STMICROELECTRONICS TDA7502

TDA7502
In-car remote amplifier DSP
Features
■
24-Bit fixed-point dsp core delivering up to 50
MIPS
■
2 x 1024 x 24 Bit of RAM for X and Y data
memory.
■
3072 x 24 Bit of RAM for program also usable
for delay
■
Serial audio interface.
■
Debug port.
■
Control interface for external GPIOs, interrupts,
and reset.
■
SPI and I2C for communication between
external micro and DSP. Both master and
slave operating modes.
■
PLL clock oscillator
■
5V-tolerant 3.3V I/O interface
LQFP44 (10x 10x 1.4mm)
Description
This device is a high-performance, fully
programmable DSP, suitable for a wide range of
applications and particularly for audio and sound
processing. It contains a 24-bit 50 MIPS DSP
core, several interfaces for control and data, plus
a configurable PLL.
The computational power and the memory
configuration make this device particularly
suitable for in car equalisation. This device will
offer the best trade-off between performance and
cost when coupled with the TDA7535, or other
devices of the same family. A library of sound
processing functions is available for this device;
some of these functions are: parametric equaliser,
cross over filters, acoustic delay, dynamic
compression, vol/bass/treble/fader, active
equalisation, Stereo spatial enhancement and
more.
Order codes
Part numbers
Package
Packing
TDA7502
LQFP44 (10x 10x 1.4mm)
Tube
TDA7502013TR
LQFP44 (10x 10x 1.4mm)
Tape and Reel
November 2006
Rev 11
1/25
www.st.com
1
Contents
TDA7502
Contents
1
Block diagram and PIN description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3
SAI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4
SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5
I2C timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1
24-BIT DSP core. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2
DSP peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3
Data and program memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.1
1024 x 24-Bit X-RAM (XRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.2
1024 x 24 Bit Y-RAM (YRAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.3
3072 X 24-Bit Program RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.4
512 x 24-Bit Bootstrap ROM (Boot ROM) . . . . . . . . . . . . . . . . . . . . . . . 18
6.3.5
Serial audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3.6
Serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3.7
I2C interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3.8
General purpose input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3.9
PLL clock oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7
Application scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2/25
TDA7502
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
General interface electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Low voltage TTL interface DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
DSP core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Debug port interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Casper IC boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3/25
List of figures
TDA7502
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
4/25
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection (Top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Maximum DSP clock frequency (Fdsp) versus junction temperature (Tj). . . . . . . . . . . . . . 10
SAI timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SAI protocol when RLRS=0; RREL=0; RCKP=1; RDIR=0 . . . . . . . . . . . . . . . . . . . . . . . . . 11
SAI protocol when RLRS=1; RREL=0; RCKP=1; RDIR=1. . . . . . . . . . . . . . . . . . . . . . . . . 12
SAI protocol when RLRS=0; RREL=0; RCKP=0; RDIR=0. . . . . . . . . . . . . . . . . . . . . . . . . 12
SAI protocol when RLRS=0; RREL=1; RCKP=1; RDIR=0. . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI clocking scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Debug port serial clock timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Debug port acknowledge timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Debug port data I/O to status timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Debug port read timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Debug port DBCK next command after read register timing. . . . . . . . . . . . . . . . . . . . . . . . 15
Definition of timing for the I2C bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Application schematic for TDA7502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Block diagram of car amplifier audio sub-system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
TQFP44 (10x10) mechanical data & package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 23
TDA7502
Block diagram and PIN description
Figure 1.
Block diagram
SDI0
SDI1
SDI2
SDO0 SDO1 SDO2
VDD3
GND3
SCANEN
TESTEN
VDD4
GND4
LRCLKT
SCKT
LRCLKR
XAB
SERIAL
AUDIO
INTERFACE
1024 x 24
X-RAM
XDB
YAB
SCL
SDA
VDD5
GND5
SCKR
1024 x 24
Y-RAM
YDB
I2C
INTERFACE
VDD6
GND6
PAB
SS
SCK
PDB
SPI
INTERFACE
3072 x 24
P/DELAY-RAM
MISO
128 x 24
BOOT-ROM
MOSI
GPIO3
GPIO4
GPIO
RESET
ORPHEUS
24bit DSP
CORE
GPIO5
DBRQN/GPIO3
VDD1 GND1
INT
PLL
OSCILLATOR
VDD2 GND2
XTO
PVCC
PGND
XTI CLKOUT D99AU1034
MOSI
SS
SCK
SDA
SCL
42
MISO
43
GND6
GPIO3
44
VDD6
GPIO4
Pin connection (Top view)
41
40
39
38
37
36
35
34
4
30
VDD5
TESTEN
5
29
SDO2
DBRQN
6
28
SDO1
DBOUT
7
27
SDO0
VDD2
8
26
GND4
GND2
9
25
VDD4
DBCK
10
24
SCKR
DBIN
11
23
LRCKR
12
13
14
15
16
17
18
19
20
21
22
SDI2
GND5
SCANEN
SDI1
31
SDI0
3
GND3
LRCKT
INT
VDD3
32
RESET
SCKT
GND1
XTI
33
2
XTO
VDD1
1
PVCC
Figure 2.
DBRQ
GPIO5
DBIN/GPIO2
DEBUG
INTERFACE
PGND
DBCK/GPIO1
CLKOUT
1
Block diagram and PIN description
D99AU1035
5/25
Block diagram and PIN description
Table 1.
Pin description
N.
Name
Type
Reset
status
1
VDD1
P
–
3.3V core supply.
2
GND1
G
–
Core ground.
3
INT
I/O
–
External interrupt line (Input/Output). When this line is
asserted low, the DSP may be interrupted. Acts as IRQA
line of DSP core.
4
SCANEN
I
–
SCAN enable when active with TESTEN also active,
controls theshifting of the internal scan chains.
5
TESTEN
I
–
Test enable when active, puts the chip into test mode and
muxes the XTI clock to all flip-flops. When SCANEN is also
active, the scan chain shifting
6
DBRQN
I
–
Debug port request Input. A means of entering the Debug
mode of operation.
7
DBOUT/GPIO2
I/O
I
The serial data output for the Debug port. Can also be
used as a GPIO.
8
VDD2
I
–
3.3V core supply.
9
GND2
I
–
Core ground.
I
Debug port Bit Clock/Chip status 1. The serial clock for the
Debug Port is provided when an input. When an output,
provides information about the chip status. Can also be
used as GPIO
10
6/25
TDA7502
DBCK/GPIO0
I/O
Function
11
DBIN/GPIO1
I/O
I
Debug port Serial Input/Chip status 0. The serial data
input for the Debug Port is provided when an input. When
an output, provides information about the chip status. Can
also be used as GPIO.
12
CLKOUT
O
–
Output clock.
13
PGND
G
–
PLL clock ground Input. Ground connection for oscillator
circuit.
14
PVCC
P
–
PLL clock power supply. Positive supply for PLL clock
oscillator.
15
XTO (1)
O
High
Crystal oscillator output. Crystal oscillator output drive.
16
XTI (1)
I
–
Crystal oscillator input. External clock input or crystal
connection.
17
RESET
I/O
I
System reset. A logic low level applied to RESET input
initializes DSPs. During debug mode if this pin is pulled
low in while the DBRQN line is pulled low then the DSP
pointed to by the DBSEL pin will be reset.
18
VDD3
P
–
3.3V supply.
19
GND3
G
–
Ground.
20
SDI0
I
–
SDI0 is a stereo digital audio data input pin channel 0.
21
SDI1
I
–
SDI1 is a stereo digital audio data input pin channel 1.
22
SDI2
I
–
SDI2 is a stereo digital audio data input pin channel 2.
TDA7502
Block diagram and PIN description
Table 1.
Pin description (continued)
N.
Name
Type
Reset
status
23
LRCKR
I/O
–
Left-right clock for SAI Receiver. Master or slave.
24
SCKR
I/O
–
SAI receive bit clock. Master or slave.
25
VDD4
P
–
3.3V supply.
26
GND4
G
–
Ground.
27
SDO0
O
High
SDO0 is a stereo digital audio data output pin channel 0.
28
SDO1
O
High
SDO1 is a stereo digital audio data output pin channel 1.
29
SDO2
O
High
SDO2 is a stereo digital audio data pin channel 2.
30
VDD5
P
–
3.3V supply.
31
GND5
G
–
Ground.
32
LRCKT
I/O
–
SAI transmit left/right clock. Master or slave.
33
SCKT
I/O
–
SAI transmit bit clock. Master or slave.
34
SCL
I/O
–
Clock line for I2C bus. Schmitt trigger input.
35
SDA
I/O
–
Data line for I2C bus. Schmitt trigger input.
36
SCK
I
–
Bit clock for SPI control interface.
37
SS
I
–
Slave select input pin for SPI control interface.
38
MOSI
I/O
–
Serial data output for SPI type serial port when in SPI
master mode and serial data input when in SPI slave
mode.
39
MISO
I/O
–
Serial data input for SPI style serial port when in SPI
master mode and serial data output when in SPI slave
mode.
40
VDD6
P
–
3.3V supply.
41
GND6
G
–
Ground.
42
GPIO3
I/O
–
This pin is dedicated as general I/O.
43
GPIO4
I/O
–
This pin is dedicated as general I/O.
44
GPIO5
I/O
–
This pin is dedicated as general I/O.
Function
1. XTI and XTO are not 5V tolerant
7/25
Electrical specifications
2
TDA7502
Electrical specifications
Table 2.
Absolute maximum ratings
Symbol
Parameter
Vdd
DC supply voltage
Vin
Digital input voltage (XTI and XTO only)
Value
Unit
-0.5 to 4.6
V
-0.5 to (VDD +0.5)
V
6.5
V
(1)
Vin
Digital input voltage
Tj
Operating junction temperature range
-40 to 125
°C
Storage temperature
-55 to 150
°C
Tstg
1. When the IC is powered.
Warning:
Table 3.
Operation at or beyond these limit may result in permanent
damage to the device. Normal operation is not guaranteed at
these extremes.
Thermal data
Symbol
Parameter
Value
Unit
68
°C/W
Rth j-amb (1) Thermal resistance junction to ambient
1. In still air.
Table 4.
Recommended DC operating conditions
Symbol
Vdd
Table 5.
Parameter
3.3V power supply voltage
Parameter
Maximum current
Note:
50MHz internal DSP clock
Table 6.
Pll characteristics
Symbol
Parameter
Lock time
Fvco
(1)
VCO frequency (2)
1. Depending on VCO output frequency.
2. Fdsp = Fvco/2 when PLL is running
8/25
Min.
Typ.
Max.
Unit
3.15
3.3
3.45
V
Min.
Typ.
Max.
Unit
250
mA
Max.
Unit
3
ms
140
MHz
Current consumption
Symbol
Idd
Test condition
Test condition
@3.3V and Tj =125°C
Test condition
Min.
@3.3V and Tj = 125°C
70
Typ.
TDA7502
Table 7.
Electrical specifications
Oscillator characteristics
Symbol
Fosc
Table 8.
Parameter
Max oscillator frequency (XTI)
Test condition
Min.
@ 3.3V and Tj = 125°C
8
Typ.
Max.
Unit
12.5
MHz
Max.
Unit
General interface electrical characteristics
Symbol
Parameter
Test Condition
Min.
Typ.
lil
Low level input current without
pullup device
Vi = 0V (1)
1
μA
lih
High level input current without
pullup device
Vi = Vdd (1)
1
μA
Ioz
Tri-state output leakage without
pull up/down device
Vo = 0V or Vdd (1)
1
μA
5V tolerant tri-state output
leakage without pull up/down
device
Vo = 0V or Vdd (1)
1
μA
3
μA
I/O latch-up current
V < 0V, V > Vdd
IozFT
Ilatchup
Vesd
Electrostatic protection
Vo = 5.5V
Leakage , 1μA
1
(2)
200
mA
1500
V
1. The leakage currents are generally very small, <1nA. The value given here, 1mA, ia amaximum that can occur after an
electrostatic stress on the pin.
2. Human body model.
Table 9.
Symbol
Low voltage TTL interface DC electrical characteristics
Parameter
Test condition
Min.
Typ.
Max.
Unit
0.8
V
Vil
Low level input voltage
(1)
Vih
High level input voltage
(1)
2
Low level threshold input falling
(1)
0.9
1.35
V
Low level threshold input falling
(1)
1.3
1.9
V
Vhyst
Schmitt trigger hysteresis
(1)
0.4
0.7
V
Vol
Low level output voltage
0.4
V
Voh
High level output voltage
Vilhyst
Vihhyst
Iol = XmA (1) (2) (3)
V
2.4
V
1. TTL specifications only apply to the supply voltage range Vdd = 3.0V to 3.6V.
2. Takes into account 200mV voltage drop in both supply lines.
3. X is the source/sink current under worst case conditions and is reflected in the name of the I/O cell according to the drive
capability.
Table 10.
Symbol
Fdsp
DSP core
Parameter
Maximum DSP clock frequency
Test condition
@3.15V and Tj = 125°C
Min.
50
Typ.
Max.
Unit
MHz
9/25
Electrical specifications
Figure 3.
TDA7502
Maximum DSP clock frequency (Fdsp) versus junction temperature (Tj)
MHz
92
Vdd = 3.3V
80
67
50
-40
25
125
Temp
MHz
88
Vdd = 3.15V
78
65
50
-40
25
125
Temp
MHz
93
Vdd = 3.45V
83
69
50
-40
10/25
25
125
Temp
TDA7502
3
SAI interface
SAI interface
Figure 4.
SAI timings
SDI0-3
VALID
LRCKR
VALID
tlrh
SCKR
(RCKP=0)
tsckpl
tsckph
tlrs
tdt
tsdih
tsdis
tsckr
Table 11.
Cycles
Timing
tsckr
D02AU1357
Description
Minimum Clock Cycle
Value
Unit
4TDSP
ns
tdt
SCKR active edge to data out valid
10
ns
tlrs
LRCK setup time
5
ns
tlrh
LRCK hold time
5
ns
tsdid
SDI setup time
15
ns
tsdih
SDI hold time
15
ns
tsckph
Minimum SCK high time
0.35 tsckr
ns
tsckpl
Minimum SCK low time
0.35 tsckr
ns
Note: TDSP = dsp master clock cycle time = 1/FDSP
Figure 5.
SAI protocol when RLRS=0; RREL=0; RCKP=1; RDIR=0
LRCKR (#23)
RIGHT
LEFT
SCKR (#24)
SDI0,1,2 (#20, #21, #22)
LSB(n-1)
MSB(word n)
MSB-1 (n)
MSB-2 (n)
D02AU1358
11/25
SAI interface
TDA7502
Figure 6.
SAI protocol when RLRS=1; RREL=0; RCKP=1; RDIR=1.
LEFT
LRCKR (#23)
RIGHT
SCKR (#24)
SDI0,1,2 (#20, #21, #22)
MSB(n-1)
LSB(word n)
LSB+1 (n)
LSB+2 (n)
D02AU1359
Figure 7.
SAI protocol when RLRS=0; RREL=0; RCKP=0; RDIR=0.
LEFT
LRCKR (#23)
RIGHT
SCKR (#24)
SDI0,1,2 (#20, #21, #22)
LSB(n-1)
MSB(word n)
MSB-1 (n)
MSB-2 (n)
D02AU1360
Figure 8.
SAI protocol when RLRS=0; RREL=1; RCKP=1; RDIR=0.
LRCKR (#23)
RIGHT
LEFT
SCKR (#24)
SDI0,1,2 (#20, #21, #22)
LSB(n-1)
MSB(word n)
MSB-1 (n)
MSB-2 (n)
D02AU1361
12/25
TDA7502
4
SPI interfaces
SPI interfaces
Table 12.
SPI interfaces
Symbol
Description
Min Value
Unit
12TDSP
ns
40
ns
16
ns
Master
tsclk
Clock cycle
tdtr
Sclk edge to MOSI valid
tmisosetup MISO setup time
tmisohold
MISO hold time
4
ns
tsclkh
SCK high time
0.5tsclk
ns
tsclkl
SCK high low
0.5tsclk
ns
tsclk
Clock cycle
12TDSP
ns
tdtr
Sclk edge to MOSI valid
40
ns
tmosisetup
MOSI setup time
16
ns
tmosihold
MOSI hold time
4
ns
tsclkh
SCK high time
0.5tsclk
ns
tsclkl
SCK high low
0.5tsclk
ns
Slave
Figure 9.
SPI clocking scheme.
SS (#37)
SCK (#36)
(CPOL=0, CPHA=0)
SCK (#36)
(CPOL=0, CPHA=1)
SCK (#36)
(CPOL=1, CPHA=0)
SCK (#36)
(CPOL=1, CPHA=1)
MSB
6
5
4
3
2
1
LSB
MISO, MOSI (#38, #39)
In master mode it is only supported CPHA = 0.
INTERNAL STROBE FOR INTERNAL CAPTURE
D02AU1362
13/25
SPI interfaces
TDA7502
Table 13.
Debug port interface
dclk = 40MHz
No.
Characteristics
Unit
Min.
Max.
1
DBCK rise time
--
3
ns
2
DBCK fall time
--
3
ns
3
DBCK low
40
--
ns
4
DBCK high
40
--
ns
5
DBCK cycle time
200
--
ns
6
DBRQN asserted to DBOUT (ACK) asserted
5 TDSP
--
ns
7
DBCK high to DBOUT valid
--
42
ns
8
DBCK high to DBOUT invalid
3
--
ns
9
DBIN valid to DBCK low (set-up)
15
--
ns
10
DBCK low to DBIN invalid (hold)
3
--
ns
2 Tc
--
ns
DBOUT (ACK) assertion width
4.5 TDSP - 3
5 TDSP + 7
ns
11
Last DBCK low of read register to first DBCK high
of next command
7 TDSP + 10
--
ns
12
Last DBCK low to DBOUT invalid (Hold)
3
--
ns
DBOUT (ACK) asserted to first DBCK high
DBSEL setup to DBCK
TDSP
ns
Figure 10. Debug port serial clock timing.
(1)
(2)
(3)
DBCK
(input)
(4)
(5)
D02AU1363
Figure 11. Debug port acknowledge timing.
DBRQN
(input)
(6)
DBOUT
(output)
14/25
D02AU1364
(ACK)
TDA7502
SPI interfaces
Figure 12. Debug port data I/O to status timing.
DBCK
(input)
(Last)
DBOUT
(output)
(9)
(10)
DBIN
(input)
(Note 1)
D02AU1365
Note:
1 High Impedance, external pull-down resistor
Figure 13. Debug port read timing.
DBCK
(input)
(Last)
(Note 1)
(7)
(8)
(12)
DBOUT
(output)
Note:
1 High Impedance, external pull-down resistor
D02AU1369
Figure 14. Debug port DBCK next command after read register timing.
DBCK
(input)
(NEXT COMMAND)
(11)
D02AU1370
15/25
I2C timing
TDA7502
I2C timing
5
Figure 15. Definition of timing for the I2C bus.
SDA
tBUF
tSU:STA
tLOW
tF
SCL
tR
tHD:STA
tHD:DAT
tHIGH
tSU:DAT
tHD:STA
tSU:STO
D02AU1371
Table 14.
Symbol
Definitions
Parameter
Test condition
Standard
mode
I2C bus
Fast mode
I2C bus
Unit
Min.
Max.
Min.
Max.
0
100
0
400
kHz
4.7
–
1.3
–
μs
Hold time (repeated) START condition.
tHD:STA After this period, the first clock pulse is
generated
4.0
–
0.6
–
μs
tLOW
LOW period of the SCL clock
4.7
–
1.3
–
μs
tHIGH
HIGH period of the SCL clock
4.0
–
0.6
–
μs
Set-up time for a repeated start condition
4.7
–
0.6
–
μs
0
–
0
0.9
μs
FSCL
SCLl clock frequency
tBUF
Bus free between a STOP and Start
Condition
tSU:STA
tHD:DAT DATA hold time
tR
Rise time of both SDA and SCL signals
Cb in pF
–
1000
20+0.1Cb
300
ns
tF
Fall time of both SDA and SCL signals
Cb in pF
–
300
20+0.1Cb
300
ns
4
–
0.6
–
μs
250
--
--
100
ns
–
400
–
400
pF
tSU;STO Set-up time for STOP condition
tSU:DAT
Cb
16/25
Data set-up time
Capacitive load for each bus line
TDA7502
6
Functional description
Functional description
The TDA7502 contains one DSP core and associated peripherals.
6.1
24-BIT DSP core.
The DSP core is used to process the converted analog audio data coming from the CODEC
chip via the SAI and return it for analog conversion. Functions such as volume, tone,
balance, and fader control, as well as spatial enhancement and general purpose signal
processing may be performed by the DSP.
Some capabilities of the DSPs are listed below:
Single cycle multiply and accumulate with convergent rounding and condition code
generation
●
2 x 56-bit accumulators.
●
Double precision multiply.
●
Scaling and saturation arithmetic.
●
48-bit or 2 x 24-bit parallel moves.
●
64 interrupt vector locations.
●
Fast or long interrupts possible.
●
Programmable interrupt priorities and masking.
●
8 each of address registers, address offset registers and address modulo registers.
●
linear, reverse carry, multiple buffer modulo, multiple wrap-around modulo address
arithmetic.
●
Post-increment or decrement by 1 or by offset, index by offset, predecrement address.
●
Repeat instruction and zero overhead DO loops.
●
Hardware stack capable of nesting combinations of 7 DO loops or 15
interrupts/subroutines.
●
Bit manipulation instructions possible on all registers and memory locations. Also jump
on bit test..
●
4 pin serial debug interface.
●
Debug access to all internal registers, buses and memory locations.
●
5 word deep program address history FIFO.
●
Hardware and software breakpoints for both program and data memory accesses.
●
Debug single stepping, Instruction injection and disassembly of program memory.
17/25
Functional description
6.2
TDA7502
DSP peripherals
There are a number of peripherals that are tightly coupled to the DSP Core. Each of the
peripherals are listed below and described in the following sections.
6.3
●
1024 x 24-Bit X-RAM.
●
1024 x 24-Bit Y-RAM.
●
3072 x 24-Bit program RAM.
●
512 x 24-Bit Boot ROM.
●
Serial audio interface (SAI).
●
Programmable control interface (SPI/I2C).
●
GPIO.
●
PLL clock oscillator.
Data and program memory
Each of the memories are described below.
6.3.1
1024 x 24-Bit X-RAM (XRAM)
This is a 1024 x 24-Bit single port SRAM used for storing coefficients. The 16-Bit XRAM
address, XABx(15:0) is generated by the address generation unit of the DSP core. The 24Bit XRAM Data, XDBx(23:0), may be written to and read from the data ALU of the DSP core.
The XDBx Bus is also connected to the internal bus switch so that it can be routed to and
from all peripheral blocks.
6.3.2
1024 x 24 Bit Y-RAM (YRAM)
This is a 1024 x 24-Bit single port SRAM used for storing coefficients. The 16-Bit address,
YABx(15:0) is generated by the address generation unit of the DSP core. The 24-Bit Data,
YDBx(23:0), is written to and read from the Data ALU of the DSP core. The YDBx Bus is
also connected to the internal bus switch so that it can be routed to and from other blocks.
6.3.3
3072 X 24-Bit Program RAM
This is a 3072 x 24-Bit single port SRAM used for storing and executing program code. The
16-Bit PRAM Address, PABx(15:0) is generated by the program address generator of the
DSP core for instruction fetching, and by the AGU in the case of the move program memory
(MOVEM) instruction. The 24-Bit PRAM Data (program code), PDBx(23:0), can only be
written to using the MOVEM instruction.
During instruction fetching the PDBx bus is routed to the program decode controller of the
DSP core for instruction decoding.
Spare space in the program area may be used as data memory to implement delay lines for
example.
6.3.4
512 x 24-Bit Bootstrap ROM (Boot ROM)
This is a 512 x 24-Bit factory programmed Boot ROM used for storing the program
sequence for initializing the DSP.
18/25
TDA7502
Functional description
Essentially this consists of a routine that is called when the DSP comes out of reset. There
are four different boot modes supported by the boot ROM. The first mode loads the
application program via SPI interface where Casper’s SPI is in master mode. The second
boot mode enables the debug port and waits. The third and fourth modes load the
application program via the I2C interface, one with Casper’s I2C Interface configured in slave
mode and the other in master mode. Which boot mode to enter is configured by sampling
the states of the GPIO4 and GPIO3 pins at reset as shown in the table below.
Table 15.
Casper IC boot modes
Modes
0-SPI Master
1-Debug
2-I
2C
3-I
6.3.5
Master
2C
Slave
Description
GPIO3
GPIO4
load PRAM, XRAM and YRAM from SPI
0
0
enable Debug Port
0
1
load PRAM, XRAM and YRAM from
I2C
1
0
oad PRAM, XRAM and YRAM from
I2C
1
1
Serial audio interface (SAI)
The SAI is used to deliver digital audio to the DSPs from an external source. Once
processed by the DSPs, it can be returned through this interface. The features of the SAI
are listed below.
6.3.6
●
Three synchronized stereo data transmission lines
●
Three synchronized stereo data reception lines
●
Master/Slave operating modes
●
Transmit and receive interrupt logic triggers on left/right data pairs
●
Receive and transmit data registers have two locations to hold left and right data.
Serial peripheral interface
A serial interface allows to receive commands and data over the LAN. During an SPI
transfer, data is transmitted and received simultaneously. Both master and slave modes are
supported.
In master mode the SPI supports combination of CPOL =0/1 and CPHA =0 only, while in
slave mode all the 4 possible combinations of CPOL and CPHA are supported. See Figure
9.
A serial clock line synchronizes shifting and sampling of the information on the two serial
data lines. A slave select line allows individual selection of a slave SPI device.
When an SPI transfer occurs an 8-bit word is shifted out one data pin while another 8-bit
character is simultaneously shifted in a second data pin.The central element in the SPI
system is the shift register and the read data buffer. The system is single buffered in the
transfer direction and double buffered in the receive direction.
6.3.7
I2C interface
The inter integrated circuit bus is a single bidirectional two-wire bus used for efficient inter IC
control. All I2C bus compatible devices incorporate an on-chip interface which allows them
communicate directly with each other via the I2C bus.
19/25
Functional description
TDA7502
Every component hooked up to the I2C bus has its own unique address whether it is a CPU,
memory or some other complex function chip. Each of these chips can act as a receiver and
/or transmitter on its functionality.
6.3.8
General purpose input/output
The DSP requires a set of external general purpose input/output lines, and a reset line.
These signals are used by external devices to signal events to the DSP. The GPIO lines are
implemented as DSP's peripherals.
6.3.9
PLL clock oscillator
The PLL clock oscillator can accept an external clock at XTI or it can be configured to run an
internal oscillator when a crystal is connected across pins XTI & XTO. There is an input
divide block IDF (1 -> 32) at the XTI clock input and a multiply block MF (9 -> 128) in the PLL
loop. Hence the PLL can multiply the external input clock by a ratio MF/IDF to generate the
internal clock. This allows the internal clock to be within 2 MHz of any desired frequency
even when XTI is much greater than 1 MHz. It is recommended that the input clock is not
divided down to less than 1 MHz as this reduces the phase detector's update rate.
The clocks to the DSP can be selected to be either the VCO output divided by 2 to 16, or be
driven by the XTI pin directly.
The crystal oscillator and the PLL will be gated off when entering the power-down mode (by
setting a register on DSP0).
20/25
15pF
DEBUG
INTERFACE
10K
3V3_3
μP
PGND
DGND_3
1
10K
GND3
VDD3
RESET
XTI
XTO
PVCC
PGND
CLKOUT
GND2
DBIN
DBCK
DBOUT
DBRON
19
18
17
16
15
14
13
12
9
11
10
7
6
20
NOT USED PINS TO BE CONNECTED TO GROUND
PGND
2.2M
15pF
24M576Hz
3V3_P
CLK-OUT
FROM PLL
2
DGND_2
GPI/O
10K
SDI0
10K
21
SDI1
8
22
SDI2
3V3_2
3
4
23
2
24
SCKR
VDD2
LRCKR
GND1
25
5
1
26
28
VDD1
SAI INTERFACE MASTER/SLAVE
3V3_4 DGND_4
27
TDA7502
TESTEN
GND4
SCANEN
SDO0
INT
VDD4
10K
SDO1
3V3_1
29
SDO2
DGND_1
41
30
GND6
31
3V3_4 DGND_4
40
32
VDD6
DGND_6 3V3_6
VDD5
μP
CONFIGURING THE PINS TO J1 OF THE CONNECTOR AS DESCRIBED IN THE FIGURE YOU CAN USE THE PC_INTERFACE
AND THEN DOWNLOAD DSP SW PROGRAM INTO EEPROM OR DIRECTLY INTO THE CHIP MEMORY.
GND5
THE HW INSIDE DASHED LINE BOX IS A POSSIBLE SOLUTION TO BOOT STRAP AND TO INTERFACE TP A PC.
LRCKT
33
34
35
37
36
38
39
44
42
43
BOOT MODE SELECTION
SCL
SDA
SS
SCK
MOSI
MISO
3
D02AU1383
I2C/SPI
INTERFACE
10K
GPIO3
GPIO5
10K 2
GPIO4
1
1
WC
SDA
SCL
47R
2
3
6
8
10
5
7
9
SDA
READY
8
4
5
32 x 8 I2C
1,2,3
6
7
VSS
VCC
1
DGND_6
DGND_6
3V3_6
0.1μF
DGND_6
N.C.
4
3
SCK/EN
M24256-WMW6
2
1
10K
J1
1
I2C-SLAVE
3V3_6
1
I2C-MASTER
10K
1
0
DEBUG-MODE
0
0
0
SPI-MASTER
GPIO3 GPIO4
BOOT MODE SELECTION
5V
47R
GPI/0
3V3_6 DGND_6 3V3_6 DGND_6
7
SCKT
TDA7502
Application scheme
Application scheme
Figure 16. Application schematic for TDA7502
21/25
Application scheme
TDA7502
Figure 17. Block diagram of car amplifier audio sub-system.
EPROM
(64Kx8)
To Microprocessor
Control Bus
POWER
AMPLIFIER
DIGITAL
AUDIO
TDA7502
TDA7535
D99AU1036
22/25
TDA7502
8
Package information
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 18. TQFP44 (10x10) mechanical data & package dimensions
mm
inch
DIM.
MIN.
TYP.
A
MAX.
MIN.
TYP.
1.60
0.05
A2
1.35
1.40
1.45
0.053
0.055
B
0.30
0.37
0.45
0.012
0.015
C
0.09
0.20
0.004
D
11.80
12.00
12.20
0.464
D1
9.80
10.00
10.20
0.386
0.002
8.00
0.006
11.80
12.00
12.20
0.464
E1
9.80
10.00
0.472
0.480
0.394
0.401
10.20
0.386
0.472
0.480
0.394
0.401
8.00
0.315
e
0.80
0.031
k
ccc
0.45
0.60
0.018
0.008
E3
L
0.057
0.315
E
L1
OUTLINE AND
MECHANICAL DATA
0.063
A1
D3
0.15
MAX.
0.75
1.00
0.018
0.024
0.030
0.039
LQFP44 (10 x 10 x 1.4mm)
0˚(min.), 3.5˚(typ.), 7˚(max.)
0.10
0.0039
0076922 E
23/25
Revision history
9
TDA7502
Revision history
Table 16.
24/25
Revision history
Date
Revision
Description of changes
January 2004
8
First Issue in EDOCS dms.
September 2004
9
Changed the style-sheet look.
Cancelled the “Package Marking” information.
March 2005
10
Changed SPI interface description and Figure 4.
24-Nov-2006
11
Package changed, layout changes, text modifications.
TDA7502
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
25/25