SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 A Member of the MuxIt Serializer- SN65LVDS152DA (Marked as 65LVDS152) (TOP VIEW) Deserializer Building-Block Chip Family Supports Deserialization of One Serial Link Data Channel Input at Rates up to 200 Mbps PLL Lock/Valid Input Provided to Enable Parallel Data and Clock Outputs Cascadable With Additional SN65LVDS152 MuxIt Receiver–Deserializers for Wider Parallel Output Data Channel Widths LVDS Compatible Differential Inputs and Outputs Meet or Exceed the Requirements of ANSI TIA/EIA-644-A LVDS Input and Output ESD Protection Exceeds 12 kV HBM LVTTL Compatible Inputs for Lock/Valid and Enables Are 5-V Tolerant Operates With 3.3-V Supply Packaged in 32-Pin DA Thin Shrink SmallOutline Package With 26-Mil Terminal Pitch DI+ DI– GND LCI+ LCI– GND CO_EN VCC GND VCC VCC GND GND EN CO– CO+ 1 32 2 31 3 30 4 29 5 28 6 27 7 26 8 25 9 24 10 23 11 22 12 21 13 20 14 19 15 18 16 17 VCC LVI MCI– MCI+ GND DCO DO–9 DO–8 DO–7 DO–6 DO–5 DO–4 DO–3 DO–2 DO–1 DO–0 description MuxIt is a family of general-purpose, multiple-chip building blocks for implementing parallel data serializers and deserializers. The system allows for wide parallel data to be transmitted through a reduced number of transmission lines over distances greater than can be achieved with a single-ended (e.g., LVTTL or LVCMOS) data interface. The number of bits multiplexed per transmission line is user selectable, allowing for higher transmission efficiencies than with other existing fixed ratio solutions. MuxIt utilizes the LVDS (TIA/EIA-644-A) low voltage differential signaling technology for communications between the data source and data destination. The MuxIt family initially includes three devices supporting simplex communications: the SN65LVDS150 phase locked loop frequency multiplier, the SN65LVDS151 serializer-transmitter, and the SN65LVDS152 receiverdeserializer. The SN65LVDS152 consists of three LVDS differential transmission line receivers, an LVDS differential transmission line driver, a 10-bit serial-in/parallel-out shift register, plus associated input and output buffers. It receives serialized data over an LVDS transmission line link, deserializes (demultiplexes) it, and delivers it on parallel data outputs, DO–0 through DO–9. Data received over the link is clocked at a factor of M times the original parallel data frequency. The multiplexing ratio M, or number of bits per data clock cycle, is programmed with configuration pins (M1 → M5) on the companion SN65LVDS150 MuxIt programmable PLL frequency multiplier. Up to 10 bits of data may be deserialized and output by each SN65LVDS152. Two or more SN65LVDS152 units may be connected in series (cascaded) to accommodate wider parallel data paths for higher serialization values. The range of multiplexing ratio M supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier is between 4 and 40. Table 1 shows some of the combinations of LCI and MCI supported by the SN65LVDS150 MuxIt programmable PLL frequency multiplier. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MuxIt is a trademark of Texas Instruments. Copyright 2000, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 description (continued) Data is serially shifted into the SN65LVDS152 shift register on the falling edges of the M-clock input (MCI). The data is latched out in parallel from the SN65LVDS152 shift register on the second rising edge after the first falling edge of the M-clock following a rising edge of the link clock input (LCI). The SN65LVDS152 includes LVDS differential line receivers for both the serialized link data stream (DI) and link clock (LCI). High-speed signals from the SN65LVDS150 MuxIt programmable frequency multiplier (MCI), plus the input and output for cascaded data (DI, CO) are carried over differential connections to minimize skew and jitter. Examples of operating waveforms for values of M = 4 and M = 10 are provided in Figure 1. The enable input (EN) along with internal power-on reset (POR) controls the outputs. When Vcc is below 1.5 volts, or when EN is low, outputs are disabled. When VCC is above 3 V and EN is high, outputs are enabled and operating to specifications. Parallel data bits are output from DO–n outputs in an order dependent on the value of the multiplexing ratio (frequency multiplier value) M. For values of M from 4 through 10, the cascade output (CO+/–) is not used, and only the top M parallel outputs (DO–9 through DO–[10–M]) are used. The data bit output on DO–9 corresponds to the data bit input on DI–[M–1] of the SN65LVDS151 serializer. Likewise, the data bit output on DO–[10–M] will correspond to the data bit input on DI–0 of the SN65LVDS151 serializer. For values of M greater than 10, the cascade output (CO+/–) is used to connect multiple SN65LVDS152 deserializers. In this case the higher-order unit(s) output 10 bits each of the highest numbered bits that are input into the SN65LVDS151 serializer(s). The lowest numbered input bits are output on the lowest-order SN65LVDS152 deserializer in descending order from output DO–9. The number of bits is equal to M mod(10). Table 2 reflects this information, where X = M mod(10) Table 1. Example Combinations of LCI and MCI Supported by the SN65LVDS150 MuxIt Programmable PLL Frequency Multiplier LCI, MHz MCI, MHz M MINIMUM MAXIMUM MINIMUM MAXIMUM 4 5 50 20 200 10 5 20 50 200 20 5 10 100 200 40 5 5 200 200 Table 2. Output Data BIts as a Function of Multiplier Value M X=1 X=2 X=3 X=4 X=5 X=6 X=7 X=8 X=9 X=0 DO–9 output bit DI–0 DI–1 DI–2 DI–3 DI–4 DI–5 DI–6 DI–7 DI–8 DI–9 DO–8 output bit Invalid DI–0 DI–1 DI–2 DI–3 DI–4 DI–5 DI–6 DI–7 DI–8 DO–7 output bit Invalid Invalid DI–0 DI–1 DI–2 DI–3 DI–4 DI–5 DI–6 DI–7 DO–6 output bit Invalid Invalid Invalid DI–0 DI–1 DI–2 DI–3 DI–4 DI–5 DI–6 DO–5 output bit Invalid Invalid Invalid Invalid DI–0 DI–1 DI–2 DI–3 DI–4 DI–5 DO–4 output bit Invalid Invalid Invalid Invalid Invalid DI–0 DI–1 DI–2 DI–3 DI–4 DO–3 output bit Invalid Invalid Invalid Invalid Invalid Invalid DI–0 DI–1 DI–2 DI–3 DO–2 output bit Invalid Invalid Invalid Invalid Invalid Invalid Invalid DI–0 DI–1 DI–2 DO–1 output bit Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid DI–0 DI–1 DO–0 output bit Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid Invalid DI–0 Additional information on output bit ordering in cascaded applications can be found in the MuxIt Application Report. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 description (continued) M=4 Next Frame DI DI(2) DI(3) DI(0) DI(1) DI(2) DI(3) LCI MCI DCO DO–n Prior Frame Current Frame M = 10 Next Frame DI DI(9) DI(0) DI(1) DI(2) DI(3) DI(4) DI(5) DI(6) DI(7) DI(8) DI(9) DI(0) LCI MCI DCO DO–n Prior Frame Current Frame Figure 1. Operating Waveform Examples POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 functional block diagram LCI EN LVI Control Logic MCI DCO CO_EN DI DO–9 DO–8 DO–7 Output Latches Shift Register DO–6 DO–5 DO–4 DO–3 DO–2 DO–1 DO–0 CO 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 equivalent input and output schematic diagrams VCC VCC 300 kΩ 300 kΩ 5Ω LCI–, MCI–, or DI– Inputs LCI+, MCI+, or DI+ Inputs 4V 10 kΩ CO+, or CO– Output 4V 4V VCC VCC 5Ω 400 Ω DCO, DO–n Outputs 5V EN, LVI, CO_EN Input 6V 300 kΩ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 Terminal Functions TERMINAL I/O LEVEL DESCRIPTION 15, 16 Output LVDS Cascade output. This is used to connect to additional SN65LVDS152 units when the multiplexing ratio M (and M-clock) value is greater than 10. CO_EN 7 Input LVTTL Cascade output enable. Used to control the CO output. A high-level input enables the CO output, a low-level input disables the CO output. DCO 27 Output LVTTL Data clock output. This is the recovered (original frequency) clock that is synchronized to the deserialized parallel data. DI+, DI– 1, 2 Input LVDS Link data input. This is the data being received from the source end of the serialized link. Also used for cascade data input from additional SN65LVDS152 units when the multiplexing ratio M value is greater than 10. EN 14 Input LVTTL Enable. Used to control overall device operation. A high-level input enables the device. A low-level input disables the device by resetting the internal latches and forcing the CO and LVTTL outputs to a high-impedance state. 3, 6, 9, 12, 13, 28 Power NA LCI+, LCI– 4, 5 Input LVDS Link clock input. This is the data block synchronization clock received from the source end of the serialized link. LVI 31 Input LVTTL Lock/valid input. This is a signal required for proper Muxlt system operation. It is to be directly connected to the LVO output of an SN65LVDS150. It is used to inhibit the operation of this device until after the PLL has stabilized. A low level input disables the data and clock outputs, a high level input enables the outputs MCI+, MCI– 29,30 Input LVDS M-clock input. This is the high frequency multiplied clock input from the local PLL frequency multiplier. It synchronizes the reception of the link data DO–0–DO–9 17–26 Output LVTTL Parallel data outputs. Data from the serial shift register is transferred to the output data latches in synchronization with the rising edge of LCI. 8, 10, 11, 32 Power NA NAME CO–, CO+ GND VCC NO. Circuit ground Supply voltage absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V Input voltage range: EN, LVI, CO_EN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 5.5 V LCI±, MCI±, DI±, CO± . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4 V Electrostatic discharge, human body model (see Note 2): LCI±, MCI±, DI±, CO±, and GND . . . . . . . ±12 kV All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 kV Charged-device model (see Note 3): All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±500 V Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 2. Tested in accordance with JEDEC Standard 22, Test Method A114–B. 3. Tested in accordance with JEDEC Standard 22, Test Method C101. DISSIPATION RATING TABLE 6 PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 85°C POWER RATING DA 1453 mW 11.6 mW/°C 756 mW POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 recommended operating conditions MIN NOM MAX UNIT 3 3.3 3.6 V VCC 0.8 V Supply voltage, VCC High-level input voltage, VIH 2 EN LVI, LVI CO EN EN, CO_EN Low-level input voltage, VIL Magnitude of differential input voltage, |VID| 0.1 |V ID 2 LCI±, MCI±, DI± Common-mode Common mode in input ut voltage, VIC Operating free-air temperature, TA | V 0.6 |V V | ID 2 VCC – 0.8 V 85 °C 2.4– – 40 V timing requirements PARAMETERS tsu(1) tsu(2) Clock setup time, MCI↓ before LCI↑ tsu(3) th(3) Link data setup time, DI before MCI↓ TEST CONDITIONS See Figure 2 Clock setup time, LCI↑ before MCI↓ See Figure 3 Link data hold time, DI after MCI↓ LCI LCI 0V MAX UNIT 0 ns 1 ns 0.3 ns 0.5 ns 0V tsu(1) MCI MIN tsu(2) MCI 0V 0V Figure 2 +100 mV DI +100 mV DI –100 mV –100 mV t h(3) t su(3) MCI 0V MCI 0V Figure 3. Input Data and M-Clock Setup and Hold Time Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 electrical characteristics over recommended operating conditions (unless otherwise noted) ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ Á ÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER TEST CONDITIONS VITH+ VITH– Positive-going differential input voltage threshold |VOD(SS)| Steady-state differential output voltage magnitude ∆|VOD(SS)| Change in steady-state differential output voltage magnitude between logic states VOC(SS) Steady-stade common-mode output voltage ∆VOC(SS) Change in steady-state common-mode output voltage between logic states VOC(PP) VOH Peak-to-peak change common-mode output voltage VOL Low-level output voltage Negative-going differential input voltage threshold High-level output voltage DO n DCO DO-n, Supply current See Figure 4 –50 50 mV 1.125 1.375 See Figure 7 –50 50 mV 150 mV IOH = –8 mA IOL = 8 mA 2.4 RL = 100 Ω, 14 25 Disabled 0.5 1 f(MCI) = 200 MHz, f(LCI) = 20 MHz, RL = 100 Ω, DI–n= 1010101010 at 200 Mbit/s 35 60 Differential input current LCI, MCI, DI inputs VIC = 0.05 V to 2.35 V, VID = ±0.1 V II(OFF) IIH Power-off input current LCI, MCI, DI inputs High-level input current EN, LVI, CO_EN IIL Low-level input current EN, LVI, CO_EN CO DO-n, DCO VCC = 0 V , VIH = 2 V V V mA –2 – 20 –1.2 –2 VI = 3.6 V µA 2 µA 20 µA 20 µA VIL = 0.8 V VO+ or VO– = 0 V 10 µA –10 10 mA VOD = 0 V –10 10 mA –5 5 –5 5 VO = 0 V or VCC IO(OFF) Power-off output current CO CI Input capacitance LCI, MCI, DI inputs † All typical values are at TA = 25°C and with VCC = 3.3 V. VCC = 1.5 V , VO = 3.6 V VID = (0.4sin(4E6πt) + 0.5) V 8 • DALLAS, TEXAS 75265 POST OFFICE BOX 655303 340 0.4 IID High im edance out High-impedance output ut current 247 50 VI = 0 V VI = 2.4 V IOZ mV mV LCI MCI, MCI DI inputs LCI, CO UNIT 454 RL = 100 Ω Ω, VID = ±100 mV, mV See Figures 5 and 6 Input current Short circuit output current Short-circuit MAX –100 II IOS TYP† 100 Enabled, ICC MIN –5 5 3 µA µA pF SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 switching characteristics over recommended operating conditions (unless otherwise noted) ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ PARAMETER TEST CONDITIONS td(1) td(2) Propagation delay time, LCI↑ to DCO↑ tsu(4) th(4) Set-up time, DO-n valid to DCO↑ td(3) Delay time, MCI↓ to CO See Figure 9 Differential output signal rise time, CO RL = 100 Ω, CL = 10 pF, See Figure 10 Output signal rise time, DCO, DO-n CL = 10 pF, See Figure 11 Differential output signal fall time, CO RL = 100 Ω, CL = 10 pF, See Figure 10 Output signal fall time, DCO, DO-n CL = 10 pF, See Figure 11 tsk(p) Pulse skew (| tPHL – tPLH|), CO RL = 100 Ω, CL = 10 pF, See Figure 10 tPZH Propagation delay time, high-impedance to high-level output (DCO only) tr tf MIN Delay time, MCI↑ to DO–n See Figure 8 Hold time, DCO↑ to DO-n valid TYP MAX 2 3 3.3 5.5 UNIT ns 5 5 tPZL tPHZ Propagation delay time, high-impedance to low-level output tPLZ Propagation delay time, low-level to high-impedance output tPZH Propagation delay time, high-impedance to high-level output (DCO only) Propagation delay time, high-level to high-impedance output tPZL tPHZ Propagation delay time, high-impedance to low-level output tPLZ Propagation delay time, low-level to high-impedance output Propagation delay time, high-level to high-impedance output POST OFFICE BOX 655303 DCO DO-n, DO-n EN to DCO, F, CL = 10 pF, g See Figure 12 LVI to DCO, DCO DO-n CL = 10 pF, F, g See Figure 12 • DALLAS, TEXAS 75265 0.3 0.3 2.9 4.5 0.8 1.5 0.6 1.5 0.8 1.5 0.6 1.5 0 300 5 15 5 15 5 15 6 15 5 15 5 15 5 15 5 15 ns ns ns ps ns ns 9 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION + VID – (VI+ + VI–)/2 VI+ VIC VI– Figure 4. Receiver Voltage Definitions ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Table 3. Receiver Minimum and Maximum Input Threshold Test Voltages APPLIED VOLTAGES RESULTING DIFFERENTIAL INPUT VOLTAGE RESULTING COMMONMODE INPUT VOLTAGE VI+ 1.25 V VI– 1.15 V VID 100 mV VIC 1.2 V 1.15 V 1.25 V –100 mV 1.2 V 2.4 V 2.3 V 100 mV 2.35 V 2.3 V 2.4 V –100 mV 2.35 V 0.1 V 0V 100 mV 0.05 V 0V 0.1 V –100 mV 0.05 V 1.5 V 0.9 V 600 mV 1.2 V 0.9 V 1.5 V –600 mV 1.2 V 2.4 V 1.8 V 600 mV 2.1 V 1.8 V 2.4 V –600 mV 2.1 V 0.6 V 0V 600 mV 0.3 V 0V 0.6 V –600 mV 0.3 V + IO+ IO– VOD VO+ – VO– VOC (VO+ + VO–)/2 Figure 5. Driver Voltage and Current Definitions 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION 3.74 kΩ + VOD + _ 100 Ω 0 V ≤ Vtest ≤ 2.4 V – 3.74 kΩ Figure 6. VOD Test Circuit 49.9 Ω ±1% (2 PLCS) VOC(PP) + VOC(SS) VOC – 50 pF VOC NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, Pulse width = 500 ± 10 ns . CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3 dB bandwidth of at least 5 GHz. Figure 7. Test Circuit and Definitions for the Driver Common-Mode Output Voltage LCI 0V tsu(2) MCI 0V td(2) td(1) DCO 1.4 V DO–n 1.4 V tsu(4) th(4) Figure 8. Data Clock and Data Output Timing Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION 0V MCI td(3) 0V CO Figure 9. MCI to CO Timing Waveforms + DI (0–9) Logic LCI 100 Ω ±1% VOD CO – MCI CL = 10 pF (2 PLCS) DUT 0.4 V MCI 0V –0.4 V tPLH tPHL 100% 80% VOD(H) CO 0V VOD(L) 20% 0% tf tr NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 100 Mpps, Pulse width = 5 ± 0.1 ns . CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. Figure 10. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal DI V OH 80% MCI LCI DUT DCO, DO–n VO 1.4 V 20% tf tr V OL CL = 10 pF NOTE A: All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, MCI pulse repetition rate (PRR) = 50 Mpps, Pulse width = 10 ± 0.2 ns . LCI pulse repetition rate (PRR) = 5 Mpps, pulsewidth = 100 ±2 ns. CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. Figure 11. Timing Test Circuit and Waveforms 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 PARAMETER MEASUREMENT INFORMATION DI 500 Ω MCI DUT EN VO LVI V test + _ CL = 10 pF NOTE: VTEST = 2.5 V for tPZL or tPLZ, VTEST = 0 V for tPZH or tPHZ. All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ±10 ns . CL includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. 2V 1.4 V EN, LVI 0.8 V tPLZ tPZL 2.5 V 1.4 V VOL+0.5 V VOL 2V 1.4 V EN, LVI 0.8 V tPHZ tPZH† VOH VOH–0.5 V 1.4 V 0V † DCO only Figure 12. Enable/Disable Time Test Circuit and Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 TYPICAL CHARACTERISTICS AVERAGE SUPPLY CURRENT vs FREQUENCY I CC – Average Supply Current – mA 40 VCC = 3.3 V, TA = 25°C 35 30 25 20 15 10 5 0 0 50 100 150 200 f – Frequency – Hz Figure 13. Average Supply Current vs Frequency 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN65LVDS152 MuxIt RECEIVER-DESERIALIZER SLLS445 – DECEMBER 2000 MECHANICAL DATA DA (R-PDSO-G**) PLASTIC SMALL-OUTLINE 38 PINS SHOWN 0,30 0,19 0,65 38 0,13 M 20 6,20 NOM 8,40 7,80 0,15 NOM Gage Plane 1 19 0,25 A 0°–8° 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 30 32 38 A MAX 11,10 11,10 12,60 A MIN 10,90 10,90 12,40 DIM 4040066 / D 11/98 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 PACKAGE OPTION ADDENDUM www.ti.com 8-Aug-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN65LVDS152DA ACTIVE TSSOP DA 32 SN65LVDS152DAR ACTIVE TSSOP DA SN65LVDS152DARG4 ACTIVE TSSOP DA 46 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 32 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR 32 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated