STB5701 350 to 400 MHz FSK/ASK receiver (ST-RECORD01 family) Preliminary Data Features ■ Multiband receiver: 350MHz to 400MHz ■ FSK/ASK modulation selection ■ Programmable multichannel ■ High dynamic range with On-Chip AGC ■ PLL and fully VCO integrated ■ Image Rejection Mixer integrated ■ Start Code Detector block (SCD) ■ I2C serial interface (standard mode/fast mode) ■ BiCMOS SiGe technology ■ VQFN package 5 x 5 mm Description This device is a single chip FSK/ASK receiver optimized for licence-free ISM band operations from 350MHz to 400 MHz. It can easily be configured to provide the optimal solution for the user's application like Set Top Box and 350/400 MHz ISM Band Systems. Applications ■ 350 to 400 MHz ISM Band System ■ Set Top Box Table 1. Device summary Order codes Package QFN32L October 2007 Tray Tape & Reel STB5701 STB5701TR Rev 1 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/35 www.st.com 35 Contents STB5701 Contents 1 Block diagram and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 Programmable Phase Locked Loop synthesizer (PLL) . . . . . . . . . . . . . . 18 4.3 4.4 5 2/35 4.2.1 Divider (a-counter, m-counter and prescaler) . . . . . . . . . . . . . . . . . . . . 18 4.2.2 Reference divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.3 Phase Frequency Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2.4 Loop filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Receiver section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.1 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.3.2 Image Rejection Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.3 ASK/FSK demodulator and data filter . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.4 Min /Max peak detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3.5 Data slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Digital control and source selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4.1 State pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.2 Data pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.4.3 MODE register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.5 Start code detection example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.6 Registers list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.7 Register summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.8 Detailed display description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.2 QFN32L (5mm x 5mm) information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 STB5701 6 Contents Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3/35 List of tables STB5701 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. 4/35 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Absolute maximum ratings (Tamb = 25oC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I2C reserved addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C address breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C mapped top level registers - summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 I2C mapped SCD registers - summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 DIG_config register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 RF_Config register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PLL_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PLL_M register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PLL_R register format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SCD_config register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SCD_status register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SCD_code register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SCD_code_lenth register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SCD_symbol_min_time register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SCD_symbol_max_time register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SCD_symbol_nom_time register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 SCD_prescaler register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Interrupt_enable register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Interrupt_clear register format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Timeout register format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 QFN32L (5mm x 5mm) mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STB5701 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PLL block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 LNA block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Mixer block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ASK/FSK demodulator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Digital section block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 START code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 QFN32L (5mm x 5mm) dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5/35 6/35 (8) LF CK_OUT (7) (6) XTAL1 (5) XTAL2 (4) VCC_XTAL (3) VCC_Div Clk Pierce Crystal Oscillator Clk Delay I2C (PLL_A, PLL_M) 1 VCC_VCO (9) I2C (PLL_R) R 1 N I2C (CLKOUT_ENABLE) Threshold RFAmp sQ sI PF D CP PLL S ynthetizer :2 (29) IF 1 TANK EN_Xtal 10 Image Rejection Mixer (30 Vcc_IF NC (11) VCO SCL (12) SDA (13) I2C Interface Digital S ection Clk (28) TEST_EN STATE (14) Test_EN Pin 28 IR_IN (15) SCD SAD Pin 25 (27) IF 2 ASK Data Slicer I2C (ASK_NOTFSK) RSSI Vcc_Dig (16) Mean FSK FSK Demodulator (26) RSSI_OUT Peak Detector FSK_Discr Pin 21 (25) SAD Max Min DOUT (17) notReset 18 PK2 (19) (20) PK1 10.7 MHz Discriminator FSK_Discr (21) Chan_Filter3 (22) Chan_Filter2 (23) Chan_Filter1 (24) V cc V cc Figure 1. I2C (LNA_GAIN) (31) Vcc_MIX 1 (2) VCC_LNA (1) IN_LNA 32 GND_LNA 10.7 MHz Ceramic Filter Block diagram and pin configuration STB5701 Block diagram and pin configuration Block diagram STB5701 Block diagram and pin configuration Table 2. Pin Pin description Name I/O type I/O schematic Description Vcc 32 GND_LNA GND Low Noise Amplifier ground IN_LNA Vcc GND_LNA 1 IN_LNA I Low Noise Amplifier input 2 Vcc_LNA Vcc Low Noise Amplifier supply voltage 3 Vcc_Div Vcc Divider supply voltage 4 Vcc_XTAL Vcc Crystal supply voltage Vcc Vcc 5 XTAL2 2nd Crystal input XTAL2 O Vcc Vcc Vcc 6 XTAL1 1st Crystal input I XTAL1 Vcc 7 CK_OUT O CK_OUT Vcc Clock output Vcc LPF 8 LPF I/O Loop filter 9 Vcc_VCO Vcc VCO supply voltage Vcc 10 EN_XTAL 11 NC I EN_Xtal Crystal oscillator enable Not connected 7/35 Block diagram and pin configuration Table 2. Pin STB5701 Pin description (continued) Name I/O type I/O schematic Description Vcc Vcc 12 SCL I I2C clock SCL Vcc 13 SDA I I2C data In/Out SDA Vcc Vcc 14 STATE O High when selecting UHF STATE Vcc Vcc 15 IR_IN I 16 Vcc_Dig Vcc From external IR source IR_IN Digital section supply voltage Vcc 17 DOUT O Digital serial output DOUT Vcc Vcc 18 8/35 NotReset I notReset Global reset, active low STB5701 Block diagram and pin configuration Table 2. Pin Pin description (continued) Name I/O type I/O schematic Vcc 19 PK2 PK2 Description Vcc I/O Max. peak detector Vcc Vcc 20 PK1 I/O Min. peak detector PK1 21 FSK_Discrim I/O FSK discriminator FSK_Discr Vcc Vcc 22 Chan_Filter3 I/O Channel filter Chan_Filter3 Vcc Vcc 23 Chan_Filter2 I/O Channel filter Chan_Filter2 Vcc 24 Chan_Filter1 I/O Channel filter Chan_Filter1 Vcc Vcc 25 SAD I SAD I2C address selection 9/35 Block diagram and pin configuration Table 2. Pin STB5701 Pin description (continued) Name I/O type I/O schematic Description Vcc 26 RSSI_OUT Radio strength signal indicator output O RSSI_OUT Vcc 27 IF2 I External IF filter input IF2 Vcc Vcc 28 Test_EN I Test mode enable TEST_EN Vcc 10/35 Vcc 29 IF1 O 30 Vcc_IF Vcc IF supply voltage 31 Vcc_MIX Vcc Mixer supply voltage EP GND GND Ground IF1 External IF filter output STB5701 Block diagram and pin configuration Figure 2. Test circuit GND 1 2 EN_XTAL NC SCL SDA 11/35 Block diagram and pin configuration Table 3. 12/35 STB5701 Bill of material Component Size Manufacturer Part number Description C1 0603 MURATA Series GRM39 LNA Input matching C2 0603 MURATA Series GRM39 Crystal load capacitor C3 0603 MURATA Series GRM39 Crystal load capacitor C4 0603 MURATA Series GRM39 Loop filter capacitor C5 0603 MURATA Series GRM39 Loop filter capacitor C6 0603 MURATA Series GRM39 Peak detector capacitor C7 0603 MURATA Series GRM39 Peak detector capacitor C8 0603 MURATA Series GRM39 FSK Discriminator Tuning C9 0603 MURATA Series GRM39 Channel filter capacitor C10 0603 MURATA Series GRM39 Channel filter capacitor C11 0603 MURATA Series GRM39 RSSI output low path capacitor C12 0603 MURATA Series GRM39 IF Filter DC Block C13 0603 MURATA Series GRM39 IF Filter DC Block R1 0603 NEOHM Series CRG0603 Resistor load capacitor R2 0603 NEOHM Series CRG0603 Loop filter resistor R3 0603 NEOHM Series CRG0603 Peak detector resistor R4 0603 NEOHM Series CRG0603 Peak detector resistor R5 0603 NEOHM Series CRG0603 RSSI output resistor R6 0603 NEOHM Series CRG0603 IF Filter Matching R7 0603 NEOHM Series CRG0603 IF Filter Matching L1 0603 MURATA LQP18M LNA input matching X1 CS10 CITIZEN CS1027.000MABJTR Crystal F1 Toko SK107M2N-A0-20X Ceramic filter F2 Toko CDF107F-AO-022 Ceramic resonator STB5701 Electrical specifications 2 Electrical specifications 2.1 Absolute maximum ratings Stressing the device above the rating listed in the “Absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document Table 4. Absolute maximum ratings (Tamb = 25oC) Symbol VCC 2.2 Parameter Supply voltage Value Unit 4.5 V Tj Junction temperature -40 to 150 oC Tstg Storage temperature -55 to + 150 oC Value Unit 0 + 70 oC 40 oC/W Thermal data Table 5. Symbol Thermal data Parameter Ta Operating temperature θth Thermal resistance junction to ambient 13/35 Electrical characteristics 3 STB5701 Electrical characteristics (VCC = 3.3 V, Zs = 50 Ω, Ta = 25 oC, unless otherwise specified). Table 6. Electrical characteristics Symbol Parameters Vcc Min. Typ. Max. Unit Supply voltage 2.7 3.3 3.6 V frx Receive frequency range 350 400 MHz ∆f FSK frequency deviation 25 50 kHz Irx_FSK FSK receive current consumption Standby current Icc_standby consumption Test conditions High gain LNA RF Enable bit=0 En_Xtal (PIN 10) high / floating En_Xtal (PIN 10) low FSK data rate RLin (Manchester encoding) 37.5 25 mA 5 mA 20 µA 2 Input return loss 10 Max RF power input Pmin Input sensitivity Channel blocking (1) 10 dB 0 2 kbps manchester encoding BER ≤10-3 BW = 300KHz FSK 37.5 KHz deviation kbps dBm RF1 =369.5MHz RF2 = 371.1MHz RF3 = 375.3MHz RF4 = 376.9MHz RF5 = 388.3MHz RF6 = 391.5MHz RF7 = 394.3MHz RF8 = 395.9MHz -109 dBm RFX +/-30KHz -103 dBm 50 50 dBc dBc 35 dB +/-1MHz +/-6MHz Image Rejection I2C I/O pins 14/35 VIH Input logic voltage high 0.7 Vcc 3.6 V VIL Input logic voltage low -0.5 0.3Vcc V STB5701 Electrical characteristics Table 6. Electrical characteristics (continued) Symbol Parameters Test conditions Min. Typ. Max. Unit VOL Output logic voltage low 0.4 V VHYST Hysteresis of schmitt trigger for inputs 0.05 Vcc tof Output fall time from VIHmin to VILmax with a bus capacitance from 10pF to 400pF 20+ 0.1Cb 250 ns Ii Input current each I/O pin with an input voltage between 0.1Vcc and 0.9Vcc -10 10 µA Ci Capacitance for each I/O pin 10 pF Cb Capacitive load for each bus line 400 pF 100 kHz V I2C Standard mode fSCL SCL clock frequency 0 tSU_STA Setup time for START condition 4.7 µs tHD_STA Hold time for START condition 4 µs tHIGH SCL high time 4 µs tLOW SCL low time 4.7 µs 250 ns tSU_DAT DATA setup time tHD_DAT DATA hold time tR 0 3.45 µs SDA, SCL rise time 1000 ns tF SDA, SCL fall time 300 ns tSU_STO Setup time for STOP condition 4 µs tBUF Bus free time between STOP and START condition 4.7 µs 15/35 Electrical characteristics Table 6. Symbol STB5701 Electrical characteristics (continued) Parameters Test conditions Min. Typ. Max. Unit 400 kHz I2C Fast mode fSCL SCL clock frequency 0 tSU_STA Setup time for START condition 0.6 µs tHD_STA Hold time for START condition 0.6 µs tHIGH SCL high time 0.6 µs tLOW SCL low time 1.3 µs 100 ns tSU_DAT DATA setup time tHD_DAT DATA hold time tR 0.9 µs SDA, SCL rise time 300 ns tF SDA, SCL fall time 300 ns tSU_STO Setup time for STOP condition 0.6 µs tBUF Bus free time between STOP and START condition 1.3 µs 1. 16/35 0 Desired signal 10dB above the input sensitivity level, CW interferer power level increased until BER ≤10-3 STB5701 Functional description 4 Functional description 4.1 General description The STB5701 FSK/ASK receiver is a heterodyne configuration (10.7 MHz IF Frequency) and it is designed for applications in the 350MHz to 400MHz frequency range and includes ASK and FSK detectors. The synthesizer has a typical channel spacing of better than 100 kHz and uses a integrated fully VCO. With the STB5701 receiver chip, various circuit configurations can be arranged in order to meet a number of different customer requirement. The STB5701 is housed in a VQF package 5mm x 5mm 32 leads. The STB5701 receiver IC consists of the following building blocks: ● Phase Locked Loop Synthesizer (PLL): M-Counter, A-Counter, Prescaler, PhaseFrequency Detector (PFD), Charge Pump (CP), Voltage Controlled Oscillator (VCO). ● Programmable reference divider for crystal and channel step selection. ● Low Noise Amplifier (LNA) with AGC function for high sensitivity and dynamic range RF signal reception. ● Image Rejection Mixer for down conversion of the RF signal to the IF (without external saw image filter). ● IF amplifier to amplify and limit the IF signal and for RSSI generation. ● Phase coincidence demodulator to demodulate the IF signal. ● Operation amplifier for data slicing, filtering and ASK detection. ● Min/max peak detector to create a DC output voltage equal to the mean of the min and max peak value of the data signal. ● I2C bus to exchange data between the STB5701 and the micro. ● Start code detector (SCD) to recognize a valid data signal to prevent continuos toggling of data in the absence of an RF Signal due to the noise. ● Bias circuitry for band gap biasing and circuit shutdown. 17/35 Functional description 4.2 STB5701 Programmable Phase Locked Loop synthesizer (PLL) Figure 3. PLL block diagram Image Rejection Mixer (3) VCC_Div f VCO (4) VCC_XTAL (5) XTAL2 :2 I2C (PLL_A, PLL_M) Pierce Crystal Oscillator 1 N fN PLL Synthetizer 2 f VCO PFD CP f XTAL 1 R (6) XTAL1 VCO fR I2C (PLL_R) CK_OUT (7) Clk I2C (CLKOUT_ENABLE) TANK (8) LF VCC_VCO (9) EN_Xtal 10 NC (11) The synthesized programmable local oscillator is a Phase Locked Loop (PLL) using a 'parallel-resonant' quartz crystal as frequency reference. The PLL block contains a phase detector, charge pump, VCO, Programmable N and R Divider and a Crystal Oscillator. The synthesized frequency (fVCO) is set by programming the 'N' Divider through the I2C interface (PINs 12, 13). fR = fXTAL / R fVCO = N fN = N . fR = (N / R) . fXTAL . 4.2.1 Divider (a-counter, m-counter and prescaler) The main divider (N) of the PLL contains a 3-bit A-counter, a 10-bit M-counter and an 8/9 prescaler. The divider ratio of the prescaler is controlled by the program counter and the swallow counter. During one cycle, the prescaler divides by 9 until the swallow A-counter reaches its terminal count. Afterwards the prescaler divider by 8 until the program counter reaches its terminal count. Therefore the overall feedback divider ratio can be expressed as: N = 9 . A + 8 . (M - A) 18/35 STB5701 Functional description The A-counter configuration represents the lower bits in the feedback divider register and the upper bits the M-counter configuration respectively. According to that, the following counter ranges are implemented: 0 ≤A ≤7 7 ≤ M ≤ 1023 and therefore the range of the overall feedback divider ratio results in: 56 ≤ N ≤ 8191 The user does not need to care about the A- and M-counter settings. It is only necessary to know the overall feedback divider ratio N to program the register settings. 4.2.2 Reference divider The reference divider reduces the frequency of the external crystal (FXTAL) to an internal reference frequency (FR) used for the phase-locked loop. This value, corresponding to the channel step, it is set by programming a 10-bit counter through the I2C interface (PINs 12, 13). Therefore the range of the Reference divider ratio is: 0 ≤ R ≤ 1023 4.2.3 Phase Frequency Detector The phase detector (PFD) is a device that compares two input (fN and fR) phases, generating an output that is a measure of their phase difference. The gain of the phase detector can be expressed as: KPD = ICP / 2π where ICP is the charge pump current. If fR doesn't equal fN, the phase-error signal, after being filtered and amplified, causes the VCO frequency to deviate in the direction of fR. 19/35 Functional description 4.2.4 STB5701 Loop filter An external PLL loop filter is connected to pin LF (PIN 8). The loop filter controls the dynamic behavior of the PLL, primarily lock time and reference spur levels. Generally, the PLL lock time is a small fraction of the overall receiver start-up time. The crystal oscillator is the largest contributor to start-up time. 4.3 Receiver section The integrated receiver is intended to be used as a single-conversion FSK/ASK receiver. It consists of a low noise amplifier, mixer, IF filter, limiter, FSK demodulator, a LPF amplifier, and a data slicer. The received strength signal indicator (RSSI) can be used for fast carrier sense detection or as amplitude shift keying, (ASK) demodulator. 4.3.1 Low Noise Amplifier (LNA) Figure 4. LNA block diagram 32 GND_LNA (1) IN_LNA Image Rejection Mixer (2) VCC_LNA I2C (LNA_GAIN) RSSI Delay Clk Threshold The LNA is based on a cascode topology for low-noise, high gain and good reverse isolation. The LNA output is directly connected to the mixer removing the external output matching. It has 2 step gain managed by an internal AGC. This AGC circuit monitors the RSSI output. The AGC has a hysteresis of ~10dB. 20/35 STB5701 4.3.2 Functional description Image Rejection Mixer Figure 5. Mixer block diagram (31) Vcc_MIX sI IF Filter LNA RFAmp sQ Image Rejection Mixer I2C (SC_FILTER) VCO An excellent feature of the STB5701 is the integrated image rejection mixer. This device was designed to eliminate the need for a costly front-end SAW filter for many applications. The advantage of not using a SAW filter is increased sensitivity, simplified antenna matching, less board space, and lower cost.The mixer cell is a pair of double-balanced mixers that perform an IQ down conversion of the 350-400MHz RF input to the IF (10.7MHz) with low-side injection (i.e., fRF = fLO - fIF). The Image Rejection circuit combines these signals to achieve ~35dB of Image Rejection over the full temperature range. Low-side injection is required due to the on-chip Image Rejection architecture. 4.3.3 ASK/FSK demodulator and data filter The received signal strength indicator (RSSI) voltage is proportional to the log of the downconverted RF signal at the IF limiting amplifier input. It also used as demodulator for amplitude-shift \ keying (ASK) modulation. The signal coming from the RSSI amplifier is converted into the raw data signal by the ASK/FSK demodulator. The ASK or FSK modulation selection is set by I2C interface. The dynamic range of the RSSI amplifier is exceeded if the RF input signal is about 80 dB higher compared to the RF input signal at full sensitivity. In FSK mode, the S/N ratio is not affected by the dynamic range of the RSSI amplifier but at FSK receive mode the RSSI output provides a field strength indication. Coming from the RSSI the FSK signal is fed to the input of the FSK demodulator. After buffering the signal is fed to a phase discriminator. The phase shift is generated by an external 10.7MHz Ceramic discriminator connected to FSK_Discr. (PIN 21). The FSK demodulator is intended to be used for an FSK deviation of 37.5 kHz. Lower values may be used but the sensitivity of the receiver is reduced in that condition. After demodulation a 2nd order Sallen and Key filter is provided in order to suppress unwanted frequency components. 21/35 Functional description Figure 6. STB5701 ASK/FSK demodulator block diagram FSK_Discr Pin 21 FSK Demodulator RSSI Chan_Filter1 (24) RSSI FSK ASK Chan_Filter2 (23) Chan_Filter3 (22) I2C (ASK_NOTFSK) FSK_Discr (21) 10.7 MHz Discriminator Data Slicer SCD Mean Peak Detector Min Max V cc PK2 (19) notReset 22/35 V cc (20) PK1 18 STB5701 4.3.4 Functional description Min /Max peak detector The peak detector embedded in the STB5701, in conjunction with an external RC filter (PINs 22, 23, 24), generates a DC output voltage equal to the mean of the min and max peak value of the data signal. The resistor provides a path for the capacitor to discharge, allowing the peak detector to dynamically follow peak changes of the data filter output voltage. 4.3.5 Data slicer The purpose of the data slicer is to take the analog output of the data filter and convert it to a digital signal. This is achieved by using a comparator and comparing the analog input to a threshold voltage. One input is supplied by the data filter output. The other path is fed to the min/max Peak detector to derive the average value (DC component) as an adaptive slice reference which is presented to the positive comparator input. The adaptive reference allows detecting the received data over a large range of noise floor levels. 4.4 Digital control and source selection Figure 7. Digital section block diagram Clk Test_EN Pin 28 SAD Pin 25 Digital Section Data Slicer I2C Interface SCD notReset 18 DOUT (17) SCL (12) SDA (13) STATE (14) IR_IN (15) Vcc_Dig (16) The STB5701 digital section is responsible for the following functions: ● Configuration of the RF front end through software programmable config bits. ● Configuration of the PLL through software programmable registers (PLLA,M,R). ● Detection of a pre-programmed start code sequence (one of two possibilities). ● Arbitration between UHF and IR sources. The serial data emerges from the DATA output pin (PIN 17) and the system state emerges from the STATE output pin (PIN 14). 23/35 Functional description 4.4.1 STB5701 State pin The STATE output pin may be configured in one of two ways: ● To reflect the state of the start code detection block officiated = detected, 0 = searching or off), the state can be cleared by a programmable time out or a software reset. ● To operate as a true interrupt with associate status bit and a software clearing mechanism. The state output may be optionally inverted. 4.4.2 Data pin The DATA output pin is driven by one of two sources: 4.4.3 ● The IR_IN pin. ● The UHF input from the RF front end. MODE register The DATA source selected at any time is governed by the MODE register, the options are as follows: ● IR_IN only, direct connection. ● UHF only, direct connection. ● IR triggered, the output is zero and switched to UHf on detection of a valid start code. ● IR/UHF arbitrated, the output comes by default from IR_IN, however on detection of a valid start code the output is switched to select the UHF source. The switch back to IR is accomplished in one of two ways. A software reset is programmed. The time-out counter has been set and has timed out. 24/35 STB5701 4.5 Functional description Start code detection example This section explains the operation of the start code detector with reference to the start code sequence illustrated in the following figure: Figure 8. START code 12 11 10 1 ms 9 8 7 2 ms 6 5 4 1 ms 3 2 1 0 2 ms 500 µs Firstly we assume the nominal symbol duration is 500 µs, in this example there are then 13 symbol (denoted as 12 to 0 in the figure above). If the device is operating from a 27 Mhz external clock then we program the prescaler to 27. The internal sampling clock will be 1Mhz and the sampling resolution will be 1us. To add some error tolerance we also program an upper and lower bound on the symbol duration as well as the nominal value. In this case 400 (corresponding to 400us) in SCD_symbol_min_time register, 500 (corresponding to 500us) in SCD_symbol_nom_time and 600 (corresponding to 600us) in SCD_symbol_max_time. Now we program 0b1001111001111 into the SCD_code register and 13 (0x0d) corresponding to 13 symbols to be detected into the SCD_code_length register. The start code detection is started by setting the enable and research bits in SCD_config register to ‘1’. The start code detector checks for the minimum symbol time of each symbol and the sequence in which symbols are received. If the symbol time is not respected by the input (incase of noise) the start code detection is re-initialized. The detector is capable of simultaneously searching for two different start codes, the alternative code is written into the upper 16 bits of SCD_code register. 25/35 Functional description 4.6 STB5701 Registers list Two unique I2C addresses have been reserved for the STB5701 device, the appropriate one is selected using the SAD input pin. Table 7. I2C reserved addresses SAD Address 0 0110010x 1 (spare) 0110011x Unique to this device. 4.7 Register summary The I2C mapped address space of the STB5701 is given below: Table 8. Base address Group 0x00 Top Level See table 9 below 0x80 SCD Block See table 10 below Table 9. Description I2C mapped top level registers - summary Address Name 0x00 DIG_config 0x00000000 Digital configuration 0x04 RF_config 0x00000000 Configure RF front end 0x08 PLL_A 0x00000000 PLL post divider 0x0C PLL_M 0x00000000 PLL feedback divider 0x10 PLL_R 0x00000000 PLL reference divider Table 10. 26/35 I2C address breakdown Reset value Function I2C mapped SCD registers - summary Address Name Reset value Function 0x80 Scd_config 0x00000000 SCD configuration register. 0x84 Scd_status 0x00000000 SCD status can be read from this register. 0x88 Scd_code 0x00000000 Expected Start code is stored in this register. 0x8C Scd_code_length 0x00000000 Length of the start code is stored in this register. 0x90 Scd_symbol_min_time 0x00000000 Minimum time of the symbol is stored in this register. 0x94 Scd_symbol_max_time 0x00000000 Maximum time of the symbol is stored in this register. 0x98 Scd_symbol_nom_time 0x00000000 Nominal symbol time is stored in this register. STB5701 Functional description Table 10. 4.8 I2C mapped SCD registers - summary (continued) Address Name Reset value Function 0x9C Scd_prescaler 0xA0 Interrupt_enable 0x00000000 Interrupt enable register value is stored in this register. 0xA4 Interrupt_clear 0x00000000 Interrupt clear register value is stored in this register. 0xA8 Timeout 0x00000001 Value of prescaler for sampling is stored. 0x00000000 Timeout for SCS based on prescaler tick. Detailed display description Table 11. DIG_config register format DIG_Config Bit Bit field 0x00 Reset state R/W Function 1:0 MODE 00 00: UHF direct 01: IR direct 10: UHF triggered (DOUT = 0 when no trigger) 11: IR or UHF triggered 2 STATE_SEL 0 1: STATE is driven by the SCD interrupt output 0: STATE is driven by the SCD detect state 3 STATE_INV 0 1: Invert the STATE output 4 STATE_DRIVE 0 0: Open drain 1: Push pull 5 CLKOUT_ENABLE 0 1: Enable clock output buffer 31:6 Reserved 0x00 Table 12. 0x00 RF_Config register format RF_Config 0x04 R/W Bit Bit field Reset state 0 RF_ENABLE 0 1: Enable front end 0: Disable front end 1 ASK_NOTFSK 0 1: ASK detection 0: FSK detection 2 LNA_GAIN 0 1: Enable AGC 0: Disable AGC (high gain) 3 Not used 0 31:4 Reserved 0x00 Function 0x00 27/35 Functional description Table 13. STB5701 PLL_A register PLL_A 0x08 Bit field Reset state 2:0 PLL_A SAD = 0: 0x1 SAD= 1: 0x7 31:3 Reserved 0x00 Bit Table 14. Function PLL post divider value. Reset value determined by level on SAD input. 0x00 PLL_M register format PLL_M Bit 0x0C Bit field Reset state 9:0 PLL_M SAD = 0: 0x1D5 SAD= 1: 0x1CD 31:10 Reserved 0x00 Table 15. R/W Function PLL feedback divider value. Reset value determined by level on SAD input. 0x00 PLL_R register format PLL_R 0x10 R/W Bit Bit field Reset state 9:0 PLL_R 000 PLL reference divider value 31:10 Reserved 0x00 0x00 Table 16. Function SCD_config register format SCD_config 28/35 R/W 0x80 R/W Bit Bit field Reset state Function 0 Enable 0 1: Enables the start code detection circuit 0: By passes SCD, UHF in fed to UHF out 1 Re-search 0 1: Start a fresh research. Reset automatically to ‘0’ on re-search start 2 Soft_rst 0 1: Resets all the counters and shift register 3 Reset_shift_reg 0 1: Reset only shift register. Status register is not affected. 31:4 Reserved 0x00 0x00 STB5701 Functional description Table 17. SCD_status register format SCD_status 0x84 Bit Bit field Reset state 0 Detect 0 1: Start code detected, UHF in fed to UHF out 1:2 Reserved 0 00 3 Alternative 0 1: The alternative code was detected 31:4 Reserved 0x00 Table 18. Function 0x00 SCD_code register format SCD_code Note: 0x88 Bit field Reset state Function 15:0 Code 0x00 Start code to be detected 31:16 Alt_code 0x00 Alternative start code to be detected This register holds each start code to be detected. SCD_code_lenth register format SCD_code_lenth 0x8C Bit Bit field Reset state 4:0 Code_length 0 15:5 Reserved 0x00 20:16 Alt_code_length 0 31:21 Reserved 0x00 R/W Function Length of the start code 0x00 Length of the alternative start code 0x00 The length of the start code is stored in this register. If the start code length is 10 symbol then 10 has to be written into this register. Writing 0x00 disables the SCD. Table 20. SCD_symbol_min_time register format SCD_symbol_min_time Note: R/W Bit Table 19. Note: R 0x90 Bit Bit field Reset state 15:0 Min_time 0x00 Minimum symbol time 31:16 Reserved 0x00 0x00 R/W Function The minimum time of the symbol in terms of pre-scaler ticks is stored in this register. If any symbol violates the minimum symbol time, the SCD process is re-initialized. If a value 0x10 is written into this register, the symbol min. time is 16 pre-scaler clock periods. 29/35 Functional description Table 21. STB5701 SCD_symbol_max_time register format SCD_symbol_max_time Note: 0x94 Bit Bit field Reset state 15:0 Max_time 0x00 Maximum symbol time 31:16 Reserved 0x00 0x00 Function The maximum time of the symbol is stored in this register. Any changes in the input data are allowed only between symbol minimum time and symbol maximum time. The symbol time counting is done by a clock (enable pulse) which ia output of pre-scaler. If a value 0x10 is written into this register, the symbol max time is 16 pre-scaler clock periods. Table 22. SCD_symbol_nom_time register format SCD_symbol_nom_time Note: 0x98 Bit field Reset state Function 15:0 Nom_time 0x00 Nominal symbol time 31:16 Reserved 0x00 0x00 The nominal time of the symbol in terms of pre-scaler ticks is stored in this register. This value is used to register a new symbol when consecutive symbols with same logical value are received. If a value 0x10 is written into this register, the symbol nominal time is 16 prescaler clock periods. SCD_prescaler register format SCD_prescaler 0x9C Bit field Reset state Function 15:0 prescaler 0x01 Pre scaler division value is stored in this register 31:16 Reserved 0x00 0x00 The nominal time of the symbol is stored in this register. Interrupt_enable register format Interrupt_enable 30/35 R/W Bit Table 24. Note: R/W Bit Table 23. Note: R/W 0xA0 Bit Bit field Reset state 0 scd_detected 0 31:1 Reserved 0x00 R/W Function 1 Enable interrupt 0 Disable interrupt 0x00 The interrupt enable register value is stored in this register. STB5701 Functional description Table 25. Interrupt_clear register format Interrupt_clear Note: 0xA4 Bit Bit field Reset state 0 scd_clear_int 0 31:1 Reserved 0x00 R/W Function 1 Clear interrupt 0 No change on interrupt 0x00 The interrupt clear register value is stored in this register. Table 26. Timeout register format Bitcount 0xA8 R/W Bit Bit field Reset state Function 23:0 Timeout 0x00 Timeout value, duration is based on prescaler tick. 31:24 Reserved 0x00 0x00 31/35 Package information STB5701 5 Package information 5.1 ECOPACK® packages In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second-level interconnect. The category of Second-Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.2 QFN32L (5mm x 5mm) information Figure 9. 32/35 QFN32L (5mm x 5mm) dimensions STB5701 Package information Table 27. QFN32L (5mm x 5mm) mechanical data mm Min. Typ. Max. A 0.80 0.90 1.00 A1 0.00 0.02 0.05 A3 0.20 b 0.18 0.25 0.30 D 4.85 5.00 5.15 D2 3.50 3.60 3.70 E 4.85 5.00 5.15 E2 3.50 3.60 3.70 e L ddd 0.50 0.30 0.40 0.50 0.05 33/35 Revision history 6 STB5701 Revision history Table 28. 34/35 Document revision history Date Revision 01-Oct-2007 1 Changes Initial release. STB5701 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 35/35