20x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes,
512 Kbytes, 768 Kbytes or 1 Mbytes available for storing programs and data.
The devices also feature 512 bytes of OTP memory that can be used to store critical user
data such as Ethernet MAC addresses or cryptographic keys.
18/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.5
Description
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
2.2.6
Embedded SRAM
All STM32F20x products embed:
●
Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0
wait states
●
4 Kbytes of backup SRAM.
The content of this area is protected against possible unwanted write accesses, and is
retained in Standby or VBAT mode.
2.2.7
Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB
HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
Multi-AHB matrix
3
3
3
3
3
3
53"?(3?-
-!#
53"/4'
%THERNET
(3
%4(%2.%4?-
$-!?0
'0
$-!
$-!?-%-
$-!?0
3BUS
'0
$-!
3
-
)#/$%
- $#/$%
!24
!##%,
3
$BUS
)BUS
!2#ORTEX-
$-!?-%-
Figure 6.
&LASH
MEMORY
-
32!-
+BYTE
-
32!+BYTE
!("
PERIPH
!("
PERIPH
-
-
-
!0"
!0"
&3-#
3TATIC-EM#TL
"USMATRIX3
AIB
Doc ID 15818 Rev 8
19/170
Description
2.2.8
STM32F205xx, STM32F207xx
DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They share some centralized FIFOs for APB/AHB
peripherals, support burst transfer and are designed to provide the maximum peripheral
bandwidth (AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
2.2.9
●
SPI and I2S
●
I2C
●
USART and UART
●
General-purpose, basic and advanced-control timers TIMx
●
DAC
●
SDIO
●
Camera interface (DCMI)
●
ADC.
Flexible static memory controller (FSMC)
The FSMC is embedded in all STM32F20x devices. It has four Chip Select outputs
supporting the following modes: PC Card/Compact Flash, SRAM, PSRAM, NOR Flash and
NAND Flash.
Functionality overview:
●
Write FIFO
●
Code execution from external memory except for NAND Flash and PC Card
●
Maximum frequency (fHCLK) for external access is 60 MHz
LCD parallel interface
The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
20/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.10
Description
Nested vectored interrupt controller (NVIC)
The STM32F205xx and STM32F207xx embed a nested vectored interrupt controller able to
manage 16 priority levels, and handle up to 87 maskable interrupt channels plus the 16
interrupt lines of the Cortex™-M3.
The NVIC main features are the following:
●
Closely coupled NVIC gives low-latency interrupt processing
●
Interrupt entry vector table address passed directly to the core
●
Closely coupled NVIC core interface
●
Allows early processing of interrupts
●
Processing of late arriving, higher-priority interrupts
●
Support tail chaining
●
Processor state automatically saved
●
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
2.2.11
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 140 GPIOs can be connected
to the 16 external interrupt lines.
2.2.12
Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy. The application can
then select as system clock either the RC oscillator or an external 4-26 MHz clock source.
This clock is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator and a software interrupt is generated (if enabled). Similarly,
full interrupt management of the PLL clock entry is available when necessary (for example if
an indirectly used external oscillator fails).
The advanced clock controller clocks the core and all peripherals using a single crystal or
oscillator. In particular, the ethernet and USB OTG FS peripherals can be clocked by the
system clock.
Several prescalers and PLLs allow the configuration of the two AHB buses, the high-speed
APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two
AHB buses is 120 MHz and the maximum frequency the high-speed APB domains is
60 MHz. The maximum allowed frequency of the low-speed APB domain is 30 MHz.
The devices embed a dedicate PLL (PLLI2S) which allow to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
Doc ID 15818 Rev 8
21/170
Description
2.2.13
STM32F205xx, STM32F207xx
Boot modes
At startup, boot pins are used to select one out of three boot options:
●
Boot from user Flash
●
Boot from system memory
●
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART3 (PC10/PC11 or PB10/PB11), CAN2 (PB5/PB13), USB
OTG FS in Device mode (PA11/PA12) through DFU (device firmware upgrade).
2.2.14
Power supply schemes
●
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins. On WLCSP package, VDD ranges from
1.65 to 3.6 V.
●
VSSA, VDDA = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks,
RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
●
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 18: Power supply scheme for more details.
Note:
VDD/VDDA minimum value of 1.65 V is obtained when the device operates in a reduced
temperature range.
2.2.15
Power supply supervisor
The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, BOR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached, the
option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently. Three BOR thresholds are available through option bytes.
The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit. On devices in WLCSP package, BOR
can be inactivated by setting IRROFF to VDD (see Section 2.2.16: Voltage regulator).
The devices also feature an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher
than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
22/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.16
Description
Voltage regulator
The regulator has five operating modes:
●
●
Regulator ON
–
Main regulator mode (MR)
–
Low power regulator (LPR)
–
Power-down
Regulator OFF
–
Regulator OFF/internal reset ON
–
Regulator OFF/internal reset OFF
Regulator ON
The regulator ON modes are activated by default on LQFP packages.On WLCSP66
package, they are activated by connecting both REGOFF and IRROFF pins to VSS, while
only REGOFF must be connected to VSS on UFBGA176 package (IRROFF is not available).
VDD minimum value is 1.8 V(a).
There are three regulator ON modes:
●
MR is used in nominal regulation mode (Run)
●
LPR is used in Stop mode
●
Power-down is used in Standby mode:
The regulator output is in high impedance: the kernel circuitry is powered down,
inducing zero consumption (but the contents of the registers and SRAM are lost).
Regulator OFF
●
Regulator OFF/internal reset ON
On WLCSP66 package, this mode is activated by connecting REGOFF pin to VDD and
IRROFF pin to VSS. On UFBGA176 package, only REGOFF must be connected to VDD
(IRROFF not available).
The regulator OFF/internal reset ON mode allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
The following conditions must be respected:
a.
–
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
–
If the time for VCAP_1 and VCAP_2 to reach 1.08 V is faster than the time for VDD to
reach 1.8 V(a), then PA0 should be connected to the NRST pin (see Figure 7).
VDD/VDDA minimum value of 1.65 V is obtained when the device operates in a reduced
temperature range.
Doc ID 15818 Rev 8
23/170
Description
STM32F205xx, STM32F207xx
Otherwise, PA0 should be asserted low externally during POR until VDD reaches
1.8 V (see Figure 8).
In this mode, PA0 cannot be used as a GPIO pin since it allows to reset the part of the
1.2 V logic which is not reset by the NRST pin, when the internal voltage regulator in
OFF.
●
Regulator OFF/internal reset OFF
On WLCSP66 package, this mode activated by connecting REGOFF to VSS and
IRROFF to VDD. IRROFF cannot be activated in conjunction with REGOFF. This mode
is available only on the WLCSP package. It allows to supply externally a 1.2 V voltage
source through VCAP_1 and VCAP_2 pins, in addition to VDD.
The following conditions must be respected:
–
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains (see Figure 7).
–
PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach
1.08 V, and until VDD reaches 1.65 V.
–
NRST should be controlled by an external reset controller to keep the device
under reset when VDD is below 1.65 V (see Figure 8).
Figure 7.
Startup in regulator OFF: slow VDD slope
- power-down reset risen after VCAP_1/VCAP_2 stabilization
6$$
0$26
6
6
6#!0? 6 #!0?
TIME
0!TIEDTO.234
.234
TIME
I
1. This figure is valid both whatever the internal reset mode (ON or OFF).
24/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Figure 8.
Description
Startup in regulator OFF: fast VDD slope
- power-down reset risen before VCAP_1/VCAP_2 stabilization
6$$
0$26
6#!0? 6 #!0?
6
6
TIME
0!ASSERTEDEXTERNALLY
.234
TIME
2.2.17
Real-time clock (RTC), backup SRAM and backup registers
The backup domain of the STM32F20x devices includes:
●
The real-time clock (RTC)
●
4 Kbytes of backup SRAM
●
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like area.It can be used to store data which
need to be retained in VBAT and standby mode.This memory area is disabled to minimize
power consumption (see Section 2.2.18: Low-power modes). It can be enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 2.2.18: Low-power
modes).
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or the VBAT pin.
Doc ID 15818 Rev 8
25/170
Description
2.2.18
STM32F205xx, STM32F207xx
Low-power modes
The STM32F20x family supports three low-power modes to achieve the best compromise
between low power consumption, short startup time and available wakeup sources:
●
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
●
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from the Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup or the Ethernet wakeup.
●
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped when the device
enters the Stop or Standby mode.
2.2.19
VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery or an
external supercapacitor.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Note:
26/170
When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.20
Description
Timers and watchdogs
The STM32F205xx and STM32F207xx devices include two advanced-control timers, eight
general-purpose timers, two basic timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control, general-purpose and basic timers.
Table 4.
Timer feature comparison
Counter Counter Prescaler
resolution type
factor
Timer type Timer
DMA
Capture/
Max
Max
Complementary
request compare
interface timer
output
generation channels
clock
clock
Advanced- TIM1,
control
TIM8
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
Yes
60 MHz
120
MHz
TIM2,
TIM5
32-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
30 MHz
60
MHz
TIM3,
TIM4
16-bit
Up,
Any integer
Down, between 1
Up/down and 65536
Yes
4
No
30 MHz
60
MHz
TIM6,
TIM7
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
30 MHz
60
MHz
TIM9
16-bit
Up
Any integer
between 1
and 65536
No
2
No
60 MHz
120
MHz
TIM10,
TIM11
16-bit
Up
Any integer
between 1
and 65536
No
1
No
60 MHz
120
MHz
TIM12
16-bit
Up
Any integer
between 1
and 65536
No
2
No
30 MHz
60
MHz
TIM13,
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
30 MHz
60
MHz
General
purpose
Basic
General
purpose
Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
●
Input capture
●
Output compare
●
PWM generation (edge- or center-aligned modes)
●
One-pulse mode output
Doc ID 15818 Rev 8
27/170
Description
STM32F205xx, STM32F207xx
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%).
The TIM1 and TIM8 counters can be frozen in debug mode. Many of the advanced-control
timer features are shared with those of the standard TIMx timers which have the same
architecture. The advanced-control timer can therefore work together with the TIMx timers
via the Timer Link feature for synchronization or event chaining.
General-purpose timers (TIMx)
There are ten synchronizable general-purpose timers embedded in the STM32F20x devices
(see Table 4 for differences).
●
TIM2, TIM3, TIM4, TIM5
The STM32F20x include 4 full-featured general-purpose timers. TIM2 and TIM5 are
32-bit timers, and TIM3 and TIM4 are 16-bit timers. The TIM2 and TIM5 timers are
based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and
TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler.
They all feature 4 independent channels for input capture/output compare, PWM or
one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on
the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
The counters of TIM2, TIM3, TIM4, TIM5 can be frozen in debug mode. Any of these
general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
●
TIM10, TIM11 and TIM9
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two
independent channels for input capture/output compare, PWM or one-pulse mode
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured
general-purpose timers. They can also be used as simple time bases.
●
TIM12, TIM13 and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM13 and TIM14 feature one independent channel, whereas TIM12 has two
independent channels for input capture/output compare, PWM or one-pulse mode
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured
general-purpose timers.
They can also be used as simple time bases.
Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
28/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Description
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
The counter can be frozen in debug mode.
Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
2.2.21
●
A 24-bit downcounter
●
Autoreload capability
●
Maskable system interrupt generation when the counter reaches 0
●
Programmable clock source
Inter-integrated circuit interface (I²C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support the Standard- and Fast-modes. They support the 7/10-bit addressing mode and the
7-bit dual addressing mode (as slave). A hardware CRC generation/verification is
embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
2.2.22
Universal synchronous/asynchronous receiver transmitters
(UARTs/USARTs)
The STM32F205xx and STM32F207xx embed four universal synchronous/asynchronous
receiver transmitters (USART1, USART2, USART3 and USART6) and two universal
asynchronous receiver transmitters (UART4 and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 7.5 Mbit/s. The other available interfaces communicate at
up to 3.75 Mbit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
Doc ID 15818 Rev 8
29/170
Description
Table 5.
STM32F205xx, STM32F207xx
USART feature comparison
USART Standard Modem
SPI
LIN
irDA
name features (RTS/CTS)
master
Smartcard
(ISO 7816)
Max. baud rate Max. baud rate
in Mbit/s
in Mbit/s
(oversampling (oversampling
by 16)
by 8)
APB
mapping
USART1
X
X
X
X
X
X
1.87
7.5
APB2
(max.
60 MHz)
USART2
X
X
X
X
X
X
1.87
3.75
APB1
(max.
30 MHz)
USART3
X
X
X
X
X
X
1.87
3.75
APB1
(max.
30 MHz)
UART4
X
-
X
-
X
-
1.87
3.75
APB1
(max.
30 MHz)
UART5
X
-
X
-
X
-
3.75
3.75
APB1
(max.
30 MHz)
USART6
X
X
X
X
X
X
3.75
7.5
APB2
(max.
60 MHz)
2.2.23
Serial peripheral interface (SPI)
The STM32F20x feature up to three SPIs in slave and master modes in full-duplex and
simplex communication modes. SPI1 can communicate at up to 30 Mbits/s, while SPI2 and
SPI3 can communicate at up to 15 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
2.2.24
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, in simplex communication modes, and can be configured
to operate with a 16-/32-bit resolution as input or output channels. Audio sampling
frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S
interfaces is/are configured in master mode, the master clock can be output to the external
DAC/CODEC at 256 times the sampling frequency.
All I2Sx interfaces can be served by the DMA controller.
30/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.25
Description
SDIO
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with the
SD Memory Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital protocol
Rev1.1.
2.2.26
Ethernet MAC interface with dedicated DMA and IEEE 1588 support
Peripheral available only on the STM32F207xx devices.
The STM32F207xx devices provide an IEEE-802.3-2002-compliant media access controller
(MAC) for ethernet LAN communications through an industry-standard mediumindependent interface (MII) or a reduced medium-independent interface (RMII). The
STM32F207xx requires an external physical interface device (PHY) to connect to the
physical LAN bus (twisted-pair, fiber, etc.). the PHY is connected to the STM32F207xx MII
port using 17 signals for MII or 9 signals for RMII, and can be clocked using the 25 MHz
(MII) or 50 MHz (RMII) output from the STM32F207xx.
The STM32F207xx includes the following features:
●
Supports 10 and 100 Mbit/s rates
●
Dedicated DMA controller allowing high-speed transfers between the dedicated SRAM
and the descriptors (see the STM32F20x and STM32F21x reference manual for
details)
●
Tagged MAC frame support (VLAN support)
●
Half-duplex (CSMA/CD) and full-duplex operation
●
MAC control sublayer (control frames) support
●
32-bit CRC generation and removal
●
Several address filtering modes for physical and multicast address (multicast and group
addresses)
●
32-bit status code for each transmitted or received frame
●
Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive
FIFO are both 2 Kbytes, that is 4 Kbytes in total
●
Supports hardware PTP (precision time protocol) in accordance with IEEE 1588 2008
(PTP V2) with the time stamp comparator connected to the TIM2 input
●
Triggers interrupt when system time becomes greater than target time
Doc ID 15818 Rev 8
31/170
Description
2.2.27
STM32F205xx, STM32F207xx
Controller area network (CAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). The 256 bytes of SRAM which are allocated for each CAN are not shared
with any other peripheral.
2.2.28
Universal serial bus on-the-go full-speed (OTG_FS)
The STM32F205xx and STM32F207xx embed an USB OTG full-speed device/host/OTG
peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the
USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable
endpoint setting and supports suspend/resume. The USB OTG full-speed controller
requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE
oscillator. The major features are:
2.2.29
●
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
●
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
●
4 bidirectional endpoints
●
8 host channels with periodic OUT support
●
HNP/SNP/IP inside (no need for any external resistor)
●
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
●
Internal FS OTG PHY support
Universal serial bus on-the-go high-speed (OTG_HS)
The STM32F205xx and STM32F207xx devices embed a USB OTG high-speed (up to
480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and
high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and
features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using
the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
32/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Description
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
2.2.30
●
Combined Rx and Tx FIFO size of 1024× 35 bits with dynamic FIFO sizing
●
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
●
6 bidirectional endpoints
●
12 host channels with periodic OUT support
●
Internal FS OTG PHY support
●
External FS OTG PHY support through an I2C connection
●
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
●
Internal USB DMA
●
HNP/SNP/IP inside (no need for any external resistor)
●
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 kHz to 192 kHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
2.2.31
Digital camera interface (DCMI)
The camera interface is not available in STM32F205xx devices.
STM32F207xx products embed a camera interface that can connect with camera modules
and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The
camera interface can sustain up to 27 Mbyte/s at 27 MHz or 48 Mbyte/s at 48 MHz. It
features:
2.2.32
●
Programmable polarity for the input pixel clock and synchronization signals
●
Parallel data communication can be 8-, 10-, 12- or 14-bit
●
Supports 8-bit progressive video monochrome or raw Bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
●
Supports continuous mode or snapshot (a single frame) mode
●
Capability to automatically crop the image
True random number generator (RNG)
All STM32F2xxx products embed a true RNG that delivers 32-bit random numbers
produced by an integrated analog circuit.
Doc ID 15818 Rev 8
33/170
Description
2.2.33
STM32F205xx, STM32F207xx
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O alternate function configuration can be locked if needed by following a specific
sequence in order to avoid spurious writing to the I/Os registers.
To provide fast I/O handling, the GPIOs are on the fast AHB1 bus with a clock up to
120 MHz that leads to a maximum I/O toggling speed of 60 MHz.
2.2.34
ADCs (analog-to-digital converters)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:
●
Simultaneous sample and hold
●
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
The events generated by the timers TIM1, TIM2, TIM3, TIM4, TIM5 and TIM8 can be
internally connected to the ADC start trigger and injection trigger, respectively, to allow the
application to synchronize A/D conversion and timers.
2.2.35
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This dual digital Interface supports the following features:
●
two DAC converters: one for each output channel
●
8-bit or 12-bit monotonic output
●
left or right data alignment in 12-bit mode
●
synchronized update capability
●
noise-wave generation
●
triangular-wave generation
●
dual DAC channel independent or simultaneous conversions
●
DMA capability for each channel
●
external triggers for conversion
●
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
34/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
2.2.36
Description
Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.8 and 3.6 V. The temperature sensor is internally connected
to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a
digital value.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
2.2.37
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
2.2.38
Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F20x through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Doc ID 15818 Rev 8
35/170
Pinouts and pin description
3
STM32F205xx, STM32F207xx
Pinouts and pin description
STM32F20x LQFP64 pinout
6$$?
633?
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0#
0#
0#
0! 0!
Figure 9.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
,1&0
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
6$$?
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0"
0"
6#!0?
6$$?
6"!4
0#24#?!&
0#/3#?).
0#/3#?/54
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
633!
6$$!
0!7+50
0!
0!
AIB
Figure 10. STM32F20x WLCSP64+2 ballout
0"
6$$?
6"!4
0"
0#
0#
0#
0$
)22/&&
0#
0!
0!
0#
633?
6$$?
6$$?
0!
0!
0!
.234
0(
/3#?).
&
633?
0#
0#
62%&
0#
0(
/3#?/54
'
0"
0#
0#
0!
0#
0#
(
0"
0"
0"
0#
0!
0!
2%'/&&
0!
633?
*
0"
0"
6#!0?
0"
0"
0"
0!
0!
0!
!
0!
0!
0#
"
633?
0!
0#
#
0!
6#!0?
$
0#
%
0"
0"
0"
0"
0"
"//4
AIB
1. Top view.
36/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Pinouts and pin description
6$$?
2&5
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 11. STM32F20x LQFP100 pinout
,1&0
6$$?
633?
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$?
0%
0%
0%
0%
0%
6"!4
0#24#?!&
0#/3#?).
0#/3#?/54
633?
6$$?
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
6$$?
633!
62%&
6$$!
0!7+50
0!
0!
AID
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
Doc ID 15818 Rev 8
37/170
Pinouts and pin description
STM32F205xx, STM32F207xx
2&5
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$?
633?
0'
0'
0'
0'
0'
0'
0$
0$
6$$?
633?
0$
0$
0$
0$
0$
0$
0#
0#
0#
0! 0! 6$$?
Figure 12. STM32F20x LQFP144 pinout
,1&0
6$$?
633?
6#!0?
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
6$$?
633?
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$?
633?
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
633?
6$$?
0&
0&
0&
0'
0'
0%
0%
0%
633?
6$$?
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$?
0! 633?
6$$?
0! 0! 0! 0! 0#
0#
0"
0"
0"
0&
0&
0%
0%
0%
0%
0%
6"!4
0#24#?!&
0#/3#?).
0#/3#?/54
0&
0&
0&
0&
0&
0&
633?
6$$?
0&
0&
0&
0&
0&
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
6$$?
633!
62%&
6$$!
0! 7+50
0! 0! AID
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
38/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Pinouts and pin description
$$?
2&5
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0'
6$$?
633?
0'
0'
0'
0'
0'
0'
0$
0$
6$$?
633?
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
6$$?
633?
0)
0)
6
0)
0)
0)
0)
Figure 13. STM32F20x LQFP176 pinout
,1&0
0)
0)
0(
0(
0(
6$$?
633?
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
6$$?
633?
0'
0'
0'
0'
0'
0'
0'
0$
0$
6$$?
633?
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
6$$?
633?
0(
633?
6$$?
0&
0&
0&
0'
0'
0%
0%
0%
633?
6$$?
0%
0%
0%
0%
0%
0%
0"
0"
6#!0?
6$$?
0(
0(
0(
0(
0(
0(
633?
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0&
0&
0(
0(
0!
0%
0%
0%
0%
0%
6"!4
0)24#?!&
0#24#?!&
0#/3#?).
0#/3#?/54
0)
0)
0)
633?
6$$?
0&
0&
0&
0&
0&
0&
633?
6$$?
0&
0&
0&
0&
0&
0(/3#?).
0(/3#?/54
.234
0#
0#
0#
0#
6$$?
633!
62%&
6$$!
0!7+50
0!
0!
0(
0(
AID
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
Doc ID 15818 Rev 8
39/170
Pinouts and pin description
STM32F205xx, STM32F207xx
Figure 14. STM32F20x UFBGA176 ballout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
A
PE3
PE2
PE1
PE0
PB8
PB5
PG14
PG13
PB4
PB3
PD7
PC12
PA15
PA14
PA13
B
PE4
PE5
PE6
PB9
PB7
PB6
PG15
PG12
PG11
PG10
PD6
PD0
PC11
PC10
PA12
C
VBAT
PI7
PI6
PI5
VDD_3
RFU
VDD_11
VDD_10
VDD_15
PG9
PD5
PD1
PI3
PI2
PA11
D
PC13TAMP1
PI8TAMP2
PI9
PI4
VSS
BOOT0
VSS_11
VSS_10
VSS_15
PD4
PD3
PD2
PH15
PI1
PA10
E
PC14OSC32_IN
PF0
PI10
PI11
PH13
PH14
PI0
PA9
VSS_13
VDD_13
PH2
VSS
VSS
VSS
VSS
VSS
VSS_2
VCAP2
PC9
PA8
PC15-
F
OSC32_OUT
G
PH0OSC_IN
VSS_5
VDD_5
PH3
VSS
VSS
VSS
VSS
VSS
VSS_9
VDD_2
PC8
PC7
H
PH1OSC_OUT
PF2
PF1
PH4
VSS
VSS
VSS
VSS
VSS
VSS_14
VDD_9
PG8
PC6
J
NRST
PF3
PF4
PH5
VSS
VSS
VSS
VSS
VSS
VDD_14
VDD_8
PG7
PG6
K
PF7
PF6
PF5
VDD_4
VSS
VSS
VSS
VSS
VSS
PH12
PG5
PG4
PG3
L
PF10
PF9
PF8
REGOFF
PH11
PH10
PD15
PG2
M
VSSA
PC0
PC1
PC2
PC3
PB2
PG1
VSS_6
VSS_7
VCAP1
PH6
PH8
PH9
PD14
PD13
N
VREF-
PA1
PA0WKUP
PA4
PC4
PF13
PG0
VDD_6
VDD_7
VDD_1
PE13
PH7
PD12
PD11
PD10
P
VREF+
PA2
PA6
PA5
PC5
PF12
PF15
PE8
PE9
PE11
PE14
PB12
PB13
PD9
PD8
R
VDDA
PA3
PA7
PB1
PB0
PF11
PF14
PE7
PE10
PE12
PE15
PB10
PB11
PB14
PB15
AIB
1. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
2. Top view.
STM32F20x pin and ball definitions
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
-
-
1
1
1
A2
PE2
I/O FT
PE2
TRACECLK/ FSMC_A23 /
ETH_MII_TXD3 /
EVENTOUT
-
-
2
2
2
A1
PE3
I/O FT
PE3
TRACED0/FSMC_A19/
EVENTOUT
-
-
3
3
3
B1
PE4
I/O FT
PE4
TRACED1/FSMC_A20 /
DCMI_D4/ EVENTOUT
-
-
4
4
4
B2
PE5
I/O FT
PE5
TRACED2 / FSMC_A21 /
TIM9_CH1 / DCMI_D6/
EVENTOUT
-
-
5
5
5
B3
PE6
I/O FT
PE6
TRACED3 / FSMC_A22 /
TIM9_CH2 / DCMI_D7/
EVENTOUT
1
A9
6
6
6
C1
VBAT
40/170
Pin name
Type(1)
LQFP64
Pins
I / O Level(2)
Table 6.
S
Main
function(3)
(after reset)
Alternate functions
VBAT
Doc ID 15818 Rev 8
Other
functions
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
WLCSP64+2
LQFP100
LQFP144
LQFP176
UFBGA176
-
-
-
-
7
D2
Type(1)
LQFP64
Pins
Pin name
PI8(4)
PC13(4)
I / O Level(2)
Table 6.
Pinouts and pin description
I/O FT
2
B8
7
7
8
D1
3
B9
8
8
9
E1 PC14(4)-OSC32_IN(6) I/O FT
I/O FT
(4)
Main
function(3)
(after reset)
Alternate functions
Other
functions
PI8(5)
EVENTOUT
RTC_AF2
(5)
EVENTOUT
RTC_AF1
PC14(5)
EVENTOUT
OSC32_IN
OSC32_OUT
PC13
PC15 OSC32_OUT(6)
I/O FT
PC15(5)
EVENTOUT
11 D3
PI9
I/O FT
PI9
CAN1_RX / EVENTOUT
-
12 E3
PI10
I/O FT
PI10
ETH_MII_RX_ER/
EVENTOUT
-
-
13 E4
PI11
I/O FT
PI11
OTG_HS_ULPI_DIR/
EVENTOUT
-
-
-
14
F2
VSS_13
S
VSS_13
-
-
-
-
15
F3
VDD_13
S
VDD_13
-
-
-
10 16 E2
PF0
I/O FT
PF0
FSMC_A0 / I2C2_SDA/
EVENTOUT
-
-
-
11 17 H3
PF1
I/O FT
PF1
FSMC_A1 / I2C2_SCL/
EVENTOUT
-
-
-
12 18 H2
PF2
I/O FT
PF2
FSMC_A2 / I2C2_SMBA/
EVENTOUT
-
-
-
13 19
J2
PF3(6)
I/O FT
PF3
FSMC_A3/ EVENTOUT
ADC3_IN9
-
-
-
14 20
J3
PF4(6)
I/O FT
PF4
FSMC_A4/ EVENTOUT
ADC3_IN14
-
-
-
15 21 K3
PF5(6)
I/O FT
PF5
FSMC_A5/ EVENTOUT
ADC3_IN15
H9 10 16 22 G2
VSS_5
S
VSS_5
VDD_5
S
VDD_5
4
C9
9
9
10
-
-
-
-
-
-
-
-
-
-
-
F1
-
-
-
-
-
18 24 K2
PF6(6)
I/O FT
PF6
TIM10_CH1 /
FSMC_NIORD/
EVENTOUT
ADC3_IN4
-
-
-
19 25 K1
PF7(6)
I/O FT
PF7
TIM11_CH1/FSMC_NREG/
EVENTOUT
ADC3_IN5
-
-
-
20 26
L3
PF8(6)
I/O FT
PF8
TIM13_CH1 /
FSMC_NIOWR/
EVENTOUT
ADC3_IN6
-
-
-
21 27
L2
PF9(6)
I/O FT
PF9
TIM14_CH1 / FSMC_CD/
EVENTOUT
ADC3_IN7
-
-
-
22 28
L1
PF10(6)
I/O FT
PF10
FSMC_INTR/ EVENTOUT
ADC3_IN8
(6)
5
6
11 17 23 G3
E9 12 23 29 G1
PH0 -OSC_IN
I/O FT
PH0
EVENTOUT
OSC_IN
F9 13 24 30 H1
PH1(6)-OSC_OUT
I/O FT
PH1
EVENTOUT
OSC_OUT
Doc ID 15818 Rev 8
41/170
Pinouts and pin description
STM32F20x pin and ball definitions (continued)
Type(1)
Main
function(3)
(after reset)
J1
NRST
I/O
8
G9 15 26 32 M2
PC0(6)
I/O FT
PC0
OTG_HS_ULPI_STP/
EVENTOUT
ADC123_
IN10
9
F8 16 27 33 M3
PC1(6)
I/O FT
PC1
ETH_MDC/ EVENTOUT
ADC123_
IN11
10 D7 17 28 34 M4
PC2
(6)
PC2
SPI2_MISO /
OTG_HS_ULPI_DIR /
ETH_MII_TXD2/
EVENTOUT
ADC123_
IN12
PC3
(6)
PC3
SPI2_MOSI / I2S2_SD /
OTG_HS_ULPI_NXT /
ETH_MII_TX_CLK/
EVENTOUT
ADC123_
IN13
LQFP144
E8 14 25 31
LQFP100
7
LQFP64
UFBGA176
Pin name
LQFP176
WLCSP64+2
Pins
I / O Level(2)
Table 6.
STM32F205xx, STM32F207xx
11 G8 18 29 35 M5
S
VDD_12
VSSA
S
VSSA
N1
VREF-
S
VREF-
F7 21 32 38 P1
VREF+
S
VREF+
VDDA
S
VDDA
-
19 30 36
12
-
20 31 37 M1
-
-
13
I/O FT
-
-
-
-
-
22 33 39 R1
14 E7 23 34 40 N3
PA0(7)-WKUP(6)
Other
functions
NRST
VDD_12
-
-
I/O FT
Alternate functions
USART2_CTS/ UART4_TX/
ETH_MII_CRS /
ADC123_IN0/
I/O FT PA0-WKUP
TIM2_CH1_ETR/
WKUP
TIM5_CH1 / TIM8_ETR/
EVENTOUT
15 H8 24 35 41 N2
PA1(6)
I/O FT
PA1
16 J9 25 36 42 P2
PA2(6)
I/O FT
PA2
USART2_RTS /
UART4_RX/
ETH_RMII_REF_CLK /
ETH_MII_RX_CLK /
TIM5_CH2 / TIM2_CH2/
EVENTOUT
USART2_TX/TIM5_CH3 /
TIM9_CH1 / TIM2_CH3 / ADC123_IN2
ETH_MDIO/ EVENTOUT
-
-
-
-
43
F4
PH2
I/O FT
PH2
ETH_MII_CRS/
EVENTOUT
-
-
-
-
44 G4
PH3
I/O FT
PH3
ETH_MII_COL/
EVENTOUT
-
-
-
-
45 H4
PH4
I/O FT
PH4
I2C2_SCL /
OTG_HS_ULPI_NXT/
EVENTOUT
-
-
-
-
46
PH5
I/O FT
PH5
I2C2_SDA/ EVENTOUT
42/170
J4
Doc ID 15818 Rev 8
ADC123_IN1
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
Pin name
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
Pinouts and pin description
Main
function(3)
(after reset)
17 G7 26 37 47 R2
PA3(6)
18 F1 27 38 48
-
VSS_4
S
VSS_4
L4
REGOFF
I/O
REGOFF
VDD_4
S
VDD_4
H7
19 E1 28 39 49 K4
20 J8 29 40 50 N4
PA4(6)
21 H6 30 41 51 P4
PA5(6)
22 H5 31 42 52 P3
(6)
PA6
I/O FT
I/O TT
I/O TT
I/O FT
PA3
Alternate functions
Other
functions
USART2_RX/TIM5_CH4 /
TIM9_CH2 / TIM2_CH4 /
OTG_HS_ULPI_D0 /
ADC123_IN3
ETH_MII_COL/
EVENTOUT
PA4
SPI1_NSS / SPI3_NSS /
USART2_CK /
ADC12_IN4
DCMI_HSYNC /
/DAC1_OUT
OTG_HS_SOF/ I2S3_WS/
EVENTOUT
PA5
SPI1_SCK/
OTG_HS_ULPI_CK /
TIM2_CH1_ETR/
TIM8_CHIN/ EVENTOUT
ADC12_IN5
/DAC2_OUT
PA6
SPI1_MISO /
TIM8_BKIN/TIM13_CH1 /
ADC12_IN6
DCMI_PIXCLK / TIM3_CH1
/ TIM1_BKIN/ EVENTOUT
ADC12_IN7
23 J7 32 43 53 R3
PA7(6)
I/O FT
PA7
SPI1_MOSI/ TIM8_CH1N /
TIM14_CH1
TIM3_CH2/
ETH_MII_RX_DV /
TIM1_CH1N /
RMII_CRS_DV /
EVENTOUT
24 H4 33 44 54 N5
PC4(6)
I/O FT
PC4
ETH_RMII_RX_D0 /
ETH_MII_RX_D0/
EVENTOUT
ADC12_IN14
25 G3 34 45 55 P5
PC5(6)
I/O FT
PC5
ETH_RMII_RX_D1 /
ETH_MII_RX_D1 /
EVENTOUT
ADC12_IN15
PB0
TIM3_CH3 / TIM8_CH2N/
OTG_HS_ULPI_D1/
ETH_MII_RXD2 /
TIM1_CH2N/ EVENTOUT
ADC12_IN8
26 J6 35 46 56 R5
PB0(6)
I/O FT
Doc ID 15818 Rev 8
43/170
Pinouts and pin description
STM32F20x pin and ball definitions (continued)
Pin name
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
STM32F205xx, STM32F207xx
Main
function(3)
(after reset)
Alternate functions
Other
functions
PB1
TIM3_CH4 / TIM8_CH3N/
OTG_HS_ULPI_D2/
ETH_MII_RXD3 /
OTG_HS_INTN /
TIM1_CH3N/ EVENTOUT
ADC12_IN9
27 J5 36 47 57 R4
PB1(6)
28 J4 37 48 58 M6
PB2
I/O FT PB2-BOOT1
I/O FT
EVENTOUT
-
-
-
49 59 R6
PF11
I/O FT
PF11
DCMI_12/ EVENTOUT
-
-
-
50 60 P6
PF12
I/O FT
PF12
FSMC_A6/ EVENTOUT
-
-
-
51 61 M8
VSS_6
S
VSS_6
-
-
-
52 62 N8
VDD_6
S
VDD_6
-
-
-
53 63 N6
PF13
I/O FT
PF13
FSMC_A7/ EVENTOUT
-
-
-
54 64 R7
PF14
I/O FT
PF14
FSMC_A8/ EVENTOUT
-
-
-
55 65 P7
PF15
I/O FT
PF15
FSMC_A9/ EVENTOUT
-
-
-
56 66 N7
PG0
I/O FT
PG0
FSMC_A10/ EVENTOUT
-
-
-
57 67 M7
PG1
I/O FT
PG1
FSMC_A11/ EVENTOUT
-
-
38 58 68 R8
PE7
I/O FT
PE7
FSMC_D4/TIM1_ETR/
EVENTOUT
-
-
39 59 69 P8
PE8
I/O FT
PE8
FSMC_D5/TIM1_CH1N/
EVENTOUT
-
-
40 60 70 P9
PE9
I/O FT
PE9
FSMC_D6/TIM1_CH1/
EVENTOUT
-
-
-
61 71 M9
VSS_7
S
VSS_7
-
-
-
62 72 N9
VDD_7
S
VDD_7
-
-
41 63 73 R9
PE10
I/O FT
PE10
FSMC_D7/TIM1_CH2N/
EVENTOUT
-
-
42 64 74 P10
PE11
I/O FT
PE11
FSMC_D8/TIM1_CH2/
EVENTOUT
-
-
43 65 75 R10
PE12
I/O FT
PE12
FSMC_D9/TIM1_CH3N/
EVENTOUT
-
-
44 66 76 N11
PE13
I/O FT
PE13
FSMC_D10/TIM1_CH3/
EVENTOUT
-
-
45 67 77 P11
PE14
I/O FT
PE14
FSMC_D11/TIM1_CH4/
EVENTOUT
-
-
46 68 78 R11
PE15
I/O FT
PE15
FSMC_D12/TIM1_BKIN/
EVENTOUT
44/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
29 H3 47 69 79 R12
Pin name
PB10
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
Pinouts and pin description
I/O FT
Alternate functions
PB10
SPI2_SCK/ I2S2_SCK/
I2C2_SCL / USART3_TX /
OTG_HS_ULPI_D3 /
ETH_MII_RX_ER /
OTG_HS_SCL /
TIM2_CH3/ EVENTOUT
PB11
I2C2_SDA/USART3_RX/
OTG_HS_ULPI_D4 /
ETH_RMII_TX_EN/
ETH_MII_TX_EN /
OTG_HS_SDA /
TIM2_CH4/ EVENTOUT
30 J2 48 70 80 R13
PB11
31 J3 49 71 81 M10
VCAP_1
S
VCAP_1
32
-
VDD_1
S
VDD_1
-
-
-
-
83 M11
PH6
I/O FT
PH6
I2C2_SMBA / TIM12_CH1 /
ETH_MII_RXD2/
EVENTOUT
-
-
-
-
84 N12
PH7
I/O FT
PH7
I2C3_SCL /
ETH_MII_RXD3/
EVENTOUT
-
-
-
-
85 M12
PH8
I/O FT
PH8
I2C3_SDA / DCMI_HSYNC/
EVENTOUT
-
-
-
-
86 M13
PH9
I/O FT
PH9
I2C3_SMBA / TIM12_CH2/
DCMI_D0/ EVENTOUT
-
-
-
-
87 L13
PH10
I/O FT
PH10
TIM5_CH1_ETR /
DCMI_D1/ EVENTOUT
-
-
-
-
88 L12
PH11
I/O FT
PH11
TIM5_CH2 / DCMI_D2/
EVENTOUT
-
-
-
-
89 K12
PH12
I/O FT
PH12
TIM5_CH3 / DCMI_D3/
EVENTOUT
-
-
-
-
90 H12
VSS_14
S
VSS_14
-
-
-
-
91 J12
VDD_14
S
VDD_14
50 72 82 N10
33 J1 51 73 92 P12
PB12
I/O FT
Main
function(3)
(after reset)
I/O FT
PB12
Doc ID 15818 Rev 8
Other
functions
SPI2_NSS/I2S2_WS/
I2C2_SMBA/
USART3_CK/ TIM1_BKIN /
CAN2_RX /
OTG_HS_ULPI_D5/
ETH_RMII_TXD0 /
ETH_MII_TXD0/
OTG_HS_ID/ EVENTOUT
45/170
Pinouts and pin description
STM32F20x pin and ball definitions (continued)
34 H2 52 74 93 P13
35 H1 53 75 94 R14
36 G1 54 76 95 R15
Pin name
PB13
PB14
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
STM32F205xx, STM32F207xx
I/O FT
I/O FT
Main
function(3)
(after reset)
Alternate functions
Other
functions
PB13
SPI2_SCK / I2S2_SCK /
USART3_CTS/
TIM1_CH1N /CAN2_TX /
OTG_HS_ULPI_D6 /
ETH_RMII_TXD1 /
ETH_MII_TXD1/
EVENTOUT
OTG_HS_
VBUS
PB14
SPI2_MISO/ TIM1_CH2N /
TIM12_CH1 / OTG_HS_DM
USART3_RTS/
TIM8_CH2N/ EVENTOUT
PB15
I/O FT
PB15
SPI2_MOSI / I2S2_SD /
TIM1_CH3N / TIM8_CH3N
/ TIM12_CH2 /
OTG_HS_DP / RTC_50Hz/
EVENTOUT
-
-
55 77 96 P15
PD8
I/O FT
PD8
FSMC_D13 / USART3_TX/
EVENTOUT
-
-
56 78 97 P14
PD9
I/O FT
PD9
FSMC_D14 / USART3_RX/
EVENTOUT
-
-
57 79 98 N15
PD10
I/O FT
PD10
FSMC_D15 / USART3_CK/
EVENTOUT
-
-
58 80 99 N14
PD11
I/O FT
PD11
FSMC_A16/USART3_CTS/
EVENTOUT
-
-
59 81 100 N13
PD12
I/O FT
PD12
FSMC_A17/TIM4_CH1 /
USART3_RTS/ EVENTOUT
-
-
60 82 101 M15
PD13
I/O FT
PD13
FSMC_A18/TIM4_CH2/
EVENTOUT
-
-
-
83 102
-
-
-
-
VSS_8
S
VSS_8
84 103 J13
VDD_8
S
VDD_8
-
61 85 104 M14
PD14
I/O FT
PD14
FSMC_D0/TIM4_CH3/
EVENTOUT
-
-
62 86 105 L14
PD15
I/O FT
PD15
FSMC_D1/TIM4_CH4/
EVENTOUT
-
-
-
87 106 L15
PG2
I/O FT
PG2
FSMC_A12/ EVENTOUT
-
-
-
88 107 K15
PG3
I/O FT
PG3
FSMC_A13/ EVENTOUT
-
-
-
89 108 K14
PG4
I/O FT
PG4
FSMC_A14/ EVENTOUT
-
-
-
90 109 K13
PG5
I/O FT
PG5
FSMC_A15/ EVENTOUT
-
-
-
91 110 J15
PG6
I/O FT
PG6
FSMC_INT2/ EVENTOUT
46/170
-
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
92 111 J14
PG7
I/O FT
PG7
FSMC_INT3 /USART6_CK/
EVENTOUT
-
-
-
93 112 H14
PG8
I/O FT
PG8
USART6_RTS /
ETH_PPS_OUT/
EVENTOUT
-
-
-
94 113 G12
VSS_9
S
VSS_9
-
-
-
95 114 H13
VDD_9
S
VDD_9
37 G2 63 96 115 H15
Pin name
PC6
Type(1)
-
UFBGA176
LQFP100
-
LQFP176
WLCSP64+2
-
LQFP144
LQFP64
Pins
I / O Level(2)
Table 6.
Pinouts and pin description
I/O FT
Main
function(3)
(after reset)
Alternate functions
PC6
I2S2_MCK /
TIM8_CH1/SDIO_D6 /
USART6_TX /
DCMI_D0/TIM3_CH1/
EVENTOUT
38 F2 64 97 116 G15
PC7
I/O FT
PC7
I2S3_MCK /
TIM8_CH2/SDIO_D7 /
USART6_RX /
DCMI_D1/TIM3_CH2/
EVENTOUT
39 F3 65 98 117 G14
PC8
I/O FT
PC8
TIM8_CH3/SDIO_D0
/TIM3_CH3/ USART6_CK /
DCMI_D2/ EVENTOUT
PC9
I2S2_CKIN/ I2S3_CKIN/
MCO2 /
TIM8_CH4/SDIO_D1 /
/I2C3_SDA / DCMI_D3 /
TIM3_CH4/ EVENTOUT
40 D1 66 99 118 F14
PC9
I/O FT
41 E2 67 100 119 F15
PA8
I/O FT
PA8
MCO1 / USART1_CK/
TIM1_CH1/ I2C3_SCL/
OTG_FS_SOF/
EVENTOUT
42 E3 68 101 120 E15
PA9
I/O FT
PA9
USART1_TX/ TIM1_CH2 /
I2C3_SMBA / DCMI_D0/
EVENTOUT
43 D3 69 102 121 D15
PA10
I/O FT
PA10
USART1_RX/ TIM1_CH3/
OTG_FS_ID/DCMI_D1/
EVENTOUT
44 D2 70 103 122 C15
PA11
I/O FT
PA11
USART1_CTS / CAN1_RX /
TIM1_CH4 / OTG_FS_DM/
EVENTOUT
45 C1 71 104 123 B15
PA12
I/O FT
PA12
USART1_RTS / CAN1_TX/
TIM1_ETR/ OTG_FS_DP/
EVENTOUT
Doc ID 15818 Rev 8
Other
functions
OTG_FS_
VBUS
47/170
Pinouts and pin description
STM32F20x pin and ball definitions (continued)
Pin name
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
STM32F205xx, STM32F207xx
Alternate functions
JTMSSWDIO
JTMS-SWDIO/ EVENTOUT
46 B2 72 105 124 A15
PA13
47 C2 73 106 125 F13
VCAP_2
S
VCAP_2
B1 74 107 126 F12
VSS_2
S
VSS_2
48 A8 75 108 127 G13
VDD_2
S
VDD_2
-
I/O FT
Main
function(3)
(after reset)
-
-
-
- 128 E12
PH13
I/O FT
PH13
TIM8_CH1N / CAN1_TX/
EVENTOUT
-
-
-
- 129 E13
PH14
I/O FT
PH14
TIM8_CH2N / DCMI_D4/
EVENTOUT
-
-
-
- 130 D13
PH15
I/O FT
PH15
TIM8_CH3N / DCMI_D11/
EVENTOUT
-
-
-
- 131 E14
PI0
I/O FT
PI0
TIM5_CH4 / SPI2_NSS /
I2S2_WS / DCMI_D13/
EVENTOUT
-
-
-
- 132 D14
PI1
I/O FT
PI1
SPI2_SCK / I2S2_SCK /
DCMI_D8/ EVENTOUT
-
-
-
- 133 C14
PI2
I/O FT
PI2
TIM8_CH4 /SPI2_MISO /
DCMI_D9/ EVENTOUT
-
-
-
- 134 C13
PI3
I/O FT
PI3
TIM8_ETR / SPI2_MOSI /
I2S2_SD / DCMI_D10/
EVENTOUT
-
-
-
- 135 D9
VSS_15
S
VSS_15
-
-
-
- 136 C9
VDD_15
S
VDD_15
49 A1 76 109 137 A14
PA14
I/O FT
JTCKSWCLK
JTCK-SWCLK/ EVENTOUT
50 A2 77 110 138 A13
PA15
I/O FT
JTDI
JTDI/ SPI3_NSS/
I2S3_WS/TIM2_CH1_ETR
/ SPI1_NSS/ EVENTOUT
PC10
SPI3_SCK / I2S3_SCK /
UART4_TX / SDIO_D2 /
DCMI_D8 / USART3_TX/
EVENTOUT
PC11
UART4_RX/ SPI3_MISO /
SDIO_D3 /
DCMI_D4/USART3_RX/
EVENTOUT
51 B3 78 111 139 B14
52 C3 79 112 140 B13
48/170
PC10
PC11
I/O FT
I/O FT
Doc ID 15818 Rev 8
Other
functions
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
53 A3 80 113 141 A12
Pin name
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
Pinouts and pin description
Main
function(3)
(after reset)
Alternate functions
PC12
I/O FT
PC12
UART5_TX/SDIO_CK /
DCMI_D9 / SPI3_MOSI /
I2S3_SD / USART3_CK/
EVENTOUT
-
-
81 114 142 B12
PD0
I/O FT
PD0
FSMC_D2/CAN1_RX/
EVENTOUT
-
-
82 115 143 C12
PD1
I/O FT
PD1
FSMC_D3 / CAN1_TX/
EVENTOUT
54 C7 83 116 144 D12
PD2
I/O FT
PD2
TIM3_ETR/UART5_RX
SDIO_CMD / DCMI_D11/
EVENTOUT
-
-
84 117 145 D11
PD3
I/O FT
PD3
FSMC_CLK/USART2_CTS/
EVENTOUT
-
-
85 118 146 D10
PD4
I/O FT
PD4
FSMC_NOE/USART2_RTS
/ EVENTOUT
-
-
86 119 147 C11
PD5
I/O FT
PD5
FSMC_NWE/USART2_TX/
EVENTOUT
-
-
- 120 148 D8
VSS_10
S
VSS_10
-
-
- 121 149 C8
VDD_10
S
VDD_10
-
-
87 122 150 B11
PD6
I/O FT
PD6
FSMC_NWAIT/
USART2_RX/ EVENTOUT
-
-
88 123 151 A11
PD7
I/O FT
PD7
USART2_CK/FSMC_NE1/
FSMC_NCE2/ EVENTOUT
-
-
- 124 152 C10
PG9
I/O FT
PG9
USART6_RX /
FSMC_NE2/FSMC_NCE3/
EVENTOUT
-
-
- 125 153 B10
PG10
I/O FT
PG10
FSMC_NCE4_1/
FSMC_NE3/ EVENTOUT
-
-
- 126 154 B9
PG11
I/O FT
PG11
FSMC_NCE4_2 /
ETH_MII_TX_EN /
ETH _RMII_TX_EN/
EVENTOUT
-
-
- 127 155 B8
PG12
I/O FT
PG12
FSMC_NE4 /
USART6_RTS/ EVENTOUT
PG13
FSMC_A24 /
USART6_CTS
/ETH_MII_TXD0/
ETH_RMII_TXD0/
EVENTOUT
-
-
- 128 156 A8
PG13
I/O FT
Doc ID 15818 Rev 8
Other
functions
49/170
Pinouts and pin description
STM32F20x pin and ball definitions (continued)
Pin name
Type(1)
UFBGA176
LQFP176
LQFP144
LQFP100
WLCSP64+2
LQFP64
Pins
I / O Level(2)
Table 6.
STM32F205xx, STM32F207xx
I/O FT
Main
function(3)
(after reset)
Alternate functions
PG14
FSMC_A25 / USART6_TX
/ETH_MII_TXD1/
ETH_RMII_TXD1/
EVENTOUT
-
-
- 129 157 A7
PG14
-
-
- 130 158 D7
VSS_11
S
VSS_11
-
-
- 131 159 C7
VDD_11
S
VDD_11
-
-
- 132 160 B7
PG15
I/O FT
PG15
NJTRST
NJTRST/ SPI3_MISO /
TIM3_CH1 / SPI1_MISO/
EVENTOUT
PB5
I2C1_SMBA/ CAN2_RX /
OTG_HS_ULPI_D7 /
ETH_PPS_OUT/TIM3_CH2
/ SPI1_MOSI/ SPI3_MOSI /
DCMI_D10 / I2S3_SD/
EVENTOUT
PB6
I2C1_SCL/ TIM4_CH1 /
CAN2_TX /
DCMI_D5/USART1_TX/
EVENTOUT
PB7
I2C1_SDA / FSMC_NL(8) /
DCMI_VSYNC /
USART1_RX/ TIM4_CH2/
EVENTOUT
55 A4 89 133 161 A10
PB3
56 B4 90 134 162 A9
PB4
I/O FT
57 A5 91 135 163 A6
58 B5 92 136 164 B6
PB5
PB6
59 A6 93 137 165 B5
PB7
60 B6 94 138 166 D6
BOOT0
61 B7 95 139 167 A5
62 A7 96 140 168 B4
-
-
50/170
97 141 169 A4
PB8
I/O FT
I/O FT
I/O FT
I
I/O FT
USART6_CTS /
DCMI_D13/ EVENTOUT
JTDO/ TRACESWO/
SPI3_SCK / I2S3_SCK /
TIM2_CH2 / SPI1_SCK/
EVENTOUT
JTDO/
I/O FT
TRACESWO
BOOT0
VPP
PB8
TIM4_CH3/SDIO_D4/
TIM10_CH1 / DCMI_D6 /
ETH_MII_TXD3 /
I2C1_SCL/ CAN1_RX/
EVENTOUT
PB9
I/O FT
PB9
SPI2_NSS/ I2S2_WS/
TIM4_CH4/ TIM11_CH1/
SDIO_D5 / DCMI_D7 /
I2C1_SDA / CAN1_TX/
EVENTOUT
PE0
I/O FT
PE0
TIM4_ETR / FSMC_NBL0 /
DCMI_D2/ EVENTOUT
Doc ID 15818 Rev 8
Other
functions
STM32F205xx, STM32F207xx
STM32F20x pin and ball definitions (continued)
-
-
63 D8
Pin name
PE1
Alternate functions
PE1
FSMC_NBL1 / DCMI_D3/
EVENTOUT
I/O FT
-
-
D5
VSS
S
VSS
-
-
-
-
VSS_3
S
VSS_3
S
VDD_3
RFU(9)
64 D9 100 144 172 C5
VDD_3
-
Main
function(3)
(after reset)
-
99 143 171 C6
-
Type(1)
98 142 170 A3
UFBGA176
LQFP100
-
LQFP176
WLCSP64+2
-
LQFP144
LQFP64
Pins
I / O Level(2)
Table 6.
Pinouts and pin description
-
-
-
- 173 D4
PI4
I/O FT
PI4
TIM8_BKIN / DCMI_D5/
EVENTOUT
-
-
-
- 174 C4
PI5
I/O FT
PI5
TIM8_CH1 /
DCMI_VSYNC/
EVENTOUT
-
-
-
- 175 C3
PI6
I/O FT
PI6
TIM8_CH2 / DCMI_D6/
EVENTOUT
-
-
-
- 176 C2
PI7
I/O FT
PI7
TIM8_CH3 / DCMI_D7/
EVENTOUT
-
C8
-
-
-
-
IRROFF
I/O
Other
functions
IRROFF
1. I = input, O = output, S = supply, HiZ = high impedance.
2. FT = 5 V tolerant; TT = 3.6 V tolerant.
3. Function availability depends on the chosen device.
4. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current
(3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a
maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).
5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics
website: www.st.com.
6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
7. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to VDD (Regulator OFF), then PA0 is used
as an internal Reset (active low).
8. FSMC_NL pin is also named FSMC_NADV on memory devices.
9. RFU means “reserved for future use”. This pin can be tied to VDD,VSS or left unconnected.
Doc ID 15818 Rev 8
51/170
Alternate function mapping
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART1/2/3
UART4/5/
USART6
USART2_CTS
UART4_TX
ETH_MII_CRS
EVENTOUT
UART4_RX
ETH_MII _RX_CLK
ETH_RMII
_REF_CLK
EVENTOUT
Port
SYS
PA0-WKUP
TIM1/2
TIM3/4/5
TIM2_CH1
TIM2_ETR
TIM 5_CH1
TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2
SPI3/I2S3
TIM8_ETR
PA1
TIM2_CH2
TIM5_CH2
USART2_RTS
PA2
TIM2_CH3
TIM5_CH3
TIM9_CH1
USART2_TX
PA3
TIM2_CH4
TIM5_CH4
TIM9_CH2
USART2_RX
PA4
SPI1_NSS
PA5
TIM2_CH1
TIM2_ETR
PA6
TIM1_BKIN
PA7
TIM1_CH1N
PA8
MCO1
SPI3_NSS
I2S3_WS
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
OTG_HS_ULPI_D0
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_HS
DCMI
ETH_MDIO
EVENTOUT
EVENTOUT
OTG_HS_SOF
SPI1_SCK
TIM3_CH1
TIM8_BKIN
SPI1_MISO
TIM13_CH1
TIM3_CH2
TIM8_CH1N
SPI1_MOSI
TIM14_CH1
AF15
ETH _MII_COL
USART2_CK
TIM8_CH1N
AF014
DCMI_HSYNC
EVENTOUT
DCMI_PIXCK
EVENTOUT
OTG_HS_ULPI_CK
EVENTOUT
ETH_MII _RX_DV
ETH_RMII
_CRS_DV
EVENTOUT
Doc ID 15818 Rev 8
TIM1_CH1
I2C3_SCL
USART1_CK
PA9
TIM1_CH2
I2C3_SMBA
USART1_TX
PA10
TIM1_CH3
USART1_RX
PA11
TIM1_CH4
USART1_CTS
CAN1_RX
OTG_FS_DM
EVENTOUT
PA12
TIM1_ETR
USART1_RTS
CAN1_TX
OTG_FS_DP
EVENTOUT
PA13
JTMS-SWDIO
PA14
JTCK-SWCLK
PA15
JTDI
Pinouts and pin description
52/170
Table 7.
OTG_FS_SOF
EVENTOUT
OTG_FS_ID
DCMI_D0
EVENTOUT
DCMI_D1
EVENTOUT
EVENTOUT
EVENTOUT
TIM 2_CH1
TIM 2_ETR
SPI1_NSS
SPI3_NSS
I2S3_WS
EVENTOUT
PB0
TIM1_CH2N
TIM3_CH3
TIM8_CH2N
OTG_HS_ULPI_D1
ETH _MII_RXD2
PB1
TIM1_CH3N
TIM3_CH4
TIM8_CH3N
OTG_HS_ULPI_D2
ETH _MII_RXD3
EVENTOUT
OTG_HS_INTN
EVENTOUT
PB2
EVENTOUT
JTDO/
TRACESWO
PB4
JTRST
TIM2_CH2
SPI1_SCK
TIM3_CH1
SPI3_SCK
I2S3_SCK
SPI1_MISO
SPI3_MISO
SPI1_MOSI
SPI3_MOSI
I2S3_SD
EVENTOUT
EVENTOUT
CAN2_RX
PB5
TIM3_CH2
I2C1_SMBA
PB6
TIM4_CH1
I2C1_SCL
USART1_TX
PB7
TIM4_CH2
I2C1_SDA
USART1_RX
PB8
TIM4_CH3
TIM10_CH1
I2C1_SCL
PB9
TIM4_CH4
TIM11_CH1
I2C1_SDA
PB10
TIM2_CH3
I2C2_SCL
PB11
TIM2_CH4
I2C2_SDA
PB12
TIM1_BKIN
I2C2_SMBA
PB13
TIM1_CH1N
OTG_HS_ULPI_D7
FSMC_NL
ETH _MII_TXD3
CAN1_TX
USART3_TX
OTG_HS_ULPI_D3 ETH_ MII_RX_ER
USART3_RX
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_SCK
DCMI_D10
CAN2_TX
CAN1_RX
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_SCK
ETH _PPS_OUT
USART3_CK
CAN2_RX
USART3_CTS
CAN2_TX
EVENTOUT
DCMI_VSYNC
EVENTOUT
SDIO_D4
DCMI_D6
EVENTOUT
SDIO_D5
DCMI_D7
EVENTOUT
OTG_HS_SCL
ETH _MII_TX_EN
OTG_HS_SDA
ETH _RMII_TX_EN
ETH _MII_TXD0
OTG_HS_ULPI_D5
OTG_HS_ID
ETH _RMII_TXD0
ETH _MII_TXD1
OTG_HS_ULPI_D6
ETH _RMII_TXD1
OTG_HS_ULPI_D4
EVENTOUT
DCMI_D5
EVENTOUT
EVENTOUT
EVENTOUT
EVENTOUT
STM32F205xx, STM32F207xx
PB3
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART1/2/3
UART4/5/
USART6
Port
SYS
PB14
PB15
TIM1/2
TIM3/4/5
TIM1_CH2N
RTC_50Hz
TIM1_CH3N
TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2
TIM8_CH2N
SPI2_MISO
TIM8_CH3N
SPI2_MOSI
I2S2_SD
SPI3/I2S3
USART3_RTS
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_HS
DCMI
TIM12_CH1
OTG_HS_DM
TIM12_CH2
PC0
AF014
EVENTOUT
OTG_HS_DP
EVENTOUT
OTG_HS_ULPI_STP
PC1
AF15
EVENTOUT
ETH_MDC
EVENTOUT
PC2
SPI2_MISO
OTG_HS_ULPI_DIR ETH _MII_TXD2
EVENTOUT
PC3
SPI2_MOSI
OTG_HS_ULPI_NXT ETH _MII_TX_CLK
EVENTOUT
ETH_MII_RXD0
ETH_RMII_RXD0
ETH _MII_RXD1
ETH _RMII_RXD1
PC4
PC5
PC6
TIM3_CH1
TIM8_CH1
Doc ID 15818 Rev 8
PC7
TIM3_CH2
TIM8_CH2
PC8
TIM3_CH3
TIM8_CH3
TIM3_CH4
TIM8_CH4
PC9
MCO2
I2S2_MCK
USART6_TX
I2S3_MCK
I2C3_SDA
I2S2_CKIN
EVENTOUT
EVENTOUT
SDIO_D6
DCMI_D0
EVENTOUT
USART6_RX
SDIO_D7
DCMI_D1
EVENTOUT
USART6_CK
SDIO_D0
DCMI_D2
EVENTOUT
SDIO_D1
DCMI_D3
EVENTOUT
SDIO_D2
DCMI_D8
EVENTOUT
I2S3_CKIN
STM32F205xx, STM32F207xx
Table 7.
PC10
SPI3_SCK
I2S3_SCK
USART3_TX
UART4_TX
PC11
SPI3_MISO
USART3_RX
UART4_RX
SDIO_D3
DCMI_D4
EVENTOUT
PC12
SPI3_MOSI
I2S3_SD
USART3_CK
UART5_TX
SDIO_CK
DCMI_D9
EVENTOUT
PC13
PC14-OSC32_IN
PC15-OSC32_OUT
PD0
CAN1_RX
FSMC_D2
EVENTOUT
PD1
CAN1_TX
FSMC_D3
EVENTOUT
PD2
TIM3_ETR
UART5_RX
PD3
USART2_CTS
SDIO_CMD
DCMI_D11
EVENTOUT
FSMC_CLK
EVENTOUT
USART2_RTS
FSMC_NOE
EVENTOUT
USART2_TX
FSMC_NWE
EVENTOUT
PD6
USART2_RX
FSMC_NWAIT
EVENTOUT
PD7
USART2_CK
FSMC_NE1/
FSMC_NCE2
EVENTOUT
PD8
USART3_TX
FSMC_D13
EVENTOUT
53/170
PD9
USART3_RX
FSMC_D14
EVENTOUT
PD10
USART3_CK
FSMC_D15
EVENTOUT
PD11
USART3_CTS
FSMC_A16
EVENTOUT
USART3_RTS
FSMC_A17
EVENTOUT
FSMC_A18
EVENTOUT
PD12
TIM4_CH1
PD13
TIM4_CH2
Pinouts and pin description
PD4
PD5
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART1/2/3
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2
SPI3/I2S3
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_HS
DCMI
AF014
PD14
TIM4_CH3
FSMC_D0
PD15
TIM4_CH4
FSMC_D1
PE0
TIM4_ETR
FSMC_NBL0
DCMI_D2
FSMC_BLN1
DCMI_D3
PE1
ETH _MII_TXD3
AF15
EVENTOUT
EVENTOUT
EVENTOUT
EVENTOUT
PE2
TRACECLK
FSMC_A23
EVENTOUT
PE3
TRACED0
FSMC_A19
EVENTOUT
PE4
TRACED1
FSMC_A20
DCMI_D4
EVENTOUT
PE5
TRACED2
TIM9_CH1
FSMC_A21
DCMI_D6
EVENTOUT
PE6
TRACED3
TIM9_CH2
FSMC_A22
DCMI_D7
EVENTOUT
PE7
TIM1_ETR
FSMC_D4
EVENTOUT
PE8
TIM1_CH1N
FSMC_D5
EVENTOUT
Doc ID 15818 Rev 8
PE9
TIM1_CH1
FSMC_D6
EVENTOUT
PE10
TIM1_CH2N
FSMC_D7
EVENTOUT
PE11
TIM1_CH2
FSMC_D8
EVENTOUT
PE12
TIM1_CH3N
FSMC_D9
EVENTOUT
PE13
TIM1_CH3
FSMC_D10
EVENTOUT
PE14
TIM1_CH4
FSMC_D11
EVENTOUT
PE15
TIM1_BKIN
EVENTOUT
I2C2_SDA
FSMC_A0
EVENTOUT
PF1
I2C2_SCL
FSMC_A1
EVENTOUT
PF2
I2C2_SMBA
FSMC_A2
EVENTOUT
PF3
FSMC_A3
EVENTOUT
PF4
FSMC_A4
EVENTOUT
PF5
FSMC_A5
EVENTOUT
PF6
TIM10_CH1
FSMC_NIORD
EVENTOUT
PF7
TIM11_CH1
FSMC_NREG
EVENTOUT
EVENTOUT
PF8
TIM13_CH1
FSMC_NIOWR
PF9
TIM14_CH1
FSMC_CD
EVENTOUT
FSMC_INTR
EVENTOUT
PF11
DCMI_D12
EVENTOUT
PF12
FSMC_A6
EVENTOUT
PF13
FSMC_A7
EVENTOUT
PF14
FSMC_A8
EVENTOUT
STM32F205xx, STM32F207xx
FSMC_D12
PF0
PF10
Pinouts and pin description
54/170
Table 7.
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART1/2/3
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2
SPI3/I2S3
AF9
AF10
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_HS
DCMI
AF014
AF15
PF15
FSMC_A9
EVENTOUT
PG0
FSMC_A10
EVENTOUT
PG1
FSMC_A11
EVENTOUT
PG2
FSMC_A12
EVENTOUT
PG3
FSMC_A13
EVENTOUT
PG4
FSMC_A14
EVENTOUT
PG5
FSMC_A15
EVENTOUT
FSMC_INT2
EVENTOUT
PG6
PG7
USART6_CK
PG8
USART6_RTS
PG9
USART6_RX
FSMC_INT3
EVENTOUT
ETH _PPS_OUT
EVENTOUT
Doc ID 15818 Rev 8
FSMC_NE2/
FSMC_NCE3
FSMC_NCE4_1/
FSMC_NE3
PG10
EVENTOUT
EVENTOUT
ETH _MII_TX_EN
FSMC_NCE4_2
ETH _RMII_TX_EN
PG11
PG12
USART6_RTS
PG13
UART6_CTS
PG14
USART6_TX
PG15
USART6_CTS
ETH _MII_TXD0
ETH _RMII_TXD0
ETH _MII_TXD1
ETH _RMII_TXD1
STM32F205xx, STM32F207xx
Table 7.
EVENTOUT
FSMC_NE4
EVENTOUT
FSMC_A24
EVENTOUT
FSMC_A25
EVENTOUT
DCMI_D13
EVENTOUT
PH0 - OSC_IN
PH1 - OSC_OUT
PH2
PH3
I2C2_SCL
PH5
I2C2_SDA
PH6
I2C2_SMBA
PH7
I2C3_SCL
PH8
I2C3_SDA
PH9
ETH _MII_COL
EVENTOUT
OTG_HS_ULPI_NXT
EVENTOUT
EVENTOUT
TIM12_CH1
ETH _MII_RXD2
EVENTOUT
ETH _MII_RXD3
EVENTOUT
DCMI_HSYNC
DCMI_D0
EVENTOUT
TIM5_CH1TIM5_ETR
DCMI_D1
EVENTOUT
PH11
TIM5_CH2
DCMI_D2
EVENTOUT
PH12
TIM5_CH3
DCMI_D3
55/170
TIM8_CH1N
TIM12_CH2
EVENTOUT
PH10
PH13
I2C3_SMBA
EVENTOUT
CAN1_TX
EVENTOUT
EVENTOUT
Pinouts and pin description
PH4
ETH _MII_CRS
Alternate function mapping (continued)
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
USART1/2/3
UART4/5/
USART6
Port
SYS
TIM1/2
TIM3/4/5
PH14
AF11
AF12
AF13
ETH
FSMC/SDIO/
OTG_HS
DCMI
TIM8_CH3N
SPI2_NSS
I2S2_WS
SPI2_SCK
I2S2_SCK
TIM5_CH4
PI1
PI2
SPI3/I2S3
AF10
TIM8_CH2N
PH15
PI0
TIM8/9/10/11 I2C1/I2C2/I2C3 SPI1/SPI2/I2S2
AF9
CAN1/CAN2/
OTG_FS/ OTG_HS
TIM12/13/14
AF014
AF15
DCMI_D4
EVENTOUT
DCMI_D11
EVENTOUT
DCMI_D13
EVENTOUT
DCMI_D8
EVENTOUT
EVENTOUT
TIM8_CH4
SPI2_MISO
DCMI_D9
PI3
TIM8_ETR
SPI2_MOSI
I2S2_SD
DCMI_D10
EVENTOUT
PI4
TIM8_BKIN
DCMI_D5
EVENTOUT
PI5
TIM8_CH1
DCMI_VSYNC
EVENTOUT
PI6
TIM8_CH2
DCMI_D6
EVENTOUT
PI7
TIM8_CH3
DCMI_D7
EVENTOUT
Pinouts and pin description
56/170
Table 7.
PI8
Doc ID 15818 Rev 8
PI9
CAN1_RX
EVENTOUT
PI10
PI11
ETH _MII_RX_ER
OTG_HS_ULPI_DIR
EVENTOUT
EVENTOUT
STM32F205xx, STM32F207xx
STM32F205xx, STM32F207xx
4
Memory mapping
Memory mapping
The memory map is shown in Figure 15.
Doc ID 15818 Rev 8
57/170
Memory mapping
STM32F205xx, STM32F207xx
Figure 15. Memory map
2ESERVED
&3-#CONTROLREGISTER
X!X!&&&
&3-#BANK0##ARD
XX&&&&&&&
&3-#BANK.!.$.!.$
XX&&&&&&&
&3-#BANK./2032!-
X#X&&&&&&&
&3-#BANK./2032!-
XX"&&&&&&
X%
X$&&&&&&&
-BYTE
BLOCK
.OTUSED
X#
X"&&&&&&&
-BYTE
BLOCK
&3-#REGISTERS
X!
X&&&&&&&
X
X&&&&&&&
X
X&&&&&&&
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
&3-#BANK
BANK
-BYTE
BLOCK
0ERIPHERALS
X
X&&&&&&&
-BYTE
BLOCK
32!X
X&&&&&&&
-BYTE
BLOCK
#ODE
X
58/170
2ESERVED
32!-+"ALIASED
BYBITBANDING
XX&&&&&&&
32!-+"ALIASED
BYBITBANDING
XX"&&&
2ESERVED
/PTION"YTES
2ESERVED
3YSTEMMEMORY
2ESERVED
&LASH
2ESERVED
!LIASEDTO&LASHSYSTEM
MEMORYOR32!-DEPENDING
ONTHE"//4PINS
X#X&&&&
X&&&#X&&&&&&&
X&&&#X&&&#
X&&&!X&&&&&&
X&&&X&&&!&
XX&&&&&&&
XX&&&&&
X#X&&&&&&
XX&&&&&&
&3-#BANK./2032!-
XX&&&&&&
2ESERVED
2.'
XX&&&&&&&
XX&&&
2ESERVED
$#-)
2ESERVED
53"/4'&3
2ESERVED
53"/4'(3
2ESERVED
%4(%2.%4
2ESERVED
$-!
$-!
2ESERVED
"+032!&LASHINTERFACE
2ESETCLOCKCONTROLLER2##
2ESERVED
#2#
2ESERVED
0ORT)
0ORT(
0ORT'
0ORT&
0ORT%
0ORT$
0ORT#
0ORT"
0ORT!
2ESERVED
4)-
4)-
4)-
%84)
393#&'
2ESERVED
30)
-BYTE
BLOCK
#ORTEX-gS
INTERNAL
PERIPHERALS
XX&&&&&&&
&3-#BANK.!.$.!.$
&3-#BANK./2032!-
X&&&&&&&&
X!X"&&&&&&&
3$)/
2ESERVED
2ESERVED
!$#!$#!$#
2ESERVED
53!24
53!24
2ESERVED
4)-07-
4)-07-
2ESERVED
$!#$!#
072
2ESERVED
"X#!.
"X#!.
2ESERVED
)#
)#
)#
5!24
5!24
53!24
53!24
2ESERVED
30))3
30))3
2ESERVED
)7$'
77$'
24#"+0REGISTERS
2ESERVED
4)-
4)-
4)-
4)-
4)-
4)-
4)-
4)-
4)-
XX&&&
XX&&
XX&&&
XX&&&&
XX&&&&&&&
XX&&&&
XX&&&&
XX&&
XX&&&
XX&&
XX&&
XX&&&
XX&&&
X#X&&&
XX"&&
XX&&
XX&&
XX&&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
XX&&&
XX&&
XX&&
XX&&&
XX&&
XX&&
XX&&&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
X#X&&&
XX"&&
XX&&
XX&&
XX&&&&&
Doc ID 15818 Rev 8
AIB
STM32F205xx, STM32F207xx
Electrical characteristics
5
Electrical characteristics
5.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
5.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
5.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.8 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
5.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
5.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
5.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions
Figure 17. Pin input voltage
34-&PIN
#P&
34-&PIN
/3#?/54(I:WHEN
USING(3%OR,3%
-36
Doc ID 15818 Rev 8
6).
/3#?/54(I:WHEN
USING(3%OR,3%
-36
59/170
Electrical characteristics
5.1.6
STM32F205xx, STM32F207xx
Power supply scheme
Figure 18. Power supply scheme
6"!4
6
'0)/S
).
§—&
)/
,OGIC
+ERNELLOGIC
#05
DIGITAL
2!-
6#!0?
6#!0?
6$$
§N&
§—&
,EVELSHIFTER
/54
6$$
"ACKUPCIRCUITRY
/3#+24#
7AKEUPLOGIC
"ACKUPREGISTERS
BACKUP2!-
0OWERSWITCH
6OLTAGE
REGULATOR
633
&LASHMEMORY
2%'/&&
)22/&&
6$$
6$$!
62%&
N&
—&
N&
—&
62%&
62%&
!$#
!NALOG
2#S0,,
633!
AID
1. Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These
capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the
PCB to ensure the good functionality of the device.
2. To connect REGOFF and IRROFF pins, refer to Section 2.2.16: Voltage regulator.
3. The two 2.2 µF ceramic capacitors should not be connected when the voltage regulator is OFF.
4. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
60/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
5.1.7
Electrical characteristics
Current consumption measurement
Figure 19. Current consumption measurement scheme
IDD_VBAT
VBAT
IDD
VDD
VDDA
ai14126
5.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 8: Voltage characteristics,
Table 9: Current characteristics, and Table 10: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 8.
Voltage characteristics
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VDD)(1)
–0.3
4.0
VSS–0.3
VDD+4
VSS–0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
Input voltage on five-volt tolerant
VIN
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
pin(2)
Input voltage on any other pin
Electrostatic discharge voltage (human body model)
Unit
V
mV
see Section 5.3.14:
Absolute maximum
ratings (electrical
sensitivity)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. VIN maximum value must always be respected. Refer to Table 9 for the values of the maximum allowed
injected current.
Doc ID 15818 Rev 8
61/170
Electrical characteristics
Table 9.
STM32F205xx, STM32F207xx
Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power lines (source)(1)
120
IVSS
(1)
120
Total current out of VSS ground lines (sink)
IIO
Output current sunk by any I/O and control pin
25
Output current source by any I/Os and control pin
25
(3)
Injected current on five-volt tolerant I/O
IINJ(PIN) (2)
ΣIINJ(PIN)
Injected current on any other pin
(4)
mA
–5/+0
(4)
Total injected current (sum of all I/O and control pins)
Unit
±5
(5)
±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 5.3.20: 12-bit ADC
characteristics.
3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 8 for the values of the maximum allowed input voltage.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 8 for the values of the maximum allowed input voltage.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 10.
Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Unit
–65 to +150
°C
125
°C
Maximum junction temperature
5.3
Operating conditions
5.3.1
General operating conditions
Table 11.
General operating conditions
Symbol
Value
Parameter
Conditions
Min
Max
fHCLK
Internal AHB clock frequency
0
120
fPCLK1
Internal APB1 clock frequency
0
30
fPCLK2
Internal APB2 clock frequency
0
60
Standard operating voltage
1.8(1)
3.6
Analog operating voltage
(ADC limited to 1 M samples)
1.8(1)
3.6
2.4
3.6
1.65
3.6
VDD
VDDA(2)
VBAT
62/170
Analog operating voltage
(ADC limited to 2 M samples)
Must be the same potential as VDD
Backup operating voltage
Doc ID 15818 Rev 8
(3)
Unit
MHz
V
V
V
STM32F205xx, STM32F207xx
Table 11.
General operating conditions (continued)
Symbol
VCAP1
VCAP2
PD
Electrical characteristics
Parameter
Conditions
Min
Max
Unit
1.1
1.3
V
LQFP64
-
444
WLCSP66
-
392
LQFP100
-
434
LQFP144
-
500
LQFP176
-
526
UFBGA176
-
513
Internal core voltage to be supplied
externally in REGOFF mode
Power dissipation at TA = 85 °C for
suffix 6 or TA = 105 °C for suffix 7(4)
mW
Ambient temperature for 6 suffix
version
Maximum power dissipation
–40
85
Low power dissipation(5)
–40
105
Ambient temperature for 7 suffix
version
Maximum power dissipation
–40
105
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
°C
TA
TJ
Low power dissipation
(5)
°C
Junction temperature range
°C
1. If IRROFF is set to VDD, this value can be lowered to 1.65 V when the device operates in a reduced temperature range.
2. When the ADC is used, refer to Table 63: ADC characteristics.
3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
5. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 12.
Limitations depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
VDD =1.8 to
2.1 V(2)
Conversion
time up to
1 Msps
16 MHz with
no Flash
memory wait
state
VDD = 2.1 to
2.4 V
Conversion
time up to
1 Msps
18 MHz with
no Flash
memory wait
state
Number of wait
states at
maximum CPU
frequency
(fCPUmax=
120 MHz)(1)
FSMC
controller
operation
Possible
Flash
memory
operations
(3)
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
8-bit erase
and program
operations
only
6(3)
– Degraded
speed
performance up to 30 MHz
– No I/O
compensation
16-bit erase
and program
operations
7
I/O operation
Doc ID 15818 Rev 8
63/170
Electrical characteristics
Table 12.
Operating
power
supply
range
VDD = 2.4 to
2.7 V
VDD = 2.7 to
3.6 V(4)
STM32F205xx, STM32F207xx
Limitations depending on the operating power supply range
ADC
operation
Maximum
Flash
memory
access
frequency
(fFlashmax)
Conversion
time up to
2 Msps
24 MHz with
no Flash
memory wait
state
Conversion
time up to
2 Msps
30 MHz with
no Flash
memory wait
state
Number of wait
states at
maximum CPU
frequency
(fCPUmax=
120 MHz)(1)
FSMC
controller
operation
Possible
Flash
memory
operations
4(3)
– Degraded
speed
performance
up to 48 MHz
– I/O
compensation
works
16-bit erase
and program
operations
3(3)
– up to
60 MHz
– Full-speed
when VDD =
operation
3.0 to 3.6 V
– I/O
– up to
compensation
48 MHz
works
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
I/O operation
1. The number of wait states can be reduced by reducing the CPU frequency (see Figure 20).
2. If IRROFF is set to VDD, this value can be lowered to 1.65 V when the device operates in a reduced temperature range.
3. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
4. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.
64/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 20. Number of wait states versus fCPU and VDD range
Wait states vs Fcpu and VDD range
8
7
Number of Wait states
6
5
1.8 to 2.1V
2.1 to 2.4V
4
2.4 to 2.7V
2.7 to 3.6V
3
2
1
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
0
Fcpu (MHz)
AIB
1. The supply voltage can drop to 1.65 V when the device operates in a reduced temperature range.
5.3.2
VCAP1/VCAP2 external capacitor
Stabilization for the main regulator is achieved by connecting an external capacitor to the
VCAP1/VCAP2 pins. CEXT is specified in Table 13.
Figure 21. External capacitor CEXT
C
ESR
R Leak
MS19044V1
1. Legend: ESR is the equivalent series resistance.
Table 13.
VCAP1/VCAP2 operating conditions
Symbol
Parameter
Conditions
CEXT
Capacitance of external capacitor
2.2 µF
ESR
ESR of external capacitor
<2Ω
Doc ID 15818 Rev 8
65/170
Electrical characteristics
5.3.3
STM32F205xx, STM32F207xx
Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
Table 14.
Symbol
tVDD
5.3.4
Operating conditions at power-up / power-down (regulator ON)
Parameter
Min
Max
VDD rise time rate
20
∞
VDD fall time rate
20
∞
Unit
µs/V
Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 15.
Symbol
tVDD
tVCAP
66/170
Operating conditions at power-up / power-down (regulator OFF)
Parameter
Conditions
Min
Max
VDD rise time rate
Power-up
20
∞
VDD fall time rate
Power-down
20
∞
VCAP_1 and VCAP_2 rise
time rate
Power-up
20
∞
VCAP_1 and VCAP_2 fall
time rate
Power-down
20
∞
Doc ID 15818 Rev 8
Unit
µs/V
STM32F205xx, STM32F207xx
5.3.5
Electrical characteristics
Embedded reset and power control block characteristics
The parameters given in Table 16 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 11.
Table 16.
Symbol
VPVD
Embedded reset and power control block characteristics
Parameter
Programmable voltage
detector level selection
VPVDhyst(2)
PVD hysteresis
VPOR/PDR
Power-on/power-down
reset threshold
VPDRhyst(2)
PDR hysteresis
Conditions
Min
Typ
Max
Unit
PLS[2:0]=000 (rising
edge)
2.09
2.14
2.19
V
PLS[2:0]=000 (falling
edge)
1.98
2.04
2.08
V
PLS[2:0]=001 (rising
edge)
2.23
2.30
2.37
V
PLS[2:0]=001 (falling
edge)
2.13
2.19
2.25
V
PLS[2:0]=010 (rising
edge)
2.39
2.45
2.51
V
PLS[2:0]=010 (falling
edge)
2.29
2.35
2.39
V
PLS[2:0]=011 (rising
edge)
2.54
2.60
2.65
V
PLS[2:0]=011 (falling
edge)
2.44
2.51
2.56
V
PLS[2:0]=100 (rising
edge)
2.70
2.76
2.82
V
PLS[2:0]=100 (falling
edge)
2.59
2.66
2.71
V
PLS[2:0]=101 (rising
edge)
2.86
2.93
2.99
V
PLS[2:0]=101 (falling
edge)
2.65
2.84
3.02
V
PLS[2:0]=110 (rising
edge)
2.96
3.03
3.10
V
PLS[2:0]=110 (falling
edge)
2.85
2.93
2.99
V
PLS[2:0]=111 (rising
edge)
3.07
3.14
3.21
V
PLS[2:0]=111 (falling
edge)
2.95
3.03
3.09
V
-
100
-
mV
Falling edge
TBD(1)
1.70
TBD
V
Rising edge
TBD
1.74
TBD
V
-
40
-
mV
Doc ID 15818 Rev 8
67/170
Electrical characteristics
Table 16.
STM32F205xx, STM32F207xx
Embedded reset and power control block characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Brownout level 1
threshold
Falling edge
2.13
2.19
2.24
V
VBOR1
Rising edge
2.23
2.29
2.33
V
Brownout level 2
threshold
Falling edge
2.44
2.50
2.56
V
VBOR2
Rising edge
2.53
2.59
2.63
V
Brownout level 3
threshold
Falling edge
2.75
2.83
2.88
V
VBOR3
Rising edge
2.85
2.92
2.97
-
100
-
mV
0.5
1.5
3.0
ms
-
160
200
mA
-
-
5.4
µC
VBORhyst(2)
TRSTTEMPO
(2)(3)
BOR hysteresis
Reset temporization
IRUSH(2)
InRush current on
voltage regulator
power-on (POR or
wakeup from Standby)
(2)
InRush energy on
voltage regulator
power-on (POR or
wakeup from Standby)
ERUSH
VDD = 1.8 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design, not tested in production.
3. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
5.3.6
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All Run mode current consumption measurements given in this section are performed using
CoreMark code.
68/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Typical and maximum current consumption
The MCU is placed under the following conditions:
Table 17.
●
At startup, all I/O pins are configured as analog inputs by firmware.
●
All peripherals are disabled except if it is explicitly mentioned.
●
The Flash memory access time is adjusted to fHCLK frequency (0 wait state from 0 to
30 MHz, 1 wait state from 30 to 60 MHz, 2 wait states from 60 to 90 MHz and 3 wait
states from 90 to 120 MHz).
●
When the peripherals are enabled HCLK is the system clock, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2, except is explicitly mentioned.
●
The maximum values are obtained for VDD = 3.6 V and maximum ambient temperature
(TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless otherwise specified.
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Max(1)
Typ
Symbol
Parameter
Conditions
fHCLK
120 MHz
61
81
93
90 MHz
48
68
80
60 MHz
33
53
65
30 MHz
18
38
50
25 MHz
14
34
46
10
30
42
8 MHz
6
26
38
4 MHz
4
24
36
2 MHz
3
23
35
120 MHz
33
54
66
90 MHz
27
47
59
60 MHz
19
39
51
30 MHz
11
31
43
25 MHz
8
28
41
6
26
38
8 MHz
4
24
36
4 MHz
3
23
35
2 MHz
2
23
34
External clock(2), all
peripherals enabled(3)
16
IDD
Supply current
in Run mode
Unit
TA = 25 °C TA = 85 °C TA = 105 °C
External clock(3), all
peripherals disabled
16
MHz(4)
MHz(4)
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
4. In this case HCLK = system clock/2.
Doc ID 15818 Rev 8
69/170
Electrical characteristics
Table 18.
STM32F205xx, STM32F207xx
Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled) or RAM (1)
Max(2)
Typ
Symbol
Parameter
Conditions
External clock(3), all
peripherals enabled(4)
fHCLK
TA =
25 °C
TA =
85 °C
TA =
105 °C
120 MHz
49
63
72
90 MHz
38
51
61
60 MHz
26
39
49
30 MHz
14
27
37
25 MHz
11
24
34
8
21
30
8 MHz
5
17
27
4 MHz
3
16
26
2 MHz
2
15
25
120 MHz
21
34
44
90 MHz
17
30
40
60 MHz
12
25
35
30 MHz
7
20
30
25 MHz
5
18
28
4.0
17.0
27.0
8 MHz
2.5
15.5
25.5
4 MHz
2.0
14.7
24.8
2 MHz
1.6
14.5
24.6
16
IDD
Supply current in
Run mode
External clock(3), all
peripherals disabled
16
MHz(5)
MHz(5)
Unit
mA
1. Code and data processing running from SRAM1 using boot pins.
2. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
3. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
4. When the ADC is on (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
5. In this case HCLK = system clock/2.
70/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 22. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals ON
#
)$$25. M!
#
#
#
#
#
#
#05FREQUNECY-(Z
-36
Figure 23. Typical current consumption vs temperature, Run mode, code with data
processing running from RAM, and peripherals OFF
)$$25. M!
#
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Doc ID 15818 Rev 8
71/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 24. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals ON
)$$25. M!
#
#
#05FREQUNECY-(Z
-36
Figure 25. Typical current consumption vs temperature, Run mode, code with data
processing running from Flash, ART accelerator OFF, peripherals OFF
)
$$25. M!
#
#
#05&REQUENCY-(Z
-36
72/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 19.
Electrical characteristics
Typical and maximum current consumption in Sleep mode
Max(1)
Typ
Symbol
Parameter
Conditions
External clock(2),
all peripherals enabled(3)
IDD
Supply current in
Sleep mode
External clock(2), all
peripherals disabled
fHCLK
TA = 25 °C TA = 85 °C
TA =
105 °C
120 MHz
38
51
61
90 MHz
30
43
53
60 MHz
20
33
43
30 MHz
11
25
35
25 MHz
8
21
31
16 MHz
6
19
29
8 MHz
3.6
17.0
27.0
4 MHz
2.4
15.4
25.3
2 MHz
1.9
14.9
24.7
120 MHz
8
21
31
90 MHz
7
20
30
60 MHz
5
18
28
30 MHz
3.5
16.0
26.0
25 MHz
2.5
16.0
25.0
16 MHz
2.1
15.1
25.0
8 MHz
1.7
15.0
25.0
4 MHz
1.5
14.6
24.6
2 MHz
1.4
14.2
24.3
Unit
mA
1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled.
2. External clock is 4 MHz and PLL is on when fHCLK > 25 MHz.
3. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is on (ADON bit is set in the ADC_CR2 register).
Doc ID 15818 Rev 8
73/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 26. Typical current consumption vs temperature in Sleep mode,
peripherals ON
)$$3,%%0M!
#
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
Figure 27. Typical current consumption vs temperature in Sleep mode,
peripherals OFF
)$$3,%%0M!
#
#
#
#
#
#
#
#05&REQUENCY-(Z
-36
74/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 20.
Electrical characteristics
Typical and maximum current consumptions in Stop mode(1)
Typ
Symbol
Parameter
Conditions
Supply current
in Stop mode
with main
regulator in
Run mode
IDD_STOP
Max
TA =
25 °C
TA =
25 °C
TA =
85 °C
Unit
TA =
105 °C
Flash in Stop mode, low-speed and high-speed
internal RC oscillators and high-speed oscillator
OFF (no independent watchdog)
0.55
1.2
11.00
20.00
Flash in Deep power down mode, low-speed
and high-speed internal RC oscillators and
high-speed oscillator OFF (no independent
watchdog)
0.50
1.2
11.00
20.00
mA
Flash in Stop mode, low-speed and high-speed
Supply current internal RC oscillators and high-speed oscillator
in Stop mode OFF (no independent watchdog)
with main
Flash in Deep power down mode, low-speed
regulator in
and high-speed internal RC oscillators and
Low Power
high-speed oscillator OFF (no independent
mode
watchdog)
0.35
1.1
8.00
15.00
0.30
1.1
8.00
15.00
1. All typical and maximum values will be further reduced by up to 50% as part of ST continuous improvement of test
procedures. New versions of the datasheet will be released to reflect these changes.
Figure 28. Typical current consumption vs temperature in Stop mode
)DD?STOP?MR?FLHSTOP
)DD?STOP?MR?FLHDEEP
)DD?STOP?LP?FLHSTOP
)
$$34/0
M!
)DD?STOP?LP?FLHDEEP
4EMPERATURE #
-36
1. All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes
Doc ID 15818 Rev 8
75/170
Electrical characteristics
Table 21.
Symbol
STM32F205xx, STM32F207xx
Typical and maximum current consumptions in Standby mode
Parameter
Conditions
Backup SRAM ON, RTC ON
Supply current Backup SRAM OFF, RTC ON
IDD_STBY in Standby
Backup SRAM ON, RTC OFF
mode
Backup SRAM OFF, RTC OFF
Typ
Max
TA = 25 °C
TA = 85 °C TA = 105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V
4.8
5.2
5.8
15.1(1)
25.8(1)
4.2
4.5
5.1
12.4(1)
20.5(1)
2.3
2.5
3.2
12.5(1)
24.8(1)
1.6
1.8
2.5
9.8(1)
19.2(1)
Unit
VDD = 3.6 V
µA
1. Based on characterization, not tested in production.
Table 22.
Typical and maximum current consumptions in VBAT mode
Typ
Symbol
Parameter
Max
TA = 25 °C
Conditions
Backup SRAM ON, RTC ON
Backup SRAM OFF, low-speed
Backup
IDD_VBAT domain supply oscillator and RTC ON
current
Backup SRAM ON, RTC OFF
Backup SRAM OFF, RTC OFF
TA = 85 °C
TA =
105 °C
VDD =
1.8 V
VDD=
2.4 V
VDD =
3.3 V
3.2
3.4
3.7
12(1)
19(1)
2.6
2.7
3.0
8(1)
10(1)
0.7
0.7
0.8
9(1)
16(1)
0.1
0.1
0.1
5(1)
7(1)
Unit
VDD = 3.6 V
µA
1. Based on characterization, not tested in production.
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 23. The MCU is placed
under the following conditions:
76/170
●
At startup, all I/O pins are configured as analog inputs by firmware.
●
All peripherals are disabled unless otherwise mentioned
●
The given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with one peripheral clocked on (with only the clock applied)
●
The code is running from Flash memory and the Flash memory access time is equal to
3 wait states at 120 MHz
●
Prefetch and Cache ON
●
When the peripherals are enabled, HCLK = 120MHz, fPCLK1 = fHCLK/4, and
fPCLK2 = fHCLK/2
●
The typical values are obtained for VDD = 3.3 V and TA= 25 °C, unless otherwise
specified.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 23.
Electrical characteristics
Peripheral current consumption
Peripheral(1)
AHB1
Typical consumption at 25 °C
GPIO A
0.45
GPIO B
0.43
GPIO C
0.46
GPIO D
0.44
GPIO E
0.44
GPIO F
0.42
GPIO G
0.44
GPIO H
0.42
GPIO I
0.43
OTG_HS + ULPI
3.64
CRC
1.17
BKPSRAM
0.21
DMA1
2.76
DMA2
2.85
ETH_MAC +
ETH_MAC_TX
ETH_MAC_RX
ETH_MAC_PTP
2.99
OTG_FS
3.16
DCMI
0.60
FSMC
1.74
Unit
mA
AHB2
AHB3
Doc ID 15818 Rev 8
77/170
Electrical characteristics
Table 23.
STM32F205xx, STM32F207xx
Peripheral current consumption (continued)
Peripheral(1)
Typical consumption at 25 °C
TIM2
0.61
TIM3
0.49
TIM4
0.54
TIM5
0.62
TIM6
0.20
TIM7
0.20
TIM12
0.36
TIM13
0.28
TIM14
0.25
USART2
0.25
USART3
0.25
UART4
0.25
UART5
0.26
I2C1
0.25
I2C2
0.25
I2C3
0.25
SPI2
0.20/0.10
SPI3
0.18/0.09
CAN1
0.31
APB1
mA
CAN2
78/170
Unit
0.30
(2)
DAC channel 1
1.11
DAC channel 1(3)
1.11
PWR
0.15
WWDG
0.15
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 23.
Electrical characteristics
Peripheral current consumption (continued)
Peripheral(1)
Typical consumption at 25 °C
SDIO
0.69
TIM1
1.06
TIM8
1.03
TIM9
0.58
TIM10
0.37
TIM11
0.39
APB2
mA
(4)
2.13
ADC2(4)
2.04
(4)
2.12
ADC1
ADC3
Unit
SPI1
1.20
USART1
0.38
USART6
0.37
1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.
2. EN1 bit is set in DAC_CR register.
3. EN2 bit is set in DAC_CR register.
4. fADC = fPCLK2/2, ADON bit set in ADC_CR2 register.
5.3.7
Wakeup time from low-power mode
The wakeup times given in Table 24 is measured on a wakeup phase with a 16 MHz HSI RC
oscillator. The clock source used to wake up the device depends from the current operating
mode:
●
Stop or Standby mode: the clock source is the RC oscillator
●
Sleep mode: the clock source is the clock that was set before entering Sleep mode.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 11.
Table 24.
Low-power mode wakeup timings
Symbol
tWUSLEEP(2)
tWUSTOP(2)
tWUSTDBY(2)(3)
Min(1)
Typ(1)
Max(1)
Unit
Wakeup from Sleep mode
-
1
-
µs
Wakeup from Stop mode (regulator in Run mode)
-
13
-
Wakeup from Stop mode (regulator in low power mode)
-
17
40
Wakeup from Stop mode (regulator in low power mode
and Flash memory in Deep power down mode)
-
110
-
260
375
480
Parameter
Wakeup from Standby mode
µs
µs
1. Based on characterization, not tested in production.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY minimum and maximum values are given at 105 °C and –45 °C, respectively.
Doc ID 15818 Rev 8
79/170
Electrical characteristics
5.3.8
STM32F205xx, STM32F207xx
External clock source characteristics
High-speed external user clock generated from an external source
The characteristics given in Table 25 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 11.
Table 25.
High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
8
26
MHz
fHSE_ext
External user clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
5
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1)
-
-
20
OSC_IN input capacitance(1)
-
5
-
pF
45
-
55
%
-
-
±1
µA
Cin(HSE)
ns
DuCy(HSE) Duty cycle
IL
V
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production.
Low-speed external user clock generated from an external source
The characteristics given in Table 26 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 11.
Table 26.
Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
VSS
-
0.3VDD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1)
450
-
-
V
tr(LSE)
tf(LSE)
Cin(LSE)
ns
OSC32_IN rise or fall
time(1)
OSC32_IN input capacitance(1)
DuCy(LSE) Duty cycle
IL
OSC32_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production.
80/170
Doc ID 15818 Rev 8
-
-
50
-
5
-
pF
30
-
70
%
-
-
±1
µA
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 29. High-speed external clock source AC timing diagram
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
t
tW(HSE)
tW(HSE)
THSE
External
clock source
fHSE_ext
OSC _IN
IL
STM32F
ai17528
Figure 30. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE)
t
TLSE
External
clock source
fLSE_ext
STM32F
ai17529
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 27. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Doc ID 15818 Rev 8
81/170
Electrical characteristics
Table 27.
Symbol
STM32F205xx, STM32F207xx
HSE 4-26 MHz oscillator characteristics(1) (2)
Min
Typ
Max
Unit
Oscillator frequency
4
-
26
MHz
RF
Feedback resistor
-
200
-
kΩ
C
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 Ω
-
15
-
pF
i2
HSE driving current
VDD = 3.3 V, VIN = VSS
with 30 pF load
-
-
1
mA
gm
Oscillator transconductance
Startup
5
-
-
mA/V
VDD is stabilized
-
2
-
ms
fOSC_IN
tSU(HSE(4)
Parameter
Conditions
Startup time
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 31). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Figure 31. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
fHSE
OSC_IN
8 MH z
resonator
CL2
REXT(1)
RF
OSC_OU T
Bias
controlled
gain
STM32F
ai17530
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 28. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
82/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 28.
Electrical characteristics
LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
Symbol
Parameter
Conditions
RF
Feedback resistor
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
I2
LSE driving current
gm
Oscillator Transconductance
tSU(LSE)(4)
Min
Typ
Max
Unit
-
18.4
-
MΩ
RS = 30 kΩ
-
-
15
pF
VDD = 3.3 V, VIN = VSS
-
-
3.5
µA
7
-
-
µA/V
-
2
-
s
startup time
VDD is stabilized
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer
Note:
For CL1 and CL2 it is recommended to use high-quality external ceramic capacitors in the
5 pF to 15 pF range selected to match the requirements of the crystal or resonator (see
Figure 32). CL1 and CL2, are usually the same size. The crystal manufacturer typically
specifies a load capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 32. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 kH z
resonator
CL2
RF
Bias
controlled
gain
OSC32_OU T
STM32F
ai17531
Doc ID 15818 Rev 8
83/170
Electrical characteristics
5.3.9
STM32F205xx, STM32F207xx
Internal clock source characteristics
The parameters given in Table 29 and Table 30 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 11.
High-speed internal (HSI) RC oscillator
Table 29.
HSI oscillator characteristics (1)
Symbol
fHSI
Parameter
Conditions
Min
Typ
Max
Unit
-
16
-
MHz
-
-
1
%
TA = –40 to 105 °C
–8
-
4.5
%
TA = –10 to 85 °C
–4
-
4
%
TA = 25 °C
–1
-
1
%
HSI oscillator
startup time
-
2.2
4
µs
HSI oscillator
power consumption
-
60
80
µA
Frequency
User-trimmed with the RCC_CR
register(2)
ACCHSI
tsu(HSI)(3)
IDD(HSI)
Accuracy of the HSI
oscillator
Factorycalibrated
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Refer to application note AN2868 “STM32F10xxx internal RC oscillator (HSI) calibration” available from the
ST website www.st.com.
3. Guaranteed by design, not tested in production.
Figure 33. ACCHSI versus temperature
max
avg
6
min
4
Normalized deviation (%)
2
0
-2
-4
-6
-8
-45
-35
-25
-15
-5
5
15
25
35
45
55
65
75
85
95
105 115 125
Temperature (°C)
-36
84/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Low-speed internal (LSI) RC oscillator
LSI oscillator characteristics (1)
Table 30.
Symbol
Parameter
fLSI(2)
tsu(LSI)
Min
Typ
Max
Unit
17
32
47
kHz
LSI oscillator startup time
-
15
40
µs
LSI oscillator power consumption
-
0.4
0.6
µA
Frequency
(3)
IDD(LSI)(3)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
2. Based on characterization, not tested in production.
3. Guaranteed by design, not tested in production.
Figure 34. ACCLSI versus temperature
MAX
AVG
MIN
.ORMALIZEDDEVIATI ON
4EMPERAT URE #
-36
5.3.10
PLL characteristics
The parameters given in Table 31 and Table 32 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 11.
Table 31.
Symbol
Main PLL characteristics
Parameter
fPLL_IN
PLL input clock(1)
fPLL_OUT
PLL multiplier output clock
fPLL48_OUT
48 MHz PLL multiplier output
clock
fVCO_OUT
PLL VCO output
Conditions
Min
Typ
Max
Unit
(2)
1
2.10(2)
MHz
24
-
120
MHz
-
-
48
MHz
192
-
432
MHz
0.95
Doc ID 15818 Rev 8
85/170
Electrical characteristics
Table 31.
Symbol
STM32F205xx, STM32F207xx
Main PLL characteristics (continued)
Min
Typ
Max
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
RMS
-
25
-
peak
to
peak
-
±150
-
RMS
-
15
-
peak
to
peak
-
±200
-
Main clock output (MCO) for
RMII Ethernet
Cycle to cycle at 50 MHz
on 1000 samples
-
32
-
Main clock output (MCO) for MII
Ethernet
Cycle to cycle at 25 MHz
on 1000 samples
-
40
-
Bit Time CAN jitter
Cycle to cycle at 1 MHz
on 1000 samples
-
330
-
IDD(PLL)(4)
PLL power consumption on VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45
-
0.40
0.75
mA
IDDA(PLL)(4)
PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
-
0.40
0.85
mA
tLOCK
Parameter
Conditions
PLL lock time
Unit
µs
Cycle-to-cycle jitter
System clock
120 MHz
Period Jitter
Jitter(3)
ps
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M
factor is shared between PLL and PLLI2S.
2. Guaranteed by design, not tested in production.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Based on characterization, not tested in production.
Table 32.
Symbol
PLLI2S (audio PLL) characteristics(1)
Parameter
fPLLI2S_IN
PLLI2S input clock(2)
fPLLI2S_OUT
PLLI2S multiplier output clock
fVCO_OUT
PLLI2S VCO output
tLOCK
PLLI2S lock time
86/170
Conditions
Min
Typ
Max
Unit
0.95(3)
1
2.10(3)
MHz
-
-
216
MHz
192
-
432
MHz
VCO freq = 192 MHz
75
-
200
VCO freq = 432 MHz
100
-
300
µs
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 32.
Electrical characteristics
PLLI2S (audio PLL) characteristics(1) (continued)
Symbol
Parameter
Conditions
Cycle to cycle at
12,343 MHz on
48KHz period,
N=432, P=4, R=5
Master I2S clock jitter
Min
Typ
Max
RMS
-
90
-
peak
to
peak
-
±280
-
ps
TBD
-
TBD
ps
-
400
-
ps
0.15
0.45
-
0.40
0.75
mA
-
0.40
0.85
mA
Average frequency of
12,343 MHz
N=432, P=4, R=5
on 256 samples
Jitter(4)
WS I2S clock jitter
Cycle to cycle at 48 KHz
on 1000 samples
IDD(PLLI2S)(5)
PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
IDDA(PLLI2S)(5)
PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55
Unit
1. TBD stands for “to be defined”.
2. Take care of using the appropriate division factor M to have the specified PLL input clock values.
3. Guaranteed by design, not tested in production.
4. Value given with main PLL running.
5. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
87/170
Electrical characteristics
5.3.11
STM32F205xx, STM32F207xx
PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 39: EMI characteristics). It is available only on the main PLL.
Table 33.
SSCG parameters constraint
Symbol
Parameter
Min
Typ
Max(1)
Unit
fMod
Modulation frequency
-
-
10
KHz
md
Peak modulation depth
0.25
-
2
%
-
215
-
MODEPER * INCSTEP
-
−1
1. Guaranteed by design, not tested in production.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER = round [ f PLL_IN ⁄ ( 4 × fMod ) ]
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz and fMOD = 1 kHz, the modulation depth (MODEPER) is given by equation
1:
6
3
MODEPER = round [ 10 ⁄ ( 4 × 10 ) ] = 25
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP = round [ ( ( 2
15
– 1 ) × md × f VCO_OUT ) ⁄ ( 100 × 5 × MODEPER ) ]
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and fVCO_OUT = 240 (in MHz):
INCSTEP = round [ ( ( 2
15
– 1 ) × 2 × 240 ) ⁄ ( 100 × 5 × 25 ) ] = 1258md(quantitazed)%
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
md quantized % = ( MODEPER × INCSTEP × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × f VCO_OUT )
As a result:
md quantized % = ( 25 × 1258 × 100 × 5 ) ⁄ ( ( 2
15
– 1 ) × 240 ) = 1.99954%(peak)
The error in modulation depth is consequently: 2.0 - 1.99954 = 0.00046%.
88/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 35 and Figure 36 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 35. PLL output clock waveforms in center spread mode
&REQUENCY0,,?/54
MD
&
MD
TMODE
4IME
TMODE
AI
Figure 36. PLL output clock waveforms in down spread mode
&REQUENCY0,,?/54
&
MD
TMODE
4IME
TMODE
AI
5.3.12
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 34.
Symbol
IDD
Flash memory characteristics(1)
Parameter
Supply current
Conditions
Min
Max
Unit
Read mode
fHCLK = 120 MHz with 3 wait states,
VDD = 3.3 V
-
100
mA
Write / Erase modes
fHCLK = 120 MHz, VDD = 3.3 V
-
TBD
mA
1. TBD stands for “to be defined”.
Doc ID 15818 Rev 8
89/170
Electrical characteristics
Table 35.
Symbol
tprog
STM32F205xx, STM32F207xx
Flash memory programming(1)
Word programming time
tERASE16KB Sector (16 KB) erase time
tERASE64KB Sector (64 KB) erase time
tERASE128KB Sector (128 KB) erase time
tME
Vprog
Conditions
Min(2)
Typ
Max(2) Unit
Program/erase parallelism
(PSIZE) = x 8/16/32
-
16
100(3)
Program/erase parallelism
(PSIZE) = x 8
-
400
800
Program/erase parallelism
(PSIZE) = x 16
-
300
600
Program/erase parallelism
(PSIZE) = x 32
-
250
500
Program/erase parallelism
(PSIZE) = x 8
-
1200
2400
Program/erase parallelism
(PSIZE) = x 16
-
700
1400
Program/erase parallelism
(PSIZE) = x 32
-
550
1100
Program/erase parallelism
(PSIZE) = x 8
-
2
4
Program/erase parallelism
(PSIZE) = x 16
-
1.3
2.6
Program/erase parallelism
(PSIZE) = x 32
-
1
2
Program/erase parallelism
(PSIZE) = x 8
-
16
TBD
Program/erase parallelism
(PSIZE) = x 16
-
11
TBD
Program/erase parallelism
(PSIZE) = x 32
-
8
TBD
32-bit program operation
2.7
-
3.6
V
16-bit program operation
2.1
-
3.6
V
8-bit program operation
1.8
-
3.6
V
Parameter
Mass erase time
Programming voltage
1. TBD stands for “to be defined”.
2. Based on characterization, not tested in production.
3. The maximum programming time is measured after 100K erase operations.
90/170
Doc ID 15818 Rev 8
µs
ms
ms
s
s
STM32F205xx, STM32F207xx
Electrical characteristics
Flash memory programming with VPP(1)
Table 36.
Min(2)
Typ
Max(2)
Double word programming
-
16
100(3)
tERASE16KB
Sector (16 KB) erase time
-
TBD
-
tERASE64KB
Sector (64 KB) erase time
-
TBD
-
-
TBD
-
-
6.8
-
2.7
-
3.6
V
Symbol
Parameter
tprog
Conditions
tERASE128KB Sector (128 KB) erase time
tME
Mass erase time
TA = 0 to +40 °C
Unit
µs
Vprog
Programming voltage
VPP
VPP voltage range
7
-
9
V
IPP
Minimum current sunk on
the VPP pin
10
-
-
mA
-
-
1
hour
tVPP(4)
Cumulative time during
which VPP is applied
1. TBD stands for “to be defined”.
2. Guaranteed by design, not tested in production.
3. The maximum programming time is measured after 100K erase operations.
4. VPP should only be connected during programming/erasing.
Table 37.
Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
Min(1)
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
1 kcycle(2) at TA = 105 °C
10
10 kcycles
(2)
at TA = 55 °C
Unit
kcycles
Years
20
1. Based on characterization, not tested in production.
2. Cycling performed over the whole temperature range.
5.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
●
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
●
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
Doc ID 15818 Rev 8
91/170
Electrical characteristics
STM32F205xx, STM32F207xx
A device reset allows normal operations to be resumed.
The test results are given in Table 38. They are based on the EMS levels and classes
defined in application note AN1709.
Table 38.
EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 75 MHz, conforms to
induce a functional disturbance
IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 75 MHz, conforms to
IEC 61000-4-2
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC® code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
92/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 39.
Symbol
Electrical characteristics
EMI characteristics
Parameter
Max vs.
[fHSE/fCPU]
Monitored
frequency band
Conditions
Unit
8/120 MHz
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled
SEMI
5.3.14
0.1 to 30 MHz
21
30 to 130 MHz
28
130 MHz to 1GHz
31
SAE EMI Level
4
0.1 to 30 MHz
21
30 to 130 MHz
15
130 MHz to 1GHz
14
SAE EMI level
3.5
dBµV
-
Peak level
VDD = 3.3 V, TA = 25 °C, LQFP176
package, conforming to SAE J1752/3
EEMBC, code running with ART
enabled, PLL spread spectrum
enabled
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 40.
ESD absolute maximum ratings
Symbol
Conditions
Class
Maximum
value(1)
TA = +25 °C conforming to JESD22-A114
2
2000(2)
Ratings
VESD(HBM)
Electrostatic discharge
voltage (human body
model)
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
Unit
V
TA = +25 °C conforming to JESD22-C101
II
500
1. Based on characterization results, not tested in production.
2. On VBAT pin, VESD(HBM) is limited to 1000 V.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
●
A supply overvoltage is applied to each power supply pin
●
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Doc ID 15818 Rev 8
93/170
Electrical characteristics
Table 41.
Electrical sensitivities
Symbol
LU
5.3.15
STM32F205xx, STM32F207xx
Parameter
Static latch-up class
Conditions
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of spec current injection on adjacent pins or other functional failure (for
example reset, oscillator frequency deviation).
The test results are given in Table 42.
Table 42.
I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
94/170
Description
Negative
injection
Positive
injection
Injected current on all FT pins
–5
+0
Injected current on any other pin
–5
+5
Unit
mA
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
5.3.16
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under the conditions summarized in Table 11. All I/Os are CMOS and TTL
compliant.
Table 43.
I/O static characteristics
Symbol
VIL
VIH(1)
VIL
Parameter
Conditions
Typ
Max
VSS–0.3
-
0.8
2.0
-
VDD+0.3
2.0
-
5.5
VSS–0.3
-
0.3VDD
-
3.6(4)
-
5.2(4)
-
5.5(4)
-
200
-
5% VDD(4)
-
-
VSS ≤ VIN ≤ VDD
-
-
±1
VIN = 5 V
-
-
3
30
40
50
8
11
15
Input low level voltage
TTL ports
2.7 V ≤ VDD ≤ 3.6 V
TT(2) I/O input high level voltage
(3)
FT
I/O input high level voltage
Input low level voltage
CMOS ports
1.8 V ≤ VDD ≤ 3.6 V
TT I/O input high level voltage
VIH(1)
Min
0.7VDD
FT I/O input high level voltage
CMOS ports
2.0 V ≤ VDD ≤ 3.6 V
I/O Schmitt trigger voltage hysteresis(5)
Vhys
IO FT Schmitt trigger voltage
hysteresis(5)
I/O input leakage current (6)
Ilkg
RPU
I/O FT input leakage current
Weak pull-up equivalent
resistor(7)
(6)
All pins
except for
PA10 and
PB12
Unit
V
mV
µA
VIN = VSS
PA10 and
PB12
kΩ
RPD
Weak pull-down
equivalent resistor
All pins
except for
PA10 and
PB12
PA10 and
PB12
CIO(8)
30
40
50
8
11
15
VIN = VDD
I/O pin capacitance
5
pF
1. If VIH maximum value cannot be respected, the injection current must be limited externally to IINJ(PIN) maximum value.
2. TT = 3.6 V tolerant.
3. FT = 5 V tolerant.
4. With a minimum of 100 mV.
5. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
6. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
8. Guaranteed by design, not tested in production.
Doc ID 15818 Rev 8
95/170
Electrical characteristics
STM32F205xx, STM32F207xx
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters.
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source ±20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 5.2:
●
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 9).
●
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 9).
Output voltage levels
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 11. All I/Os are CMOS and TTL compliant.
Table 44.
Symbol
VOL(2)
VOH
(3)
VOL (2)
VOH
(3)
Output voltage characteristics(1)
Parameter
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(2)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(3)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(2)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(3)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
Conditions
Min
Max
TTL port
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
CMOS port
IIO =+ 8mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
Unit
V
VDD–0.4
-
-
0.4
V
2.4
-
-
1.3
V
VDD–1.3
-
-
0.4
V
VDD–0.4
-
1. PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited
amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed
should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current
source (e.g. to drive an LED).
2. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 9
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 9 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data, not tested in production.
96/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 37 and
Table 45, respectively.
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 11.
Table 45.
OSPEEDRy
[1:0] bit
value(1)
I/O AC characteristics(1)(2)
Symbol
Parameter
Conditions
fmax(IO)out Maximum frequency(3)
00
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
fmax(IO)out Maximum frequency(3)
01
Min
Typ
Max
CL = 50 pF, VDD > 2.70 V
-
-
2
CL = 50 pF, VDD > 1.8 V
-
-
2
CL = 10 pF, VDD > 2.70 V
-
-
TBD
CL = 10 pF, VDD > 1.8 V
-
-
TBD
-
-
TBD
MHz
CL = 50 pF, VDD = 1.8 V to
3.6 V
ns
-
-
TBD
CL = 50 pF, VDD > 2.70 V
-
-
25
CL = 50 pF, VDD > 1.8 V
-
-
12.5(4)
CL = 10 pF, VDD > 2.70 V
-
-
50(4)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
Output high to low level fall
time
CL = 50 pF, VDD < 2.7 V
-
-
TBD
tf(IO)out
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 50 pF, VDD < 2.7 V
-
-
TBD
tr(IO)out
Output low to high level rise
time
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 40 pF, VDD > 2.70 V
-
-
50(4)
CL = 40 pF, VDD > 1.8 V
-
-
25
CL = 10 pF, VDD > 2.70 V
-
-
100(4)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
CL = 50 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 50 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
fmax(IO)out Maximum frequency(3)
10
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
Doc ID 15818 Rev 8
Unit
MHz
ns
MHz
ns
97/170
Electrical characteristics
Table 45.
OSPEEDRy
[1:0] bit
value(1)
STM32F205xx, STM32F207xx
I/O AC characteristics(1)(2) (continued)
Symbol
Parameter
Conditions
Fmax(IO)out Maximum frequency(3)
11
-
tf(IO)out
Output high to low level fall
time
tr(IO)out
Output low to high level rise
time
tEXTIpw
Pulse width of external signals
detected by the EXTI
controller
Min
Typ
Max
CL = 30 pF, VDD > 2.70 V
-
-
100(4)
CL = 30 pF, VDD > 1.8 V
-
-
50(4)
CL = 10 pF, VDD > 2.70 V
-
-
200(4)
CL = 10 pF, VDD > 1.8 V
-
-
TBD
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
CL = 20 pF, 2.4 < VDD < 2.7 V
-
-
TBD
CL = 10 pF, VDD > 2.7 V
-
-
TBD
10
-
-
2. TBD stands for “to be defined”.
3. The maximum frequency is defined in Figure 37.
4. For maximum frequencies above 50 MHz, the compensation cell should be used.
Figure 37. I/O AC characteristics definition
90%
10%
50%
90%
10%
EXT ERNAL
OUTPUT
ON 50pF
tr(I O)out
tr(I O)out
T
Maximum frequency is achieved if (tr + tf) ≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by 50pF
ai14131
98/170
Doc ID 15818 Rev 8
MHz
ns
1. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F20/21xxx reference manual for a
description of the GPIOx_SPEEDR GPIO port output speed register.
50%
Unit
ns
STM32F205xx, STM32F207xx
5.3.17
Electrical characteristics
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 43).
Unless otherwise specified, the parameters given in Table 46 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 11.
Table 46.
NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VIL(NRST)(1)
NRST Input low level voltage
–0.5
-
0.8
VIH(NRST)(1)
NRST Input high level voltage
2
-
VDD+0.5
Vhys(NRST)
NRST Schmitt trigger voltage
hysteresis
-
200
-
mV
30
40
50
kΩ
-
-
100
ns
Weak pull-up equivalent resistor(2)
RPU
VF(NRST)
V
(1)
VIN = VSS
NRST Input filtered pulse
VNF(NRST)(1)
NRST Input not filtered pulse
VDD > 2.7 V
300
-
-
ns
TNRST_OUT
Generated reset pulse duration
Internal
Reset source
20
-
-
µs
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution
to the series resistance must be minimum (~10% order).
Figure 38. Recommended NRST pin protection
6$$
%XTERNAL
RESETCIRCUIT
.234
205
)NTERNAL2ESET
&ILTER
—&
34-&XXX
AIC
2. The reset network protects the device against parasitic resets.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 46. Otherwise the reset is not taken into account by the device.
Doc ID 15818 Rev 8
99/170
Electrical characteristics
5.3.18
STM32F205xx, STM32F207xx
TIM timer characteristics
The parameters given in Table 47 and Table 48 are guaranteed by design.
Refer to Section 5.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 47.
Symbol
tres(TIM)
Characteristics of TIMx connected to the APB1 domain(1)
Parameter
Timer resolution time
Conditions
AHB/APB1
prescaler distinct
from 1, fTIMxCLK =
60 MHz
AHB/APB1
prescaler = 1,
fTIMxCLK = 30 MHz
fEXT
ResTIM
tCOUNTER
Min
Max
Unit
1
-
tTIMxCLK
16.7
-
ns
1
-
tTIMxCLK
33.3
-
ns
Timer external clock
frequency on CH1 to CH4
0
fTIMxCLK/2
MHz
0
30
MHz
Timer resolution
-
16/32
bit
65536
tTIMxCLK
1092
µs
-
tTIMxCLK
71582788
µs
-
65536 × 65536
tTIMxCLK
-
71.6
s
16-bit counter clock period
1
when internal clock is
fTIMxCLK = 60 MHz
0.0167
selected
APB1= 30 MHz
32-bit counter clock period
1
when internal clock is
0.0167
selected
tMAX_COUNT Maximum possible count
1. TIMx is used as a general term to refer to the TIM2, TIM3, TIM4, TIM5, TIM6, TIM7, and TIM12 timers.
100/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 48.
Symbol
tres(TIM)
Electrical characteristics
Characteristics of TIMx connected to the APB2 domain(1)
Parameter
Timer resolution time
Conditions
AHB/APB2
prescaler distinct
from 1, fTIMxCLK =
120 MHz
AHB/APB2
prescaler = 1,
fTIMxCLK = 60 MHz
fEXT
ResTIM
Timer external clock
frequency on CH1 to CH4
Timer resolution
fTIMxCLK = 120 MHz
tCOUNTER
16-bit counter clock period
APB2 = 60 MHz
when internal clock is
selected
tMAX_COUNT Maximum possible count
Min
Max
Unit
1
-
tTIMxCLK
8.3
-
ns
1
-
tTIMxCLK
16.7
-
ns
0
fTIMxCLK/2
MHz
0
60
MHz
-
16
bit
1
65536
tTIMxCLK
0.0083
546
µs
-
65536 × 65536
tTIMxCLK
-
35.79
s
1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.
5.3.19
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 49 are derived from tests
performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage
conditions summarized in Table 11.
STM32F205xx and STM32F207xx I2C interface meets the requirements of the standard I2C
communication protocol with the following restrictions: the I/O pins SDA and SCL are
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present.
The I2C characteristics are described in Table 49. Refer also to Section 5.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Doc ID 15818 Rev 8
101/170
Electrical characteristics
Table 49.
STM32F205xx, STM32F207xx
I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
-
(4)
µs
(3)
900(3)
th(SDA)
SDA data hold time
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20 + 0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
0
0
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low
period of SCL signal.
4. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
102/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 39. I2C bus AC waveforms and measurement circuit
6$$
6$$
KΩ
KΩ
Ω
34-&XX
3$!
Ω
)£#BUS
3#,
3 4!242%0%!4%$
3 4!24
3 4!24
TSU34!
3$!
TF3$!
TR3$!
TH34!
3#,
TW3#,(
TSU3$!
TW3#,,
TR3#,
TW34/34!
3 4/0
TH3$!
TSU34/
TF3#,
AIB
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 50.
SCL frequency (fPCLK1= 30 MHz.,VDD = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x8019
300
0x8021
200
0x8032
100
0x0096
50
0x012C
20
0x02EE
2
1. RP = External pull-up resistance, fSCL = I C speed,
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external
components used to design the application.
Doc ID 15818 Rev 8
103/170
Electrical characteristics
STM32F205xx, STM32F207xx
I2S - SPI interface characteristics
Unless otherwise specified, the parameters given in Table 51 for SPI or in Table 52 for I2S
are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 11.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 51.
Symbol
fSCK
1/tc(SCK)
SPI characteristics(1)
Parameter
Conditions
Min
Max
Master mode
-
30
Slave mode
-
30
-
8
ns
%
SPI clock frequency
MHz
tr(SCL)
tf(SCL)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
70
tsu(NSS)(2)
NSS setup time
Slave mode
4tPCLK
-
th(NSS)(2)
NSS hold time
Slave mode
2tPCLK
-
tw(SCLH)
tw(SCLL)(2)
SCK high and low time
Master mode, fPCLK = 30 MHz,
presc = 2
tPCLK-3 tPCLK+3
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
ta(SO)(2)(3)
(2)
Master mode
5
-
Slave mode
5
-
Master mode
5
-
Slave mode
4
-
Data output access
time
Slave mode, fPCLK = 20 MHz
0
3tPCLK
tdis(SO)(2)(4)
Data output disable
time
Slave mode
2
10
tv(SO) (2)(1)
Data output valid time
Slave mode (after enable edge)
-
25
(2)(1)
Data output valid time
Master mode (after enable edge)
-
5
Slave mode (after enable edge)
15
-
Master mode (after enable edge)
2
-
tv(MO)
th(SO)(2)
th(MO)(2)
Unit
ns
Data output hold time
1. Remapped SPI1 characteristics to be determined.
2. Based on characterization, not tested in production.
3. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
4. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z
104/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 40. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 41. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 15818 Rev 8
105/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 42. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
SCK Input
tc(SCK)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
106/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 52.
Electrical characteristics
I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
Master
1.23
1.24
Slave
0
TBD
-
TBD
fCK
1/tc(CK)
I2S clock frequency
tr(CK)
tf(CK)
I2S clock rise and fall time
capacitive load CL = 50
pF
tv(WS) (2)
WS valid time
Master
0.3
-
th(WS) (2)
WS hold time
Master
0
-
WS setup time
Slave
3
-
WS hold time
Slave
0
-
tw(CKH)
tw(CKL) (2)
CK high and low time
Master fPCLK= 120 MHz,
presc = 7
396
-
tsu(SD_MR) (2)
tsu(SD_SR) (2)
Data input setup time
Master receiver
Slave receiver
45
0
-
th(SD_MR)(2)(3)
th(SD_SR) (2)(3)
Data input hold time
Master receiver
Slave receiver
13
0
-
th(SD_MR) (2)
th(SD_SR) (2)
Data input hold time
Master fPCLK = 120 MHz,
Slave fPCLK=120 MHz
13
0
-
tv(SD_ST) (2)(3)
Slave transmitter (after
enable edge)
-
12
Data output valid time
fPCLK = 120 MHz
-
12
Slave transmitter (after
enable edge)
10
-
Master transmitter (after
enable edge)
-
4
fPCLK = 120 MHz
4
6
Master transmitter (after
enable edge)
0
-
tsu(WS)
th(WS)
(2)
(2)
(2)
th(SD_ST) (2)
tv(SD_MT)
(2)(3)
th(SD_MT) (2)
Data output hold time
Data output valid time
Data output hold time
Unit
MHz
ns
1. TBD stands for “to be defined”.
2. Based on design simulation and/or characterization results, not tested in production.
3. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns.
Doc ID 15818 Rev 8
107/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 43. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 44. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
108/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
USB OTG FS characteristics
The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both
the USB OTG HS and USB OTG FS controllers.
Table 53.
USB OTG FS startup time
Symbol
tSTARTUP(1)
Parameter
USB OTG FS transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
Table 54.
USB OTG FS DC electrical characteristics
Symbol
VDD
Input
levels
Parameter
Conditions
USB OTG FS operating
voltage
Min.(1) Typ. Max.(1) Unit
3.0(2)
-
3.6
VDI(3) Differential input sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM)
0.2
-
-
VCM(3)
Differential common mode
range
Includes VDI range
0.8
-
2.5
VSE(3)
Single ended receiver
threshold
1.3
-
2.0
VOL
Static output level low
-
-
0.3
2.8
-
3.6
17
21
24
0.65
1.1
2.0
Output
levels
VOH
Static output level high
RL of 1.5 kΩ to 3.6 V(4)
RL of 15 kΩ to
VSS(4)
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
RPD
RPU
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
V
V
V
VIN = VDD
kΩ
PA12, PB15 (USB_FS_DP,
USB_HS_DP)
VIN = VSS
1.5
1.8
2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS
0.25
0.37
0.55
1. All the voltages are measured from the local ground potential.
2. The STM32F205xx and STM32F207xx USB OTG FS functionality is ensured down to 2.7 V but not the full
USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
3. Guaranteed by design, not tested in production.
4. RL is the load connected on the USB OTG FS drivers
Doc ID 15818 Rev 8
109/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 45. USB OTG FS timings: definition of data signal rise and fall time
Crossover
points
Differen tial
data lines
VCRS
VS S
Table 55.
tr
tf
ai14137
USB OTG FS electrical characteristics(1)
Driver characteristics
Symbol
Parameter
Rise time(2)
tr
tf
time(2)
Fall
trfm
Conditions
Min
Max
Unit
CL = 50 pF
4
20
ns
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
Rise/ fall time matching
VCRS
Output signal crossover voltage
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
USB HS characteristics
Table 56 shows the USB HS operating voltage.
Table 56.
USB HS DC electrical characteristics
Symbol
Input level
Min.(1)
Max.(1)
Unit
2.7
3.6
V
Min
Nominal
Max
Unit
54
60
66
MHz
59.97
60
60.03
MHz
40
50
60
%
49.975
50
50.025
%
-
-
1.4
ms
Parameter
VDD
Ethernet operating voltage
1. All the voltages are measured from the local ground potential.
Table 57.
Clock timing parameters
Parameter(1)
Frequency (first transition)
Symbol
8-bit ±10%
FSTART_8BIT
Frequency (steady state) ±500 ppm
FSTEADY
Duty cycle (first transition)
DSTART_8BIT
8-bit ±10%
Duty cycle (steady state) ±500 ppm
DSTEADY
Time to reach the steady state frequency and
TSTEADY
duty cycle after the first transition
Clock startup time after the
de-assertion of SuspendM
Peripheral
TSTART_DEV
-
-
5.6
Host
TSTART_HOST
-
-
-
-
-
-
PHY preparation time after the first transition
TPREP
of the input clock
1. Guaranteed by design, not tested in production.
110/170
Doc ID 15818 Rev 8
ms
µs
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 46. ULPI timing diagram
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
T3#
T(#
T3$
T($
DATA)N
BIT
T$#
T$#
#ONTROLOUT
5,0)?340
T$$
DATAOUT
BIT
AIC
Table 58.
ULPI timing
Value(1)
Parameter
Symbol
Control in (ULPI_DIR) setup time
tSC
Control in (ULPI_NXT) setup time
Unit
Min.
Max.
-
2.0
-
1.5
Control in (ULPI_DIR, ULPI_NXT) hold time
tHC
Data in setup time
tSD
-
2.0
Data in hold time
tHD
0
-
Control out (ULPI_STP) setup time and hold time
tDC
-
9.2
Data out available from clock rising edge
tDD
-
10.7
Min.(1)
Max.(1)
Unit
2.7
3.6
V
ns
1. VDD = 2.7 V to 3.6 V and TA = –40 to 85 °C.
Ethernet characteristics
Table 59 shows the Ethernet operating voltage.
Table 59.
Ethernet DC electrical characteristics
Symbol
Input level
Parameter
VDD
Ethernet operating voltage
1. All the voltages are measured from the local ground potential.
Table 60 gives the list of Ethernet MAC signals for the SMI (station management interface)
and Figure 47 shows the corresponding timing diagram.
Doc ID 15818 Rev 8
111/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 47. Ethernet SMI timing diagram
tMDC
ETH_MDC
td(MDIO)
ETH_MDIO(O)
tsu(MDIO)
th(MDIO)
ETH_MDIO(I)
ai15666c
Dynamics characteristics: Ethernet MAC signals for SMI(1)
Table 60.
Symbol
Rating
Min
Typ
Max
Unit
tMDC
MDC cycle time (2.38 MHz, AHB = 60 MHz)
411
420
425
ns
td(MDIO)
MDIO write data valid time
6
10
13
ns
tsu(MDIO) Read data setup time
TBD
TBD
TBD
ns
th(MDIO)
TBD
TBD
TBD
ns
Read data hold time
1. TBD stands for “to be defined”.
Table 61 gives the list of Ethernet MAC signals for the RMII and Figure 48 shows the
corresponding timing diagram.
Figure 48. Ethernet RMII timing diagram
RMII_REF_CLK
td(TXEN)
td(TXD)
RMII_TX_EN
RMII_TXD[1:0]
tsu(RXD)
tsu(CRS)
tih(RXD)
tih(CRS)
RMII_RXD[1:0]
RMII_CRS_DV
ai15667
Table 61.
Symbol
112/170
Dynamics characteristics: Ethernet MAC signals for RMII
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
1
-
4
ns
tih(RXD)
Receive data hold time
1.5
-
2
ns
tsu(CRS)
Carrier sense set-up time
0
-
4
ns
tih(CRS)
Carrier sense hold time
2
-
2
ns
td(TXEN)
Transmit enable valid delay time
9
11
13
ns
td(TXD)
Transmit data valid delay time
9
11.5
14
ns
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Table 62 gives the list of Ethernet MAC signals for MII and Figure 48 shows the
corresponding timing diagram.
Figure 49. Ethernet MII timing diagram
MII_RX_CLK
MII_RXD[3:0]
MII_RX_DV
MII_RX_ER
tsu(RXD)
tsu(ER)
tsu(DV)
tih(RXD)
tih(ER)
tih(DV)
MII_TX_CLK
td(TXEN)
td(TXD)
MII_TX_EN
MII_TXD[3:0]
ai15668
Table 62.
Dynamics characteristics: Ethernet MAC signals for MII(1)
Symbol
Rating
Min
Typ
Max
Unit
tsu(RXD)
Receive data setup time
7.5
-
10
ns
tih(RXD)
Receive data hold time
1
-
10
ns
tsu(DV)
Data valid setup time
4
-
10
ns
tih(DV)
Data valid hold time
0
-
10
ns
tsu(ER)
Error setup time
3.5
-
10
ns
tih(ER)
Error hold time
0
-
10
ns
td(TXEN)
Transmit enable valid delay time
7.5
11
14
ns
td(TXD)
Transmit data valid delay time
7.5
11
14
ns
1. TBD stands for “to be defined”.
CAN (controller area network) interface
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CANTX and CANRX).
Doc ID 15818 Rev 8
113/170
Electrical characteristics
5.3.20
STM32F205xx, STM32F207xx
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 63 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 11.
Table 63.
Symbol
ADC characteristics(1)
Parameter
VDDA
Power supply
VREF+
Positive reference voltage
fADC
fTRIG(4)
VAIN
RAIN(4)
ADC clock frequency
External trigger frequency
Conditions
Typ
Max
Unit
-
3.6
V
1.8(2)(3)
-
VDDA
V
VDDA = 1.8(2) to 2.4 V
0.6
-
15
MHz
VDDA = 2.4 to 3.6 V
0.6
-
30
MHz
fADC = 30 MHz
-
-
823
kHz
-
-
17
1/fADC
0 (VSSA or VREFtied to ground)
-
VREF+
V
-
-
50
kΩ
1.5
-
6
kΩ
4
-
TBD
pF
-
-
0.100
µs
-
-
3(7)
1/fADC
-
-
0.067
µs
-
-
2(7)
1/fADC
0.100
-
16
µs
3
-
480
1/fADC
-
2
3
µs
fADC = 30 MHz
12-bit resolution
0.5
-
16.40
µs
fADC = 30 MHz
10-bit resolution
0.43
-
16.34
µs
fADC = 30 MHz
8-bit resolution
0.37
-
16.27
µs
fADC = 30 MHz
6-bit resolution
0.3
-
16.20
µs
(2)
1.8
Conversion voltage range(5)
External input impedance
See Equation 1 for
details
RADC(4)(6) Sampling switch resistance
CADC(4)
Internal sample and hold
capacitor
tlat(4)
Injection trigger conversion
latency
tlatr(4)
Regular trigger conversion latency
tS(4)
Sampling time
tSTAB(4)
Power-up time
tCONV(4)
Total conversion time (including
sampling time)
Min
fADC = 30 MHz
fADC = 30 MHz
fADC = 30 MHz
9 to 492 (tS for sampling +n-bit resolution for successive
approximation)
114/170
Doc ID 15818 Rev 8
1/fADC
STM32F205xx, STM32F207xx
Table 63.
Symbol
fS(4)
IVREF+(4)
IDDA(4)
Electrical characteristics
ADC characteristics(1) (continued)
Parameter
Sampling rate
(fADC = 30 MHz)
Conditions
Min
Typ
Max
Unit
12-bit resolution
Single ADC
-
-
2
Msps
12-bit resolution
Interleave Dual ADC
mode
-
-
3.75
Msps
12-bit resolution
Interleave Triple ADC
mode
-
-
6
Msps
fADC = 30 MHz
3 sampling time
12-bit resolution
-
300
500
µA
fADC = 30 MHz
480 sampling time
12-bit resolution
-
-
TBD
µA
fADC = 30 MHz
3 sampling time
12-bit resolution
-
1.6
1.8
fADC = 30 MHz
480 sampling time
12-bit resolution
-
ADC VREF DC current
consumption in conversion mode
ADC VDDA DC current
consumption in conversion mode
mA
-
TBD
1. TBD stands for “to be defined”.
2. If IRROFF is set to VDD, this value can be lowered to 1.65 V when the device operates in a reduced temperature range.
3. It is recommended to maintain the voltage difference between VREF+ and VDDA below 1.8 V.
4. Based on characterization, not tested in production.
5. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
6. RADC maximum value is given for VDD=1.8 V, and minimum value for VDD=3.3 V.
7. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 63.
Equation 1: RAIN max formula
R AIN
( k – 0.5 )
- – R ADC
= ------------------------------------------------------------N+2
f ADC × C ADC × ln ( 2
)
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Doc ID 15818 Rev 8
115/170
Electrical characteristics
a
Table 64.
Symbol
STM32F205xx, STM32F207xx
ADC accuracy (1)
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK2 = 60 MHz,
fADC = 30 MHz, RAIN < 10 kΩ,
VDDA = 1.8(3) to 3.6 V
Typ
Max(2)
±2
±5
±1.5
±2.5
±1.5
±3
±1
±2
±1.5
±3
Unit
LSB
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
2. Based on characterization, not tested in production.
3. If IRROFF is set to VDD, this value can be lowered to 1.65 V when the device operates in a reduced
temperature range.
Note:
ADC accuracy vs. negative injection current: Injecting a negative current on any of the
standard (non-robust) analog input pins should be avoided as this significantly reduces the
accuracy of the conversion being performed on another analog input. It is recommended to
add a Schottky diode (pin to ground) to standard analog pins which may potentially inject
negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 5.3.16 does not affect the ADC accuracy.
Figure 50. ADC accuracy characteristics
6
6$$!
;,3")$%!, 2%& ORDEPENDINGONPACKAGE=
%'
%4
%/
%,
%$
, 3")$%!,
633!
6$$!
AIC
1. Example of an actual transfer curve.
2. Ideal transfer curve.
3. End point correlation line.
4. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
116/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 51. Typical connection diagram using the ADC
STM32F
VDD
RAIN(1)
Sample and hold ADC
converter
VT
0.6 V
RADC(1)
AINx
VAIN
Cparasitic
VT
0.6 V
IL±1 µA
12-bit
converter
CADC(1)
ai17534
1. Refer to Table 63 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
Doc ID 15818 Rev 8
117/170
Electrical characteristics
STM32F205xx, STM32F207xx
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 52 or Figure 53,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 52. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32F
V REF+
(See note 1)
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF(See note 1)
ai17535
1. VREF+ and VREF– inputs are available only on 100-pin packages.
Figure 53. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32F
VREF+/VDDA
(See note 1)
1 µF // 10 nF
VREF–/VSSA
(See note 1)
ai17536
1. VREF+ and VREF– inputs are available only on 100-pin packages.
118/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
5.3.21
DAC electrical characteristics
Table 65.
DAC characteristics
Symbol
Parameter
Min
Typ
Max
Unit
Comments
VDDA
Analog supply voltage
1.8(1)
-
3.6
V
VREF+
Reference supply voltage
1.8(1)
-
3.6
V
VSSA
Ground
0
-
0
V
RLOAD(2)
Resistive load with buffer ON
5
-
-
kΩ
RO(2)
Impedance output with buffer
OFF
-
-
15
kΩ
When the buffer is OFF, the
Minimum resistive load between
DAC_OUT and VSS to have a 1%
accuracy is 1.5 MΩ
CLOAD(2)
Capacitive load
-
-
50
pF
Maximum capacitive load at
DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
with buffer ON
max(2)
-
-
VDDA – 0.2
V
DAC_OUT Lower DAC_OUT voltage
min(2)
with buffer OFF
-
0.5
-
mV
DAC_OUT Higher DAC_OUT voltage
with buffer OFF
max(2)
-
-
VREF+ – 1LSB
-
170
240
IVREF+(3)
IDDA(3)
DNL(3)
Differential non linearity
Difference between two
consecutive code-1LSB)
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ =
3.6 V and (0x1C7) to (0xE38) at
VREF+ = 1.8 V
It gives the maximum output
excursion of the DAC.
DAC DC VREF current
consumption in quiescent
mode (Standby mode)
DAC DC VDDA current
consumption in quiescent
mode (Standby mode)
VREF+ ≤ VDDA
V
With no load, worst code (0x800)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
50
75
-
280
380
µA
With no load, middle code (0x800)
on the inputs
-
475
625
µA
With no load, worst code (0xF1C)
at VREF+ = 3.6 V in terms of DC
consumption on the inputs
-
-
±0.5
LSB
Given for the DAC in 10-bit
configuration.
-
-
±2
LSB
Given for the DAC in 12-bit
configuration.
Doc ID 15818 Rev 8
119/170
Electrical characteristics
Table 65.
Symbol
INL(3)
Offset(3)
Gain
error(3)
STM32F205xx, STM32F207xx
DAC characteristics (continued)
Parameter
Min
Typ
Max
Unit
-
-
±1
LSB
Given for the DAC in 10-bit
configuration.
-
-
±4
LSB
Given for the DAC in 12-bit
configuration.
-
-
±10
mV
Given for the DAC in 12-bit
configuration
-
-
±3
LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
-
-
±12
LSB
Given for the DAC in 12-bit at
VREF+ = 3.6 V
-
-
±0.5
%
Given for the DAC in 12-bit
configuration
-
3
6
µs
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VREF+/2)
Gain error
Settling time (full scale: for a
10-bit input code transition
(3) between the lowest and the
tSETTLING
highest input codes when
DAC_OUT reaches final
value ±4LSB
Comments
THD(3)
Total Harmonic Distortion
Buffer ON
-
-
-
dB
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
Update
rate(2)
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s
CLOAD ≤ 50 pF,
RLOAD ≥ 5 kΩ
-
6.5
10
µs
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
input code between lowest and
highest possible ones.
-
–67
–40
dB
No RLOAD, CLOAD = 50 pF
Wakeup time from off state
tWAKEUP(3) (Setting the ENx bit in the
DAC Control register)
PSRR+ (2)
Power supply rejection ratio
(to VDDA) (static DC
measurement)
1. If IRROFF is set to VDD, this value can be lowered to 1.65 V when the device operates in a reduced temperature range.
2. Guaranteed by design, not tested in production.
3. Guaranteed by characterization, not tested in production.
120/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 54. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
DACx_OUT
12-bit
digital to
analog
converter
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
5.3.22
Temperature sensor characteristics
Table 66.
TS characteristics
Symbol
Parameter
TL(1)
Avg_Slope(1)
V25(1)
tSTART(2)
TS_temp(3)(2)
Min
Typ
Max
Unit
VSENSE linearity with temperature
-
±1
±2
°C
Average slope
-
2.5
mV/°C
Voltage at 25 °C
-
0.76
V
Startup time
-
6
10
µs
10
-
-
µs
Min
Typ
Max
Unit
KΩ
ADC sampling time when reading the
temperature
1°C accuracy
1. Based on characterization, not tested in production.
2. Guaranteed by design, not tested in production.
3. Shortest sampling time can be determined in the application by multiple iterations.
5.3.23
VBAT monitoring characteristics
Table 67.
VBAT monitoring characteristics
Symbol
Parameter
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
–1
-
+1
%
ADC sampling time when reading the VBAT
1mV accuracy
5
-
-
µs
Er
(1)
TS_vbat(2)(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
Doc ID 15818 Rev 8
121/170
Electrical characteristics
5.3.24
STM32F205xx, STM32F207xx
Embedded reference voltage
The parameters given in Table 68 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 11.
Table 68.
Symbol
VREFINT
Embedded internal reference voltage
Parameter
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.18
1.21
1.24
V
10
-
-
µs
-
3
5
mV
Temperature coefficient
-
30
50
ppm/°C
Startup time
-
6
10
µs
Internal reference voltage
ADC sampling time when
TS_vrefint(1) reading the internal reference
voltage
VRERINT_s
(2)
TCoeff(2)
tSTART
(2)
Internal reference voltage
spread over the temperature
range
VDD = 3 V
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design, not tested in production.
5.3.25
FSMC characteristics
Asynchronous waveforms and timings
Figure 55 through Figure 58 represent asynchronous waveforms and Table 69 through
Table 72 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
●
AddressSetupTime = 1
●
AddressHoldTime = 1
●
DataSetupTime = 1
●
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
122/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
TW.%
&3-#?.%
TV./%?.%
T W./%
T H.%?./%
&3-#?./%
&3-#?.7%
TV!?.%
&3-#?!;=
T H!?./%
!DDRESS
TV",?.%
T H",?./%
&3-#?.",;=
T H$ATA?.%
T SU$ATA?./%
TH$ATA?./%
T SU$ATA?.%
$ATA
&3-#?$;=
T V.!$6?.%
TW.!$6
&3-#?.!$6 AIC
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 69.
Symbol
Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2)
Min
Max
Unit
2THCLK– 0.5
2THCLK+0.5
ns
0.5
2.5
ns
2THCLK- 1
2THCLK+ 0.5
ns
FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
4
ns
th(A_NOE)
Address hold time after FSMC_NOE high
0
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
0.5
ns
th(BL_NOE)
FSMC_BL hold time after FSMC_NOE high
0
-
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
THCLK+ 0.5
-
ns
tsu(Data_NOE) Data to FSMC_NOEx high setup time
THCLK+ 2.5
-
ns
th(Data_NOE) Data hold time after FSMC_NOE high
0
-
ns
Data hold time after FSMC_NEx high
0
-
ns
tv(NADV_NE) FSMC_NEx low to FSMC_NADV low
-
2.5
ns
-
THCLK– 0.5
ns
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
th(Data_NE)
tw(NADV)
Parameter
FSMC_NE low time
FSMC_NEx low to FSMC_NOE low
FSMC_NOE low time
FSMC_NADV low time
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
123/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:0]
th(A_NWE)
Address
tv(BL_NE)
FSMC_NBL[1:0]
th(BL_NWE)
NBL
tv(Data_NE)
th(Data_NWE)
Data
FSMC_D[15:0]
t v(NADV_NE)
tw(NADV)
FSMC_NADV(1)
ai14990
1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used.
Table 70.
Symbol
tw(NE)
tv(NWE_NE)
tw(NWE)
th(NE_NWE)
tv(A_NE)
Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
Parameter
Min
Max
Unit
3THCLK
3THCLK+ 4
ns
FSMC_NEx low to FSMC_NWE low
THCLK– 0.5
THCLK+ 0.5
ns
FSMC_NWE low time
THCLK– 0.5
THCLK+ 3
ns
THCLK
-
ns
-
0
ns
THCLK- 3
-
ns
-
0.5
ns
THCLK– 1
-
ns
FSMC_NE low time
FSMC_NWE high to FSMC_NE high hold
time
FSMC_NEx low to FSMC_A valid
th(A_NWE)
Address hold time after FSMC_NWE high
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE
high
tv(Data_NE)
Data to FSMC_NEx low to Data valid
-
THCLK+ 5
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK+0.5
-
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
-
2
ns
FSMC_NADV low time
-
THCLK+ 1.5
ns
tw(NADV)
1. CL = 30 pF.
2. Based on characterization, not tested in production.
124/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms
tw(NE)
FSMC_NE
tv(NOE_NE)
t h(NE_NOE)
FSMC_NOE
t w(NOE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
t h(A_NOE)
Address
tv(BL_NE)
th(BL_NOE)
FSMC_NBL[1:0]
NBL
th(Data_NE)
tsu(Data_NE)
t v(A_NE)
tsu(Data_NOE)
Address
FSMC_AD[15:0]
t v(NADV_NE)
th(Data_NOE)
Data
th(AD_NADV)
tw(NADV)
FSMC_NADV
ai14892b
Table 71.
Symbol
Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
Min
Max
Unit
3THCLK-1
3THCLK+1
ns
FSMC_NEx low to FSMC_NOE low
2THCLK
2THCLK+0.5
ns
FSMC_NOE low time
THCLK-1
THCLK+1
ns
FSMC_NOE high to FSMC_NE high hold time
0
-
ns
FSMC_NEx low to FSMC_A valid
-
2
ns
FSMC_NEx low to FSMC_NADV low
1
2.5
ns
THCLK– 1.5
THCLK
ns
FSMC_AD(adress) valid hold time after
FSMC_NADV high)
THCLK
-
ns
th(A_NOE)
Address hold time after FSMC_NOE high
THCLK
-
ns
th(BL_NOE)
FSMC_BL time after FSMC_NOE high
0
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
1
ns
tsu(Data_NE)
Data to FSMC_NEx high setup time
THCLK+ 2
-
ns
tsu(Data_NOE) Data to FSMC_NOE high setup time
THCLK+ 3
-
ns
Data hold time after FSMC_NEx high
0
-
ns
th(Data_NOE) Data hold time after FSMC_NOE high
0
-
ns
tw(NE)
tv(NOE_NE)
tw(NOE)
th(NE_NOE)
tv(A_NE)
tv(NADV_NE)
tw(NADV)
th(AD_NADV)
th(Data_NE)
Parameter
FSMC_NE low time
FSMC_NADV low time
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
125/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms
tw(NE)
FSMC_NEx
FSMC_NOE
tv(NWE_NE)
tw(NWE)
t h(NE_NWE)
FSMC_NWE
tv(A_NE)
FSMC_A[25:16]
th(A_NWE)
Address
tv(BL_NE)
th(BL_NWE)
FSMC_NBL[1:0]
NBL
t v(A_NE)
t v(Data_NADV)
Address
FSMC_AD[15:0]
t v(NADV_NE)
th(Data_NWE)
Data
th(AD_NADV)
tw(NADV)
FSMC_NADV
ai14891B
Table 72.
Symbol
Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
Parameter
Max
Unit
tw(NE)
FSMC_NE low time
4THCLK-1
4THCLK+1
ns
tv(NWE_NE)
FSMC_NEx low to FSMC_NWE low
THCLK- 1
THCLK
ns
tw(NWE)
FSMC_NWE low tim e
2THCLK
2THCLK+1
ns
th(NE_NWE)
FSMC_NWE high to FSMC_NE high hold time
THCLK- 1
-
ns
tv(A_NE)
FSMC_NEx low to FSMC_A valid
-
0
ns
tv(NADV_NE)
FSMC_NEx low to FSMC_NADV low
1
2
ns
tw(NADV)
FSMC_NADV low time
THCLK– 2
THCLK+ 2
ns
th(AD_NADV)
FSMC_AD(adress) valid hold time after
FSMC_NADV high)
THCLK
-
ns
th(A_NWE)
Address hold time after FSMC_NWE high
THCLK– 0.5
-
ns
th(BL_NWE)
FSMC_BL hold time after FSMC_NWE high
THCLK- 1
-
ns
tv(BL_NE)
FSMC_NEx low to FSMC_BL valid
-
0.5
ns
tv(Data_NADV)
FSMC_NADV high to Data valid
-
THCLK+2
ns
th(Data_NWE)
Data hold time after FSMC_NWE high
THCLK– 0.5
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
126/170
Min
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Synchronous waveforms and timings
Figure 59 through Figure 62 represent synchronous waveforms and Table 74 through
Table 76 provide the corresponding timings. The results shown in these tables are obtained
with the following FSMC configuration:
●
BurstAccessMode = FSMC_BurstAccessMode_Enable;
●
MemoryType = FSMC_MemoryType_CRAM;
●
WriteBurst = FSMC_WriteBurst_Enable;
●
CLKDivision = 1; (0 is not supported, see the STM32F20xxx/21xxx reference manual)
●
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
In all timing tables, the THCLK is the HCLK clock period.
Figure 59. Synchronous multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
T D#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TD#,+,!$)6
TSU!$6#,+(
TD#,+,!$6
&3-#?!$;=
!$;=
TH#,+(!$6
TSU!$6#,+(
$
TSU.7!)46#,+(
TH#,+(!$6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIG
Doc ID 15818 Rev 8
127/170
Electrical characteristics
Table 73.
STM32F205xx, STM32F207xx
Synchronous multiplexed NOR/PSRAM read timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Max
Unit
2THCLK
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
1.5
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
2.5
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
0
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
1
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1
-
ns
td(CLKL-ADV)
FSMC_CLK low to FSMC_AD[15:0] valid
-
3
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
tsu(ADV-CLKH)
FSMC_A/D[15:0] valid data before FSMC_CLK
high
5
-
ns
th(CLKH-ADV)
FSMC_A/D[15:0] valid data after FSMC_CLK high
0
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
128/170
Min
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 60. Synchronous multiplexed PSRAM write timings
"53452.
TW#,+
TW#,+
&3-#?#,+
$ATALATENCY
TD#,+,.%X,
TD#,+,.%X(
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,!$)6
TD#,+,$ATA
TD#,+,!$6
&3-#?!$;=
TD#,+,$ATA
!$;=
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
TD#,+,.",(
&3-#?.",
AIG
Table 74.
Synchronous multiplexed PSRAM write timings(1)(2)
Symbol
tw(CLK)
Parameter
FSMC_CLK period
Min
Max
Unit
2THCLK- 1
-
ns
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
2
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
2
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
3
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
7
-
ns
td(CLKL-NWEL)
FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH)
FSMC_CLK low to FSMC_NWE high
0
-
ns
td(CLKL-ADIV)
FSMC_CLK low to FSMC_AD[15:0] invalid
0
-
ns
td(CLKL-DATA)
FSMC_A/D[15:0] valid data after FSMC_CLK low
-
2
ns
td(CLKL-NBLH)
FSMC_CLK low to FSMC_NBL high
0.5
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
129/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings
"53452.
TW#,+
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!)6
TD#,+,!6
&3-#?!;=
TD#,+,./%,
TD#,+,./%(
&3-#?./%
TSU$6#,+(
TH#,+($6
TSU$6#,+(
$
&3-#?$;=
TSU.7!)46#,+(
TH#,+($6
$
TH#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
T H#,+(.7!)46
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TH#,+(.7!)46
AIF
Table 75.
Synchronous non-multiplexed NOR/PSRAM read timings
Symbol
Parameter
Min
Max
Unit
2THCLK
-
ns
tw(CLK)
FSMC_CLK period
td(CLKL-NExL)
FSMC_CLK low to FSMC_NEx low (x=0..2)
-
0
ns
td(CLKL-NExH)
FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL)
FSMC_CLK low to FSMC_NADV low
-
2.5
ns
td(CLKL-NADVH)
FSMC_CLK low to FSMC_NADV high
4
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
3
-
ns
td(CLKL-NOEL)
FSMC_CLK low to FSMC_NOE low
-
1
ns
td(CLKL-NOEH)
FSMC_CLK low to FSMC_NOE high
1.5
-
ns
tsu(DV-CLKH)
FSMC_D[15:0] valid data before FSMC_CLK high
8
-
ns
th(CLKH-DV)
FSMC_D[15:0] valid data after FSMC_CLK high
3.5
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
130/170
(1)(2)
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 62. Synchronous non-multiplexed PSRAM write timings
TW#,+
"53452.
TW#,+
&3-#?#,+
TD#,+,.%X,
TD#,+,.%X(
$ATALATENCY
&3-#?.%X
TD#,+,.!$6,
TD#,+,.!$6(
&3-#?.!$6
TD#,+,!6
TD#,+,!)6
&3-#?!;=
TD#,+,.7%,
TD#,+,.7%(
&3-#?.7%
TD#,+,$ATA
&3-#?$;=
TD#,+,$ATA
$
$
&3-#?.7!)4
7!)4#&'B7!)40/,B
TSU.7!)46#,+(
TD#,+,.",(
TH#,+(.7!)46
&3-#?.",
AIG
Table 76.
Synchronous non-multiplexed PSRAM write timings(1)(2)
Symbol
Min
Max
Unit
2THCLK- 1
-
ns
-
1
ns
td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x= 0…2)
1
-
ns
td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low
-
5
ns
FSMC_CLK low to FSMC_NADV high
6
-
ns
td(CLKL-AV)
FSMC_CLK low to FSMC_Ax valid (x=16…25)
-
0
ns
td(CLKL-AIV)
FSMC_CLK low to FSMC_Ax invalid (x=16…25)
8
-
ns
td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low
-
1
ns
td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high
1
-
ns
-
2
ns
2
-
ns
tw(CLK)
td(CLKL-NExL)
td(CLKL-
Parameter
FSMC_CLK period
FSMC_CLK low to FSMC_NEx low (x=0..2)
NADVH)
td(CLKL-Data)
FSMC_D[15:0] valid data after FSMC_CLK low
td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
131/170
Electrical characteristics
STM32F205xx, STM32F207xx
PC Card/CompactFlash controller waveforms and timings
Figure 63 through Figure 68 represent synchronous waveforms together with Table 77 and
Table 78 provides the corresponding timings. The results shown in this table are obtained
with the following FSMC configuration:
●
COM.FSMC_SetupTime = 0x04;
●
COM.FSMC_WaitSetupTime = 0x07;
●
COM.FSMC_HoldSetupTime = 0x04;
●
COM.FSMC_HiZSetupTime = 0x00;
●
ATT.FSMC_SetupTime = 0x04;
●
ATT.FSMC_WaitSetupTime = 0x07;
●
ATT.FSMC_HoldSetupTime = 0x04;
●
ATT.FSMC_HiZSetupTime = 0x00;
●
IO.FSMC_SetupTime = 0x04;
●
IO.FSMC_WaitSetupTime = 0x07;
●
IO.FSMC_HoldSetupTime = 0x04;
●
IO.FSMC_HiZSetupTime = 0x00;
●
TCLRSetupTime = 0;
●
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
Figure 63. PC Card/CompactFlash controller waveforms for common memory read
access
FSMC_NCE4_2(1)
FSMC_NCE4_1
th(NCEx-AI)
tv(NCEx-A)
FSMC_A[10:0]
th(NCEx-NREG)
th(NCEx-NIORD)
th(NCEx-NIOWR)
td(NREG-NCEx)
td(NIORD-NCEx)
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
FSMC_NWE
td(NCE4_1-NOE)
FSMC_NOE
tw(NOE)
tsu(D-NOE)
th(NOE-D)
FSMC_D[15:0]
ai14895b
1. FSMC_NCE4_2 remains high (inactive during 8-bit access.
132/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 64. PC Card/CompactFlash controller waveforms for common memory write
access
FSMC_NCE4_1
FSMC_NCE4_2
High
tv(NCE4_1-A)
th(NCE4_1-AI)
FSMC_A[10:0]
th(NCE4_1-NREG)
th(NCE4_1-NIORD)
th(NCE4_1-NIOWR)
td(NREG-NCE4_1)
td(NIORD-NCE4_1)
FSMC_NREG
FSMC_NIOWR
FSMC_NIORD
td(NCE4_1-NWE)
tw(NWE)
td(NWE-NCE4_1)
FSMC_NWE
FSMC_NOE
MEMxHIZ =1
td(D-NWE)
tv(NWE-D)
th(NWE-D)
FSMC_D[15:0]
ai14896b
Doc ID 15818 Rev 8
133/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 65. PC Card/CompactFlash controller waveforms for attribute memory read
access
FSMC_NCE4_1
tv(NCE4_1-A)
FSMC_NCE4_2
th(NCE4_1-AI)
High
FSMC_A[10:0]
FSMC_NIOWR
FSMC_NIORD
td(NREG-NCE4_1)
th(NCE4_1-NREG)
FSMC_NREG
FSMC_NWE
td(NCE4_1-NOE)
tw(NOE)
td(NOE-NCE4_1)
FSMC_NOE
tsu(D-NOE)
th(NOE-D)
FSMC_D[15:0](1)
ai14897b
1. Only data bits 0...7 are read (bits 8...15 are disregarded).
134/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 66. PC Card/CompactFlash controller waveforms for attribute memory write
access
FSMC_NCE4_1
FSMC_NCE4_2
High
tv(NCE4_1-A)
th(NCE4_1-AI)
FSMC_A[10:0]
FSMC_NIOWR
FSMC_NIORD
td(NREG-NCE4_1)
th(NCE4_1-NREG)
FSMC_NREG
td(NCE4_1-NWE)
tw(NWE)
FSMC_NWE
td(NWE-NCE4_1)
FSMC_NOE
tv(NWE-D)
FSMC_D[7:0](1)
ai14898b
1. Only data bits 0...7 are driven (bits 8...15 remains Hi-Z).
Figure 67. PC Card/CompactFlash controller waveforms for I/O space read access
FSMC_NCE4_1
FSMC_NCE4_2
th(NCE4_1-AI)
tv(NCEx-A)
FSMC_A[10:0]
FSMC_NREG
FSMC_NWE
FSMC_NOE
FSMC_NIOWR
tw(NIORD)
td(NIORD-NCE4_1)
FSMC_NIORD
tsu(D-NIORD)
td(NIORD-D)
FSMC_D[15:0]
ai14899B
Doc ID 15818 Rev 8
135/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 68. PC Card/CompactFlash controller waveforms for I/O space write access
&3-#?.#%?
&3-#?.#%?
TV.#%X!
TH.#%?!)
&3-#?!;=
&3-#?.2%'
&3-#?.7%
&3-#?./%
&3-#?.)/2$
TD.#%?.)/72
TW.)/72
&3-#?.)/72
!44X():
TV.)/72$
TH.)/72$
&3-#?$;=
AIC
Table 77.
Switching characteristics for PC Card/CF read and write cycles in
attribute/common space(1)(2)
Symbol
Parameter
Min
Max
Unit
tv(NCEx-A)
FSMC_Ncex low to FSMC_Ay valid
-
0
ns
th(NCEx_AI)
FSMC_NCEx high to FSMC_Ax invalid
4
-
ns
-
3.5
ns
THCLK+ 4
-
ns
td(NREG-NCEx) FSMC_NCEx low to FSMC_NREG valid
th(NCEx-NREG) FSMC_NCEx high to FSMC_NREG invalid
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5THCLK+ 1
ns
td(NCEx-NOE)
FSMC_NCEx low to FSMC_NOE low
-
5THCLK
ns
FSMC_NOE low width
8THCLK– 0.5
8THCLK+ 1
ns
FSMC_NOE high to FSMC_NCEx high
5THCLK+ 2.5
-
ns
tw(NOE)
td(NOE_NCEx)
tsu (D-NOE)
FSMC_D[15:0] valid data before FSMC_NOE high
4
-
ns
th (N0E-D)
FSMC_N0E high to FSMC_D[15:0] invalid
2
-
ns
8THCLK- 1
8THCLK+ 4
ns
tw(NWE)
FSMC_NWE low width
td(NWE_NCEx)
FSMC_NWE high to FSMC_NCEx high
td(NCEx-NWE)
FSMC_NCEx low to FSMC_NWE low
-
5HCLK+ 1
ns
FSMC_NWE low to FSMC_D[15:0] valid
-
0
ns
tv (NWE-D)
5THCLK+ 1.5
ns
th (NWE-D)
FSMC_NWE high to FSMC_D[15:0] invalid
8 THCLK
-
ns
td (D-NWE)
FSMC_D[15:0] valid before FSMC_NWE high
13THCLK
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
136/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 78.
Electrical characteristics
Switching characteristics for PC Card/CF read and write cycles in I/O space(1)(2)
Symbol
Parameter
tw(NIOWR)
FSMC_NIOWR low width
tv(NIOWR-D)
FSMC_NIOWR low to FSMC_D[15:0] valid
th(NIOWR-D)
FSMC_NIOWR high to FSMC_D[15:0] invalid
Min
Max
Unit
8THCLK - 0.5
-
ns
-
5THCLK- 1
ns
8THCLK- 3
-
ns
td(NCE4_1-NIOWR)
FSMC_NCE4_1 low to FSMC_NIOWR valid
-
5THCLK+ 1.5
ns
th(NCEx-NIOWR)
FSMC_NCEx high to FSMC_NIOWR invalid
5THCLK
-
ns
td(NIORD-NCEx)
FSMC_NCEx low to FSMC_NIORD valid
-
5THCLK+ 1
ns
th(NCEx-NIORD)
FSMC_NCEx high to FSMC_NIORD) valid
5THCLK– 0.5
-
ns
8THCLK+ 1
-
ns
FSMC_NIORD low width
tw(NIORD)
tsu(D-NIORD)
FSMC_D[15:0] valid before FSMC_NIORD
high
td(NIORD-D)
FSMC_D[15:0] valid after FSMC_NIORD high
9.5
ns
0
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
NAND controller waveforms and timings
Figure 69 through Figure 72 represent synchronous waveforms, together with Table 79 and
Table 80 provides the corresponding timings. The results shown in this table are obtained
with the following FSMC configuration:
●
COM.FSMC_SetupTime = 0x01;
●
COM.FSMC_WaitSetupTime = 0x03;
●
COM.FSMC_HoldSetupTime = 0x02;
●
COM.FSMC_HiZSetupTime = 0x01;
●
ATT.FSMC_SetupTime = 0x01;
●
ATT.FSMC_WaitSetupTime = 0x03;
●
ATT.FSMC_HoldSetupTime = 0x02;
●
ATT.FSMC_HiZSetupTime = 0x01;
●
Bank = FSMC_Bank_NAND;
●
MemoryDataWidth = FSMC_MemoryDataWidth_16b;
●
ECC = FSMC_ECC_Enable;
●
ECCPageSize = FSMC_ECCPageSize_512Bytes;
●
TCLRSetupTime = 0;
●
TARSetupTime = 0;
In all timing tables, the THCLK is the HCLK clock period.
Doc ID 15818 Rev 8
137/170
Electrical characteristics
STM32F205xx, STM32F207xx
Figure 69. NAND controller waveforms for read access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
&3-#?.7%
TD!,%./%
TH./%!,%
&3-#?./%.2%
TSU$./%
TH./%$
&3-#?$;=
AIC
Figure 70. NAND controller waveforms for write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%.7%
TH.7%!,%
&3-#?.7%
&3-#?./%.2%
TV.7%$
TH.7%$
&3-#?$;=
AIC
138/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 71. NAND controller waveforms for common memory read access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%./%
TH./%!,%
&3-#?.7%
TW./%
&3-#?./%
TSU$./%
TH./%$
&3-#?$;=
AIC
Figure 72. NAND controller waveforms for common memory write access
&3-#?.#%X
!,%&3-#?!
#,%&3-#?!
TD!,%./%
TW.7%
TH./%!,%
&3-#?.7%
&3-#?./%
TD$.7%
TV.7%$
TH.7%$
&3-#?$;=
AIC
Table 79.
Symbol
tw(N0E)
Switching characteristics for NAND Flash read cycles(1)(2)
Parameter
FSMC_NOE low width
Min
Max
Unit
4THCLK- 1
4THCLK+ 2
ns
tsu(D-NOE)
FSMC_D[15-0] valid data before FSMC_NOE
high
9
-
ns
th(NOE-D)
FSMC_D[15-0] valid data after FSMC_NOE high
3
-
ns
td(ALE-NOE)
FSMC_ALE valid before FSMC_NOE low
-
3THCLK
ns
th(NOE-ALE)
FSMC_NWE high to FSMC_ALE invalid
3THCLK+ 2
-
ns
1. CL = 30 pF.
2. Based on characterization, not tested in production.
Doc ID 15818 Rev 8
139/170
Electrical characteristics
Table 80.
STM32F205xx, STM32F207xx
Switching characteristics for NAND Flash write cycles(1)(2)
Symbol
tw(NWE)
Parameter
FSMC_NWE low width
Min
Max
Unit
4THCLK- 1
4THCLK+ 3
ns
-
0
ns
tv(NWE-D)
FSMC_NWE low to FSMC_D[15-0] valid
th(NWE-D)
FSMC_NWE high to FSMC_D[15-0] invalid
3THCLK
-
ns
td(D-NWE)
FSMC_D[15-0] valid before FSMC_NWE high
5THCLK
-
ns
-
3THCLK+ 2
ns
3THCLK- 2
-
ns
td(ALE-NWE)
FSMC_ALE valid before FSMC_NWE low
th(NWE-ALE)
FSMC_NWE high to FSMC_ALE invalid
1. CL = 30 pF.
2. Based on characterization, not tested in production.
5.3.26
Camera interface (DCMI) timing specifications
Table 81.
Symbol
DCMI characteristics
Parameter
Frequency ratio
DCMI_PIXCLK/fHCLK
5.3.27
Conditions
Min
DCMI_PIXCLK=
48 MHz
Max
Unit
0.4
SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 82 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 11.
Refer to Section 5.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (D[7:0], CMD, CK).
Figure 73. SDIO high-speed mode
tf
tr
tC
tW(CKH)
tW(CKL)
CK
tOV
tOH
D, CMD
(output)
tISU
tIH
D, CMD
(input)
ai14887
140/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Electrical characteristics
Figure 74. SD default mode
CK
tOVD
tOHD
D, CMD
(output)
ai14888
Table 82.
Symbol
SD / MMC characteristics
Parameter
Conditions
Min
Max
Unit
fPP
Clock frequency in data transfer
mode
CL ≤ 30 pF
0
48
MHz
-
SDIO_CK/fPCLK2 frequency ratio
-
-
8/3
-
tW(CKL)
Clock low time, fPP = 16 MHz
CL ≤ 30 pF
32
tW(CKH)
Clock high time, fPP = 16 MHz
CL ≤ 30 pF
31
tr
Clock rise time
CL ≤ 30 pF
3.5
tf
Clock fall time
CL ≤ 30 pF
5
ns
CMD, D inputs (referenced to CK)
tISU
Input setup time
CL ≤ 30 pF
2
tIH
Input hold time
CL ≤ 30 pF
0
ns
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV
Output valid time
CL ≤ 30 pF
tOH
Output hold time
CL ≤ 30 pF
6
ns
0.3
CMD, D outputs (referenced to CK) in SD default mode(1)
tOVD
Output valid default time
CL ≤ 30 pF
tOHD
Output hold default time
CL ≤ 30 pF
7
ns
0.5
1. Refer to SDIO_CLKCR, the SDI clock control register to control the CK output.
5.3.28
RTC characteristics
Table 83.
Symbol
-
RTC characteristics
Parameter
fPCLK1/RTCCLK frequency
ratio
Conditions
Any read/write
operation from/to an
RTC register
Doc ID 15818 Rev 8
Min
Max
Unit
4
-
-
141/170
Package characteristics
STM32F205xx, STM32F207xx
6
Package characteristics
6.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
142/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Package characteristics
Figure 76. Recommended footprint(1)(2)
Figure 75. LQFP64 – 10 x 10 mm 64 pin low-profile
quad flat package outline(1)
A
48
33
A2
0.3
A1
E
49
b
E1
12.7
32
0.5
10.3
e
10.3
64
17
1.2
1
D1
c
7.8
L1
D
16
12.7
L
ai14398b
ai14909
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Table 84.
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
Max
0.0630
0.150
0.0020
0.0059
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
0.0079
D
12.000
0.4724
D1
10.000
0.3937
E
12.000
0.4724
E1
10.000
0.3937
e
0.500
0.0197
θ
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.750
0.0177
0.0236
0.0295
L1
1.000
0.0394
Number of pins
N
64
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15818 Rev 8
143/170
Package characteristics
STM32F205xx, STM32F207xx
Figure 77. WLCSP64+2 - 0.400 mm pitch wafer level chip size package outline
!BALLLOCATION
$
E
E
E
$ETAIL!
E
%
'
!
&
!
3IDEVIEW
7AFERBACKSIDE
"UMPSIDE
$ETAIL!
ROTATEDBY #
!
EEE
B
3EATINGPLANE
!&8?-%
1. Drawing is not to scale.
Table 85.
WLCSP64+2 - 0.400 mm pitch wafer level chip size package mechanical data
millimeters
inches
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.570
0.520
0.620
0.0224
0.0205
0.0244
A1
0.190
0.170
0.210
0.0075
0.0067
0.0083
A2
0.380
0.350
0.410
0.0150
0.0138
0.0161
b
0.270
0.240
0.300
0.0106
0.0094
0.0118
D
3.674
3.654
3.694
0.1446
0.1439
0.1454
E
4.006
3.986
4.026
0.1577
0.1569
0.1585
e
0.400
0.0157
e1
3.200
0.1260
F
0.237
0.0093
G
0.403
0.0159
eee
144/170
0.050
Doc ID 15818 Rev 8
0.0020
STM32F205xx, STM32F207xx
Package characteristics
Figure 78. LQFP100, 14 x 14 mm 100-pin low-profile
quad flat package outline(1)
Figure 79. Recommended footprint(1)(2)
0.25 mm
0.10 inch
GAGE PLANE
k
D
L
D1
75
51
L1
D3
51
75
76
C
76
50
0.5
50
0.3
16.7
b
14.3
E3 E1 E
100
100
26
1.2
26
Pin 1
1
identification
25
1
C
ccc
25
12.3
e
A1
16.7
A2
ai14906
A
SEATING PLANE
C
1L_ME
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Table 86.
LQPF100 – 14 x 14 mm 100-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
15.800
D1
13.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
16.000
16.200
0.6220
0.6299
0.6378
14.000
14.200
0.5433
0.5512
0.5591
12.000
0.0059
0.0079
0.4724
E
15.80v
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
12.000
e
L
0.500
0.450
L1
k
ccc
0.4724
0.600
0.0197
0.750
0.0177
1.000
0°
3.5°
0.0236
0.0295
0.0394
7°
0.080
0°
3.5°
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15818 Rev 8
145/170
Package characteristics
STM32F205xx, STM32F207xx
Figure 80. LQFP144, 20 x 20 mm, 144-pin low-profile quad
flat package outline(1)
Figure 81. Recommended
footprint(1)(2)
Seating plane
C
A
A2 A1
c
b
ccc
0.25 mm
gage plane
C
D
k
108
109
73
1.35
72
0.35
D1
A1
D3
108
L
73
0.5
L1
72
109
17.85
19.9
E1
E
22.6
144
37
E3
1
36
19.9
22.6
a
144
Pin 1
identification
37
36
1
e
ME_1A
1. Drawing is not to scale.
2. Dimensions are in millimeters.
Table 87.
LQFP144 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
21.800
D1
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
22.000
22.200
0.8583
0.8661
0.874
19.800
20.000
20.200
0.7795
0.7874
0.7953
E
21.800
22.000
22.200
0.8583
0.8661
0.8740
E1
19.800
20.000
20.200
0.7795
0.7874
0.7953
D3
17.500
0.0059
0.0079
0.689
E3
17.500
0.6890
e
0.500
0.0197
L
0.450
L1
k
ccc
0.600
0.750
1.000
0°
3.5°
0.0236
0.0295
0.0394
7°
0.080
0°
3.5°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
146/170
0.0177
Doc ID 15818 Rev 8
7°
STM32F205xx, STM32F207xx
Package characteristics
Figure 82. LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm, package outline
C Seating plane
0.25 mm
gauge plane
A A2
k
c
A1
ccc C
A1
HD
L
D
L1
ZD
ZE
89
132
88
133
b
E
176
Pin 1
identification
HE
45
44
1
e
1T_ME
1. Drawing is not to scale.
Table 88.
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
Max
0.0630
A1
0.050
0.150
0.0020
0.0059
A2
1.350
1.450
0.0531
0.0571
b
0.170
0.270
0.0067
0.0106
c
0.090
0.200
0.0035
0.0079
D
23.900
24.100
0.9409
0.9488
E
23.900
24.100
0.9409
0.9488
e
0.500
0.0197
HD
25.900
26.100
1.0197
1.0276
HE
25.900
26.100
1.0197
1.0276
0.450
0.750
0.0177
0.0295
(2)
L
L1
1.000
0.0394
ZD
1.250
0.0492
ZE
1.250
0.0492
k
ccc
0°
7°
0.080
0°
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. L dimension is measured at gauge plane at 0.25 mm above the seating plane.
Doc ID 15818 Rev 8
147/170
Package characteristics
STM32F205xx, STM32F207xx
Figure 83. UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm, package outline
C Seating plane
A2
ddd
A4
C
A
A3
A1
A
D
B
Ball A1
e
F
A
F
E
e
R
15
Øb
1
(176 balls)
Ø eee M C A
Ø fff M
B
A0E7_ME
C
1. Drawing is not to scale.
Table 89.
UFBGA176+25 - ultra thin fine pitch ball grid array 10 × 10 × 0.6 mm mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.460
0.530
0.600
0.0181
0.0209
0.0236
A1
0.050
0.080
0.110
0.002
0.0031
0.0043
A2
0.400
0.450
0.500
0.0157
0.0177
0.0197
A3
0.130
0.0051
A4
0.270
0.320
0.370
0.0106
0.0126
0.0146
b
0.230
0.280
0.330
0.0091
0.0110
0.0130
D
9.950
10.000
10.050
0.3740
0.3937
0.3957
E
9.950
10.000
10.050
0.3740
0.3937
0.3957
e
0.600
0.650
0.700
0.0236
0.0256
0.0276
F
0.400
0.450
0.500
0.0157
0.0177
0.0197
ddd
0.080
0.0031
eee
0.150
0.0059
fff
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
148/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
6.2
Package characteristics
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
●
TA max is the maximum ambient temperature in °C,
●
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
●
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
●
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 90.
Package thermal characteristics
Symbol
ΘJA
Parameter
Value
Thermal resistance junction-ambient
LQFP 64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
WLCSP64+2 - 0.400 mm pitch
51
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
LQFP176 - 24 × 24 mm / 0.5 mm pitch
38
Thermal resistance junction-ambient
UFBGA176 - 10× 10 mm / 0.5 mm pitch
39
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Doc ID 15818 Rev 8
149/170
Part numbering
7
STM32F205xx, STM32F207xx
Part numbering
Table 91.
Ordering information scheme
Example:
STM32
F 205 R E
T
6
V xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
205 = STM32F20x, connectivity, USB OTG FS/HS
207= STM32F20x, connectivity, USB OTG FS/HS,
camera interface,, Ethernet
Pin count
R = 64 pins or 66 pins(1)
V = 100 pins
Z = 144 pins
I = 176 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
E = 512 Kbytes of Flash memory
F = 768 Kbytes of Flash memory
G = 1024 Kbytes of Flash memory
Package
T = LQFP
H = UFBGA
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Software option
Internal code or Blank
Options
xxx = programmed parts
TR = tape and reel
1. The 66 pins is available on WLCSP package only.
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
150/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Appendix A
A.1
Application block diagrams
Application block diagrams
Main applications versus package
Table 92 gives examples of configurations for each package.
Table 92.
Main applications versus package for STM32F2xxx microcontrollers(1)
64 pins(2)
100 pins
144 pins
176 pins
Config Config Config Config Config Config Config Config Config Config Config Config Config
1
2
3
1
2
3
4
1
2
3
4
1
2
OTG
FS
-
-
-
X
X
X
-
X
-
X
-
X
-
FS
-
-
-
X
X
X
X
X
X
X
X
X
-
HS
ULPI
X
-
X
X
-
-
-
X
X
-
-
X
X
USB
OTG
OTG HS
FS
X
X
X
X
-
-
-
X
X
-
-
X
X
FS
X
X
X
X
X
X
X
X
X
X
X
X
X
Ethernet MII
-
-
-
-
-
X
X
-
-
X
X
X
X
-
-
-
-
X
X
X
X
X
X
X
X
X
-
X
-
-
X
X
X
X
X
X
X
X
X
SDIO
X
X
-
X
X
X
8-bit
Data
-
-
-
X
X
X
10-bit
Data
-
-
-
X
X
X
12-bit
Data
-
-
-
X
X
X
14-bit
Data
-
-
-
-
-
-
-
-
X
-
X
X
X
NOR/
RAM
Muxed
-
-
-
X
X
X
X
X
X
X
X
X
X
NOR/
RAM
-
-
-
X
X
X
X
X
X
NAND
-
-
-
X
X
X*22
X*19
X
X*19
X*22
X*19
X*22
X*22
CF
-
-
-
-
-
-
-
X
X
X
X
X
X
-
X
X
-
X
X
X
-
-
X
X
-
X
USB
OTG
FS(3)
(3)
RMII
SPI/I2S2
SPI/I2S3
SDIO
DCMI(3)
FSMC
CAN
X
SDIO
or
DCMI
SDIO
or
DCMI
SDIO
or
DCMI
X
X
X
SDIO
or
DCMI
X
X
X
SDIO
or
DCMI
X
1. X*y: FSMC address limited to “y”.
2. Not available on STM32F2x7xx.
3. Not available on STM32F2x5xx.
Doc ID 15818 Rev 8
151/170
Application block diagrams
A.2
STM32F205xx, STM32F207xx
Application example with regulator OFF
Figure 84. Regulator OFF/internal reset ON
0OWERDOWNRESETRISEN
AFTER6#!0?6#!0?STABILIZATION
0OWERDOWNRESETRISEN
BEFORE6#!0?6#!0?STABILIZATION
!PPLICATIONRESET
6#!0?MONITORING
%XTRESETCONTROLLERACTIVE SIGNALOPTIONAL
WHEN6 #!0?6
!PPLICATIONRESETSIGNAL
OPTIONAL
6$$
TO6
0!
6$$
6$$
TO6
.234
2%'/&&
0!
6$$
.234
2%'/&&
6
6
6#!0?
6#!0?
6#!0?
6#!0?
)22/&&
AI
1. This mode is available only on UFBGA176 and WLCSP64+2 packages.
Figure 85. Regulator OFF/ internal reset OFF
6$$
6
6$$6#!0?MONITORING
%XTRESETCONTROLLERACTIVE
WHEN6 $$6
AND6 #!0?6
6$$
.234
2%'/&&
6$$
TO6
)22/&&
6$$
6
6#!0?
6#!0?
AI
1. This mode is available only on WLCSP64+2 package.
152/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
USB OTG full speed (FS) interface solutions
Figure 86. USB OTG FS (full speed) device-only connection
6$$
6TO6$$
6OLATGEREGULATOR 6"53
0!
$-
0!
/3#?).
$0
0!
633
/3#?/54
53"3TD"CONNECTOR
34-&XXX
AI
1. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 87. USB OTG FS (full speed) host-only connection
6$$
%.
'0)/
'0)/)21
/VERCURRENT
#URRENTLIMITER
POWERSWITCH 60WR
34-&XX 6"53
0!
/3#?).
0!
0!
$$0
633
/3#?/54
53"3TD!CONNECTOR
A.3
Application block diagrams
AIC
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Doc ID 15818 Rev 8
153/170
Application block diagrams
STM32F205xx, STM32F207xx
Figure 88. OTG FS (full speed) connection dual-role with internal PHY
6$$
6TO6$$
VOLTAGEREGULATOR 6$$
'0)/)21
/VERCURRENT
#URRENTLIMITER 60WR
POWERSWITCH 34-&XXX
0!
0!
/3#?).
0!
6"53
$$0
/3#?/54
0!
)$
633
53"MICRO!"CONNECTOR
'0)/
%.
AIC
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
154/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
A.4
Application block diagrams
USB OTG high speed (HS) interface solutions
Figure 89. OTG HS (high speed) device connection, host and dual-role
in high-speed mode with external PHY
34-&XXX
&30(9
53"(3
/4'#TRL
$0
$-
NOTCONNECTED
$0
5,0)?#,+
5,0)?$;=
5,0)
$)$
5,0)?$)2
6"53
5,0)?340
53"
CONNECTOR
633
5,0)?.84
(IGHSPEED
/4'0(9
0,,
84
OR-(Z84
-#/OR-#/
8)
AIC
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F20x
with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible
connection.
2. The ID pin is required in dual role only.
Doc ID 15818 Rev 8
155/170
Application block diagrams
A.5
STM32F205xx, STM32F207xx
Complete audio player solutions
Two solutions are offered, illustrated in Figure 90 and Figure 91.
Figure 90 shows storage media to audio DAC/amplifier streaming using a software Codec.
This solution implements an audio crystal to provide audio class I2S accuracy on the master
clock (0.5% error maximum, see the Serial peripheral interface section in the reference
manual for details).
Figure 90. Complete audio player solution 1
XTAL
25 MHz
or 14.7456 MHz
Cortex-M3 core
up to 120 MHz
SPI
LCD
touch
screen
GPIO
Control
buttons
Program memory
OTG
(host
mode) +
PHY
USB
Mass-storage
device
File
System
DAC +
Audio
ampli
I2S
Audio
CODEC
User
application
MMC/
SDCard
SPI
ai16039b
Figure 91 shows storage media to audio Codec/amplifier streaming with SOF
synchronization of input/output audio streaming using a hardware Codec.
Figure 91. Complete audio player solution 2
XTAL
25 MHz
or 14.7456 MHz
Cortex-M3 core
up to 120 MHz
SPI/
FSMC
LCD
touch
screen
GPIO
Control
buttons
Program memory
USB
Mass-storage
device
SOF
OTG
+
PHY
File
System
I2S
User
application
MMC/
SDCard
SPI
Audio PLL
+DAC
Audio
ampli
SOF synchronization of input/output
audio streaming
ai16040b
1. SOF = start of frame.
156/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Application block diagrams
Figure 92. Audio player solution using PLL, PLLI2S, USB and 1 crystal
$IV
BY-
/3#
84!,
-(Z
OR-(Z
UPTO
$IV -(Z
BY0
0,,
X.
#ORTEX-CORE
UPTO-(Z
$IV
BY1
/4'
-(Z
0,,)3
X.
$IV
BY2
0(9
-#/02%
-#/02%
-#/
-#/
)3
ACCURACY
-#,+
IN
-#,+OUT
3#,+
$!#
!UDIO
AMPLI
AIB
Figure 93. Audio PLL (PLLI2S) providing accurate I2S clock
PLLI2S
Phase lock detector
CLKIN
/M
M=1,2,3,..,64
1 MHz
PhaseC
VCO
192 to 432 MHz
I2S_MCK = 256 × FSAUDIO
11.2896 MHz for 44.1 kHz
12.2880 MHz for 48.0 kHz
/N
N=192,194,..,432
/R
I2SCOM_CK
I2S CTL
I2S_MCK
R=2,3,4,5,6,7
I2SD=2,3,4.. 129
ai16041b
Doc ID 15818 Rev 8
157/170
Application block diagrams
STM32F205xx, STM32F207xx
Figure 94. Master clock (MCK) used to drive the external audio DAC
I2S controller
I2S_CK
I2S_MCK = 256 × FSAUDIO
= 11.2896 MHz for FSAUDIO = 44.1 kHz
= 12.2880 MHz for FSAUDIO = 48.0 kHz
/I2SD
2,3,4,..,129
I2S_SCK(1) = I2S_MCK/8 for 16-bit stereo
= I2S_MCK/4 for 32-bit stereo
/8
/(2 x 16)
FSAUDIO
for 16-bit stereo
/4
/(2 x 32)
FSAUDIO
for 32-bit stereo
ai16042
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
Figure 95. Master clock (MCK) not used to drive the external audio DAC
I2S controller
I2S_SCK(1)
I2SCOM_CK
/I2SD
/(2 x 16)
FSAUDIO
for 16-bit stereo
/(2 x 32)
FSAUDIO
for 32-bit stereo
ai16042
1. I2S_SCK is the I2S serial clock to the external audio DAC (not to be confused with I2S_CK).
158/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
A.6
Application block diagrams
Ethernet interface solutions
Figure 96. MII mode using a 25 MHz crystal
34-
-#5
-))?48?#,+
-))?48?%.
-))?48$;=
-))?#23
-))?#/,
%THERNET
-!#
(#,+
%THERNET
0(9
-))
PINS
-))?28?#,+
-))?28$;=
-))?28?$6
-))?28?%2
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
-))-$#
PINS
-$)/
-$#
003?/54
84!,
-(Z
/3#
0,,
(#,+
-#/-#/
0(9?#,+-(Z
84
-36
1. fHCLK must be greater than 25 MHz.
2. Pulse per second when using IEEE1588 PTP optional signal.
Figure 97. RMII with a 50 MHz oscillator
34-
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
2-))?#28?$6
2-))?2%&?#,+
)%%%040
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))
PINS
2-))-$#
PINS
-$)/
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
/3#
0,,
(#,+
/3#
-(Z
-(Z
84
-(Z
-36
1. fHCLK must be greater than 25 MHz.
Doc ID 15818 Rev 8
159/170
Application block diagrams
STM32F205xx, STM32F207xx
Figure 98. RMII with a 25 MHz crystal and PHY with PLL
34-&
-#5
%THERNET
0(9
2-))?48?%.
%THERNET
-!#
2-))?48$;=
2-))?28$;=
(#,+
)%%%040
2-))?#28?$6
2-))?2%&?#,+
2-))
PINS
2%&?#,+
-$)/
4IMER
INPUT
TRIGGER 4IMESTAMP
4)-
COMPARATOR
2-))-$#
PINS
-$#
OR
OR-(Z SYNCHRONOUS -(Z
84!,
-(Z
/3#
0,,
(#,+
0,,
-#/-#
0(9?#,+-(Z 84
-36
1. fHCLK must be greater than 25 MHz.
2. The 25 MHz (PHY_CLK) must be derived directly from the HSE oscillator, before the PLL block.
160/170
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
8
Revision history
Revision history
Table 93.
Document revision history
Date
Revision
05-Jun-2009
1
Initial release.
2
Document status promoted from Target specification to Preliminary
data.
In Table 6: STM32F20x pin and ball definitions:
– Note 4 updated
– VDD_SA and VDD_3 pins inverted (Figure 11: STM32F20x LQFP100
pinout, Figure 12: STM32F20x LQFP144 pinout and Figure 13:
STM32F20x LQFP176 pinout corrected accordingly).
Section 6.1: Package mechanical data changed to LQFP with no
exposed pad.
3
LFBGA144 package removed. STM32F203xx part numbers removed.
Part numbers with 128 and 256 Kbyte Flash densities added.
Encryption features removed.
PC13-TAMPER-RTC renamed to PC13-RTC_AF1 and PI8-TAMPERRTC renamed to PI8-RTC_AF2.
4
Renamed high-speed SRAM, system SRAM.
Removed combination: 128 KBytes Flash memory in LQFP144.
Added UFBGA176 package. Added note 1 related to LQFP176
package in Table 2, Figure 13, and Table 91.
Added information on ART accelerator and audio PLL (PLLI2S).
Added Table 5: USART feature comparison.
Several updates on Table 6: STM32F20x pin and ball definitions and
Table 7: Alternate function mapping. ADC, DAC, oscillator, RTC_AF,
WKUP and VBUS signals removed from alternate functions and
moved to the “other functions” column in Table 6: STM32F20x pin and
ball definitions.
TRACESWO added in Figure 5: STM32F20x block diagram, Table 6:
STM32F20x pin and ball definitions, and Table 7: Alternate function
mapping.
XTAL oscillator frequency updated on cover page, in Figure 5:
STM32F20x block diagram and in Section 2.2.11: External
interrupt/event controller (EXTI).
Updated list of peripherals used for boot mode in Section 2.2.13: Boot
modes.
Added Regulator bypass mode in Section 2.2.16: Voltage regulator,
and Section 5.3.4: Operating conditions at power-up / power-down
(regulator OFF).
Updated Section 2.2.17: Real-time clock (RTC), backup SRAM and
backup registers.
Added Note Note: in Section 2.2.18: Low-power modes.
Added SPI TI protocol in Section 2.2.23: Serial peripheral interface
(SPI).
09-Oct-2009
01-Feb-2010
13-Jul-2010
Changes
Doc ID 15818 Rev 8
161/170
Revision history
STM32F205xx, STM32F207xx
Table 93.
Date
13-Jul-2010
162/170
Document revision history (continued)
Revision
Changes
Added USB OTG_FS features in Section 2.2.28: Universal serial bus
on-the-go full-speed (OTG_FS).
Updated VCAP_1 and VCAP_2 capacitor value to 2.2 µF in Figure 18:
Power supply scheme.
Removed DAC, modified ADC limitations, and updated I/O
compensation for 1.8 to 2.1 V range in Table 12: Limitations depending
on the operating power supply range.
Added VBORL, VBORM, VBORH and IRUSH in Table 16: Embedded reset
and power control block characteristics.
Removed table Typical current consumption in Sleep mode with Flash
memory in Deep power down mode. Merged typical and maximum
current consumption sections and added Table 17: Typical and
maximum current consumption in Run mode, code with data
processing running from Flash memory (ART accelerator disabled),
Table 18: Typical and maximum current consumption in Run mode,
code with data processing running from Flash memory (ART
accelerator enabled) or RAM, Table 19: Typical and maximum current
consumption in Sleep mode, Table 20: Typical and maximum current
consumptions in Stop mode, Table 21: Typical and maximum current
consumptions in Standby mode, and Table 22: Typical and maximum
current consumptions in VBAT mode.
Update Table 31: Main PLL characteristics and added Section 5.3.11:
PLL spread spectrum clock generation (SSCG) characteristics.
Added Note 8 for CIO in Table 43: I/O static characteristics.
Updated Section 5.3.18: TIM timer characteristics.
4
(continued) Added TNRST_OUT in Table 46: NRST pin characteristics.
Updated Table 49: I2C characteristics.
Removed 8-bit data in and data out waveforms from Figure 46: ULPI
timing diagram.
Removed note related to ADC calibration in Table 64. Section 5.3.20:
12-bit ADC characteristics: ADC characteristics tables merged into one
single table; tables ADC conversion time and ADC accuracy removed.
Updated Table 65: DAC characteristics.
Updated Section 5.3.22: Temperature sensor characteristics and
Section 5.3.23: VBAT monitoring characteristics.
Update Section 5.3.26: Camera interface (DCMI) timing specifications.
Added Section 5.3.27: SD/SDIO MMC card host interface (SDIO)
characteristics, and Section 5.3.28: RTC characteristics.
Added Section 6.2: Thermal characteristics. Updated Table 88:
LQFP176 - Low profile quad flat package 24 × 24 × 1.4 mm package
mechanical data and Figure 82: LQFP176 - Low profile quad flat
package 24 × 24 × 1.4 mm, package outline.
Changed tape and reel code to TX in Table 91: Ordering information
scheme.
Added Table 92: Main applications versus package for STM32F2xxx
microcontrollers. Updated figures in Appendix A.3: USB OTG full
speed (FS) interface solutions and A.4: USB OTG high speed (HS)
interface solutions. Updated Figure 92: Audio player solution using
PLL, PLLI2S, USB and 1 crystal and Figure 93: Audio PLL (PLLI2S)
providing accurate I2S clock.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 93.
Revision history
Document revision history (continued)
Date
25-Nov-2010
Revision
Changes
5
Update I/Os in Section : Features.
Added WLCSP66(64+2) package. Added note 1 related to LQFP176
on cover page.
Added trademark for ART accelerator. Updated Section 2.2.2:
Adaptive real-time memory accelerator (ART Accelerator™).
Updated Figure 6: Multi-AHB matrix.
Added case of BOR inactivation using IRROFF on WLCSP devices in
Section 2.2.15: Power supply supervisor.
Reworked Section 2.2.16: Voltage regulator to clarify regulator off
modes. Renamed PDROFF, IRROFF in the whole document.
Added Section 2.2.19: VBAT operation.
Updated LIN and IrDA features for UART4/5 in Table 5: USART feature
comparison.
Table 6: STM32F20x pin and ball definitions: Modified VDD_3 pin, and
added note related to the FSMC_NL pin; renamed BYPASS-REG
REGOFF, and add IRROFF pin; renamed USART4/5 UART4/5.
USART4 pins renamed UART4.
Changed VSS_SA to VSS, and VDD_SA pin reserved for future use.
Updated maximum HSE crystal frequency to 26 MHz.
Section 5.2: Absolute maximum ratings: Updated VIN minimum and
maximum values and note related to five-volt tolerant inputs in Table 8:
Voltage characteristics. Updated IINJ(PIN) maximum values and related
notes in Table 9: Current characteristics.
Updated VDDA minimum value in Table 11: General operating
conditions.
Added Note 2 and updated Maximum CPU frequency in Table 12:
Limitations depending on the operating power supply range, and
added Figure 20: Number of wait states versus fCPU and VDD range.
Added brownout level 1, 2, and 3 thresholds in Table 16: Embedded
reset and power control block characteristics.
Changed fOSC_IN maximum value in Table 27: HSE 4-26 MHz oscillator
characteristics.
Changed fPLL_IN maximum value in Table 31: Main PLL characteristics,
and updated jitter parameters in Table 32: PLLI2S (audio PLL)
characteristics.
Section 5.3.16: I/O port characteristics: updated VIH and VIL in
Table 43: I/O static characteristics.
Added Note 1 below Table 44: Output voltage characteristics.
Updated RPD and RPU parameter description in Table 54: USB OTG
FS DC electrical characteristics.
Updated VREF+ minimum value in Table 63: ADC characteristics.
Updated Table 68: Embedded internal reference voltage.
Removed Ethernet and USB2 for 64-pin devices in Table 92: Main
applications versus package for STM32F2xxx microcontrollers.
Added A.2: Application example with regulator OFF, removed “OTG
FS connection with external PHY” figure, updated Figure 87,
Figure 88, and Figure 90 to add STULPI01B.
Doc ID 15818 Rev 8
163/170
Revision history
STM32F205xx, STM32F207xx
Table 93.
Document revision history (continued)
Date
22-Apr-2011
164/170
Revision
Changes
6
Changed datasheet status to “Full Datasheet”.
Introduced concept of SRAM1 and SRAM2.
LQFP176 package now in production and offered only for 256 Kbyte
and 1 Mbyte devices. Availability of WLCSP64+2 package limited to
512 Kbyte and 1 Mbyte devices.
Updated Figure 3: Compatible board design between STM32F10xx
and STM32F2xx for LQFP144 package and Figure 2: Compatible
board design between STM32F10xx and STM32F2xx for LQFP100
package.
Added camera interface for STM32F207Vx devices in Table 2:
STM32F205xx features and peripheral counts.
Removed 16 MHz internal RC oscillator accuracy in Section 2.2.12:
Clocks and startup.
Updated Section 2.2.16: Voltage regulator.
Modified I2S sampling frequency range in Section 2.2.12: Clocks and
startup, Section 2.2.24: Inter-integrated sound (I2S), and
Section 2.2.30: Audio PLL (PLLI2S).
Updated Section 2.2.17: Real-time clock (RTC), backup SRAM and
backup registers and description of TIM2 and TIM5 in Section :
General-purpose timers (TIMx).
Modified maximum baud rate (oversampling by 16) for USART1 in
Table 5: USART feature comparison.
Updated note related to RFU pin below Figure 11: STM32F20x
LQFP100 pinout, Figure 12: STM32F20x LQFP144 pinout, Figure 13:
STM32F20x LQFP176 pinout, Figure 14: STM32F20x UFBGA176
ballout, and Table 6: STM32F20x pin and ball definitions.
In Table 6: STM32F20x pin and ball definitions,:changed I2S2_CK and
I2S3_CK to I2S2_SCK and I2S3_SCK, respectively; added PA15 and
TT (3.6 V tolerant I/O).
Added RTC_50Hz as PB15 alternate function in Table 6: STM32F20x
pin and ball definitions and Table 7: Alternate function mapping.
Removed ETH _RMII_TX_CLK for PC3/AF11 in Table 7: Alternate
function mapping.
Updated Table 8: Voltage characteristics and Table 9: Current
characteristics.
TSTG updated to –65 to +150 in Table 10: Thermal characteristics.
Added CEXT, ESL, and ESR in Table 11: General operating conditions
as well as Section 5.3.2: VCAP1/VCAP2 external capacitor.
Modified Note 4 in Table 12: Limitations depending on the operating
power supply range.
Updated Table 14: Operating conditions at power-up / power-down
(regulator ON), and Table 15: Operating conditions at power-up /
power-down (regulator OFF).
Added OSC_OUT pin in Figure 16: Pin loading conditions. and
Figure 17: Pin input voltage.
Updated Figure 18: Power supply scheme to add IRROFF and
REGOFF pins and modified notes.
Updated VPVD, VBOR1, VBOR2, VBOR3, TRSTTEMPO typical value, and
IRUSH, added ERUSH and Note 3 in Table 16: Embedded reset and
power control block characteristics.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 93.
Revision history
Document revision history (continued)
Date
22-Apr-2011
Revision
Changes
Updated Typical and maximum current consumption conditions, as
well as Table 17: Typical and maximum current consumption in Run
mode, code with data processing running from Flash memory (ART
accelerator disabled) and Table 18: Typical and maximum current
consumption in Run mode, code with data processing running from
Flash memory (ART accelerator enabled) or RAM. Added Figure 22,
Figure 23, Figure 24, and Figure 25.
Updated Table 19: Typical and maximum current consumption in Sleep
mode, and added Figure 26 and Figure 27.
Updated Table 20: Typical and maximum current consumptions in Stop
mode. Added Figure 28: Typical current consumption vs temperature
in Stop mode.
Updated Table 21: Typical and maximum current consumptions in
Standby mode and Table 22: Typical and maximum current
consumptions in VBAT mode.
Updated On-chip peripheral current consumption conditions and
Table 23: Peripheral current consumption.
Updated tWUSTDBY and tWUSTOP, and added Note 3 in Table 24: Lowpower mode wakeup timings.
Maximum fHSE_ext and minimum tw(HSE) values updated in Table 25:
High-speed external user clock characteristics.
Updated C and gm in Table 27: HSE 4-26 MHz oscillator
characteristics. Updated RF, I2, gm, and tsu(LSE) in Table 28: LSE
oscillator characteristics (fLSE = 32.768 kHz).
Added Note 1 and updated ACCHSI, IDD(HSI, and tsu(HSI) in Table 29:
6
HSI
oscillator characteristics. Added Figure 33: ACCHSI versus
(continued)
temperature.
Updated fLSI, tsu(LSI) and IDD(LSI) in Table 30: LSI oscillator
characteristics. Added Figure 34: ACCLSI versus temperature
Table 31: Main PLL characteristics: removed note 1, updated tLOCK,
jitter, IDD(PLL) and IDDA(PLL), added Note 2 for fPLL_IN minimum and
maximum values.
Table 32: PLLI2S (audio PLL) characteristics: removed note 1, updated
tLOCK, jitter, IDD(PLLI2S) and IDDA(PLLI2S), added Note 3 for fPLLI2S_IN
minimum and maximum values.
Added Note 1 in Table 33: SSCG parameters constraint.
Updated Table 34: Flash memory characteristics. Modified Table 35:
Flash memory programming and added Note 2 for tprog. Updated tprog
and added Note 1 in Table 36: Flash memory programming with VPP.
Modified Figure 38: Recommended NRST pin protection.
Updated Table 39: EMI characteristics and EMI monitoring conditions
in Section : Electromagnetic Interference (EMI). Added Note 2 related
to VESD(HBM)in Table 40: ESD absolute maximum ratings.
Updated Table 43: I/O static characteristics.
Added Section 5.3.15: I/O current injection characteristics.
Modified maximum frequency values and conditions in Table 45: I/O
AC characteristics.
Updated tres(TIM) in Table 47: Characteristics of TIMx connected to the
APB1 domain. Modified tres(TIM) and fEXT Table 48: Characteristics of
TIMx connected to the APB2 domain.
Doc ID 15818 Rev 8
165/170
Revision history
STM32F205xx, STM32F207xx
Table 93.
Document revision history (continued)
Date
22-Apr-2011
166/170
Revision
Changes
Changed tw(SCKH) to tw(SCLH), tw(SCKL) to tw(SCLL), tr(SCK) to tr(SCL), and
tf(SCK) to tf(SCL) in Table 49: I2C characteristics and in Figure 39: I2C
bus AC waveforms and measurement circuit.
Added Table 54: USB OTG FS DC electrical characteristics and
updated Table 55: USB OTG FS electrical characteristics.
Updated VDD minimum value in Table 59: Ethernet DC electrical
characteristics.
Updated Table 63: ADC characteristics and RAIN equation.
Updated RAIN equation. Updated Table 65: DAC characteristics.
Updated tSTART in Table 66: TS characteristics.
Updated R typical value in Table 67: VBAT monitoring characteristics.
Updated Table 68: Embedded internal reference voltage.
Modified FSMC_NOE waveform in Figure 55: Asynchronous nonmultiplexed SRAM/PSRAM/NOR read waveforms. Shifted end of
FSMC_NEx/NADV/addresses/NWE/NOE/NWAIT of a half FSMC_CLK
period, changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKLAIV), td(CLKH-NOEH) to td(CLKL-NOEH), and td(CLKH-NWEH) to td(CLKLNWEH), and updated data latency from 1 to 0 in Figure 59:
6
Synchronous multiplexed NOR/PSRAM read timings, Figure 60:
(continued) Synchronous multiplexed PSRAM write timings, Figure 61:
Synchronous non-multiplexed NOR/PSRAM read timings, and
Figure 62: Synchronous non-multiplexed PSRAM write timings,
Changed td(CLKH-NExH) to td(CLKL-NExH), td(CLKH-AIV) to td(CLKL-AIV),
td(CLKH-NOEH) to td(CLKL-NOEH), td(CLKH-NWEH) to td(CLKL-NWEH), and
modified tw(CLK) minimum value in Table 73, Table 74, Table 75, and
Table 76.
Updated note 2 in Table 69, Table 70, Table 71, Table 72, Table 73,
Table 74, Table 75, and Table 76.
Modified th(NIOWR-D) in Figure 68: PC Card/CompactFlash controller
waveforms for I/O space write access.
Modified FSMC_NCEx signal in Figure 69: NAND controller
waveforms for read access, Figure 70: NAND controller waveforms for
write access, Figure 71: NAND controller waveforms for common
memory read access, and Figure 72: NAND controller waveforms for
common memory write access
Specified Full speed (FS) mode for Figure 89: USB OTG HS
peripheral-only connection in FS mode and Figure 90: USB OTG HS
host-only connection in FS mode.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 93.
Revision history
Document revision history (continued)
Date
14-Jun-2011
Revision
Changes
7
Added SDIO in Table 2: STM32F205xx features and peripheral counts.
Updated VIN for 5V tolerant pins in Table 8: Voltage characteristics.
Updated jitter parameters description in Table 31: Main PLL
characteristics.
Remove jitter values for system clock in Table 32: PLLI2S (audio PLL)
characteristics.
Updated Table 39: EMI characteristics.
Update Note 2 in Table 49: I2C characteristics.
Updated Avg_Slope typical value and TS_temp minimum value in
Table 66: TS characteristics.
Updated TS_vbat minimum value in Table 67: VBAT monitoring
characteristics.
Updated TS_vrefint mimimum value in Table 68: Embedded internal
reference voltage.
Added Software option in Section 7: Part numbering.
In Table 92: Main applications versus package for STM32F2xxx
microcontrollers, renamed USB1 and USB2, USB OTG FS and USB
OTG HS, respectively; and removed USB OTG FS and camera
interface for 64-pin package; added USB OTG HS on 64-pin package;
added Note 2 and Note 3.
Doc ID 15818 Rev 8
167/170
Revision history
STM32F205xx, STM32F207xx
Table 93.
Document revision history (continued)
Date
20-Dec-2011
168/170
Revision
Changes
8
Updated SDIO register addresses in Figure 15: Memory map.
Updated Figure 3: Compatible board design between STM32F10xx
and STM32F2xx for LQFP144 package, Figure 2: Compatible board
design between STM32F10xx and STM32F2xx for LQFP100 package,
Figure 1: Compatible board design between STM32F10xx and
STM32F2xx for LQFP64 package, and added Figure 4: Compatible
board design between STM32F10xx and STM32F2xx for LQFP176
package.
Updated Section 2.2.3: Memory protection unit.
Updated Section 2.2.6: Embedded SRAM.
Updated Section 2.2.28: Universal serial bus on-the-go full-speed
(OTG_FS) to remove external FS OTG PHY support.
In Table 6: STM32F20x pin and ball definitions: changed SPI2_MCK
and SPI3_MCK to I2S2_MCK and I2S3_MCK, respectively. Added
ETH _RMII_TX_EN atlternate function to PG11. Added EVENTOUT in
the list of alternate functions for I/O pin/balls. Removed
OTG_FS_SDA, OTG_FS_SCL and OTG_FS_INTN alternate
functions.
In Table 7: Alternate function mapping: changed I2S3_SCK to
I2S3_MCK for PC7/AF6, added FSMC_NCE3 for PG9, FSMC_NE3
for PG10, and FSMC_NCE2 for PD7. Removed OTG_FS_SDA,
OTG_FS_SCL and OTG_FS_INTN alternate functions. Changed
I2S3_SCK into I2S3_MCK for PC7/AF6. Updated peripherals
corresponding to AF12.
Removed CEXT and ESR from Table 11: General operating
conditions.
Added maximum power consumption at TA=25 °C in Table 20: Typical
and maximum current consumptions in Stop mode.
Updated md minimum value in Table 33: SSCG parameters constraint.
Added examples in Section 5.3.11: PLL spread spectrum clock
generation (SSCG) characteristics.
Updated Table 51: SPI characteristics and Table 52: I2S
characteristics.
Updated Figure 46: ULPI timing diagram and Table 58: ULPI timing.
Updated Table 60: Dynamics characteristics: Ethernet MAC signals for
SMI, Table 61: Dynamics characteristics: Ethernet MAC signals for
RMII, and Table 62: Dynamics characteristics: Ethernet MAC signals
for MII.
Section 5.3.25: FSMC characteristics: updated Table 69 toTable 80,
changed CL value to 30 pF, and modified FSMC configuration for
asynchronous timings and waveforms. Updated Figure 60:
Synchronous multiplexed PSRAM write timings.
UpdatedTable 81: DCMI characteristics.
Updated Table 89: UFBGA176+25 - ultra thin fine pitch ball grid array
10 × 10 × 0.6 mm mechanical data.
Updated Table 91: Ordering information scheme.
Doc ID 15818 Rev 8
STM32F205xx, STM32F207xx
Table 93.
Revision history
Document revision history (continued)
Date
20-Dec-2011
Revision
Changes
Appendix A.3: USB OTG full speed (FS) interface solutions: updated
Figure 87: USB OTG FS (full speed) host-only connection and added
Note 2 , updated Figure 88: OTG FS (full speed) connection dual-role
with internal PHY and added Note 3 and Note 4, modified Figure 89:
OTG HS (high speed) device connection, host and dual-role in highspeed mode with external PHY and added Note 2.
8
Appendix A.4: USB OTG high speed (HS) interface solutions:
(continued)
removed figures USB OTG HS device-only connection in FS mode and
USB OTG HS host-only connection in FS mode,updated Figure 89:
OTG HS (high speed) device connection, host and dual-role in highspeed mode with external PHY.
Added Appendix A.6: Ethernet interface solutions.
Updated disclaimer on last page.
Doc ID 15818 Rev 8
169/170
STM32F205xx, STM32F207xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
170/170
Doc ID 15818 Rev 8