STMICROELECTRONICS TS274

TS274
High performance CMOS quad ooperational amplifiers
■
Output voltage can swing to ground
■
Excellent phase margin on capacitive loads
■
Gain bandwidth product: 3.5MHz
■
Stable and low offset voltage
■
Three input offset voltage selections
N
DIP-14
(Plastic Package)
Description
The TS274 devices are low cost, quad operational
amplifiers designed to operate with single or dual
supplies. These operational amplifiers use the ST
silicon gate CMOS process allowing an excellent
consumption-speed ration. These series are ideally
suited for low consumption applications.
D
SO-14
(Plastic Micropackage)
Three power consumptions are available allowing
to have always the best consumption-speed ratio:
– ICC = 10µA/amp.: TS27L4 (very low power)
– ICC = 150µA/amp.: TS27M4 (low power)
– ICC = 1mA/amp.: TS274 (standard)
P
TSSOP14
(Thin Shrink Small Outline Package)
These CMOS amplifiers offer very high input
impedance and extremely low input currents. The
major advantage versus JFET devices is the very
low input currents drift with temperature (see
figure 2).
Pin connections (top view)
14 Output 4
Output 1 1
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
Non-inverting Input 2 5
+
+
10 Non-inverting Input 3
Inverting Input 2 6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
April 2006
Rev. 2
1/15
www.st.com
15
Order codes
1
TS274
Order codes
Part Number
Temperature
Range
TS274CD/DT
TS274ACD/DT
TS274CN
TS274ACN
0°C, +70°C
TS274CPT
TS274ACPT
TS274ID/DT
TS274AID/DT
TS274IN
TS274AIN
TS274IPT
TS274AIPT
2/15
-40°C, +125°C
Package
Packing
SO-14
Tube or Tape & Reel
DIP 14
Tube
TSSOP 14
Tape & Reel
SO-14
Tube or Tape & Reel
DIP 14
Tube
TSSOP-14
Tape & Reel
Marking
274C
274AC
TS274CN
TS274ACN
274I
274AI
TS274IN
TS274AIN
TS274
2
Absolute maximum ratings & operating conditions
Absolute maximum ratings & operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC+
Parameter
TS274C/AC/BC
Supply Voltage (1)
Vid
Differential Input Voltage
Unit
18
V
±18
V
-0.3 to 18
V
(2)
Input Voltage (3)
Vi
TS274I/AI/BI
+
Io
Output Current for VCC ≥ 15V
±30
mA
Iin
Input Current
±5
mA
Toper
Operating Free-Air Temperature Range
Tstg
Storage Temperature Range
0 to +70
-40 to +125
°C
-65 to +150
°C
103
100
80
°C/W
Ambient(4)
Rthja
Thermal Resistance Junction to
SO-14
TSSOP14
DIP14
Rthjc
Thermal Resistance Junction to Case
SO-14
TSSOP14
DIP14
31
32
33
HBM: Human Body Model(5)
500
V
100
V
800
V
ESD
MM: Machine
Model(6)
CDM: Charged Device Model
°C/W
1. All values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive
supply voltage.
4. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
5. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
6. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC
with no external series resistor (internal resistor < 5Ω), into pin to pin of device.
Table 2.
Operating conditions
Symbol
VCC
+
Vicm
Parameter
Supply Voltage
Common Mode Input Voltage Range
Value
Unit
3 to 16
V
0 to VCC+ - 1.5
V
3/15
Typical application information
3
TS274
Typical application information
Figure 1.
Block diagram
VCC
Current
source
xI
Input
differential
Second
stage
Output
stage
Output
VCC
E
4/15
E
T20
T19
T17
T24
T21
T 18
R2
T 25
VCC
T 22
T 23
T 26
T29
T 28
T27
Input
T3
T1
T5
T4
T2
C1
Input
R1
T7
T6
T9
T8
T 13
T11
T 10
T 14
T 12
T16
Output
T 15
Figure 2.
VCC
TS274
Typical application information
Schematic diagram (for 1/4 TS274)
5/15
Electrical characteristics
4
TS274
Electrical characteristics
Table 3.
VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified)
TS274C/AC/BC
Symbol
Parameter
Unit
Min
VO = 1.4V, Vic = 0V
TS274C/I
TS274AC/AI
TS274B/C/I
Vio
DV io
Input Offset Voltage
TS274I/AI/BI
Conditions
Typ
1.1
0.9
0.25
Max Min Typ
1.1
0.9
0.25
10
5
2
Max
10
5
2
mV
Tmin ≤ Tamb ≤ T max
TS274C/I
TS274AC/AI
TS274B/C/I
12
6.5
3.5
12
6.5
3
Input Offset Voltage Drift
2
Iio
Input Offset Current (1)
Vic = 5V, VO = 5V
Tmin ≤ Tamb ≤ T max
1
Iib
Input Bias Current (1)
Vic = 5V, VO = 5V
Tmin ≤ Tamb ≤ T max
1
VOH
High Level Output Voltage
Vid = 100mV, RL = 10kΩ
Tmin ≤ Tamb ≤ T max
VOL
Low Level Output Voltage
Vid = -100mV
Avd
ViC = 5V, RL = 10kΩ,
Large Signal Voltage Gain Vo = 1V to 6V
Tmin ≤ Tamb ≤ T max
2
1
100
200
1
150
8.2
8.1
8.4
300
8.2
8
8.4
50
10
µV/°C
15
pA
V
50
10
pA
mV
15
V/mV
7
6
GBP
Gain Bandwidth Product
Av = 40dB, RL = 10kΩ,
CL = 100pF, fin = 100kHz
CMR
Common Mode Rejection
Ratio
ViC = 1V to 7.4V, Vo = 1.4V
65
80
SVR
Supply Voltage Rejection
Ratio
VCC + = 5V to 10V, Vo = 1.4V
60
70
ICC
Supply Current (per
amplifier)
Av = 1, no load, Vo = 5V
Tmin ≤ Tamb ≤ T max
Io
Output Short Circuit
Current
Vo = 0V, Vid = 100mV
60
60
mA
Isink
Output Sink Current
Vo = VCC, Vid = -100mV
45
45
mA
SR
Slew Rate at Unity Gain
RL = 10kΩ, CL = 100pF,
Vi = 3 to 7V
5.5
5.5
V/µs
φm
Phase Margin at Unity
Gain
Av = 40dB, R L = 10kΩ,
CL = 100pF
40
40
Degrees
KOV
Overshoot Factor
30
30
%
30
30
nV/√Hz
120
120
dB
en
Equivalent Input Noise
Voltage
f = 1kHz, R s = 100Ω
Vo1 /Vo2 Channel Separation
1. Maximum values including unavoidable inaccuracies of the industrial test.
6/15
3.5
1000 1500
1600
3.5
MHz
65
80
dB
60
70
dB
1000 1500
1700
µA
TS274
Electrical characteristics
Tamb = 25°C
AV = 1
VO = VCC / 2
1.5
1.0
0.5
0
4
8
12
SUPPLY VOLTAGE, VCC (V)
INPUT BIAS CURRENT, I IB (pA)
Figure 5.
Figure 4.
16
100
VCC = 10V
Vic = 5V
10
T amb = 25˚C
V id = 100mV
VCC = 16V
12
VCC = 10V
8
4
0
-50
16
Input bias current vs. free-air
temperature
Figure 6.
-40
-30
-20
OUTPUT CURRENT, I
-10
OH (mA)
0
Low level output voltage vs. low
level output current
1.0
0.8
V CC = 3V
0.6
V CC = 5V
0.4
T amb = 25°C
V ic = 0.5V
V id = -100mV
0.2
1
25
50
75
100
0
125
1
2
OUTPUT CURRENT, I OL (mA)
TEMPERATURE, T amb (˚C)
Figure 7.
High level output voltage vs. high
level output current
5
T amb = 25˚C
V id = 100mV
4
3
VCC = 5V
2
VCC = 3V
1
0
-10
-8
-6
-4
-2
OUTPUT CURRENT, I OH (mA)
Figure 8.
OUTPUT VOLTAGE, VOL (V)
OUTPUT VOLTAGE, V OH (V)
High level output voltage vs. high
level output current
20
OUTPUT VOLTAGE, V OH (V)
2.0
Supply current (each amplifier) vs.
supply voltage
OUTPUT VOLTAGE, VOL (V)
SUPPLY CURRENT, I CC (µ A)
Figure 3.
0
3
Low level output voltage vs. low
level output current
V CC = 10V
VCC = 16V
2
1
3
T amb = 25°C
V i = 0.5V
V = -100mV
id
0
4
8
12
16
OUTPUT CURRENT, I OL (mA)
20
7/15
Electrical characteristics
Open loop frequency response and Figure 10. Phase margin vs. capacitive load
phase shift
40
0
G A IN
G A IN (d B )
30
45
PHASE
20
Phase
Margin
T a m b = 2 5 °C
V C C+ = 1 0 V
R L = 10kΩ
C L = 100pF
A VC L = 100
10
0
135
10
10
3
180
Gain
Bandwidth
Product
-1 0
2
90
10
4
10
5
10
6
10
P H A S E (D e g re e s )
50
P H A S E M A R G IN , φ m (D e g re e s )
Figure 9.
TS274
70
Ta m b = 2 5 °C
R L = 10kΩ
AV = 1
VC C = 10V
60
50
40
30
7
0
20
40
60
C A P A C IT A N C E , C
F R E Q U E N C Y , f (H z )
100
80
L
(p F )
7
5
S L E W R A T E S , S R (V / µs )
G A IN B A N D W . P R O D ., G B P (M H z )
Figure 11. Gain bandwidth product vs. supply Figure 12. Slew rate vs. supply voltage
voltage
4
3
2
Ta m b = 2 5 °C
R L = 10kΩ
CL = 1 0 0 p F
AV = 1
1
4
0
8
12
4
SR
3
4
6
8
10
12
S U P P L Y V O L T A G E , VC C
S U P P L Y V O L T A G E , V C C (V )
48
44
40
36
Ta m b = 2 5 °C
R L = 10kΩ
CL = 1 0 0 p F
AV = 1
32
28
16
300
VC C = 1 0 V
Tamb = 2 5 °C
R S = 1 0 0Ω
200
100
0
0
4
8
12
S U P P L Y V O L T A G E , V C C (V )
8/15
14
(V )
Figure 14. Input voltage noise vs. frequency
E Q U IV A L E N T IN P U T N O IS E
V O L T A G E (n V /V H z )
P H A S E M A R G IN , φ m (D e g re e s )
Figure 13. Phase margin vs. supply voltage
SR
5
2
16
Ta m b = 2 5 °C
R L = 10kΩ
CL = 1 0 0 p F
6
16
1
10
100
F R E Q U E N C Y (H z )
1000
TS274
Macromodel
5
Macromodel
5.1
Important note concerning this macromodel
Please consider following remarks before using this macromodel.
– All models are a trade-off between accuracy and complexity (i.e. simulation time).
– Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
– A macromodel emulates the NOMINAL performance of a TYPICAL device within
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus
the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the
main parameters of the product.
Data issued from macromodels used outside of its specified conditions (V CC, Temperature,
etc.) or even worse: outside of the device operating conditions (VCC, Vicm, etc.) are not
reliable in any way.
5.2
Macromodel code
********************************
.SUBCKT TS27X 1 2 3 4 5
*** INP- = 1, INP+ =2, OUT = 3 VDD=4 VSS = 5
*** TYPE = TS271/TS272/TS274
.MODEL MDTH D IS=1E-8 KF=2.664E-16 CJO=10F
***INPUT STAGE
CIP 2 5 1E-12
CIN 1 5 1E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 8
RIN 15 16 8
RIS 11 15 223.84
CPS 11 15 1E-9
DIP 11 120 MDTH 400E-12
DIN 15 140 MDTH 400E-12
RDEG1 12 120 4400
RDEG2 14 140 4400
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 38E-6
***ICC
DICC1 4 31 MDTH 400E-12
DICC2 31 32 MDTH 400E-12
DICC3 32 33 MDTH 400E-12
DICC4 33 34 MDTH 400E-12
RICC 34 5 20E3
ICC 4 5 600E-6
***COMMON MODE INPUT LIMITATION
DINN 17 13 MDTH 400E-12
VIN 17 5 DC -0.1
DINR 15 18 MDTH 400E-12
VIP 4 18 DC 2.2
***GM1 STAGE
FGM1P 119 5 VOFP 1
FGM1N 119 5 VOFN 1
RAP 119 4 1E6
9/15
Macromodel
TS274
RAN 119 5 1E6
***GM2 STAGE
G2P 19 5 119 5 4E-4
G2N 19 5 119 4 4E-4
R2P 19 4 450E3
R2N 19 5 450E3
***COMPENSATION
CC 19 119 7p
***BUFFER
EBUF 20 5 19 5 1
***SHORT-CIRCUIT LIMITATIONS( ISINK, ISOURCE)
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 910
VIPM 28 4 DC 50
HONM 21 27 VOUT 1222
VINM 5 27 DC 50
VOUT 3 23 DC 0
***VOH, VOL DEFINITIONS
DOP 19 25 MDTH 400E-12
VOP 4 25 2.5
DON 24 19 MDTH 400E-12
VON 24 5 0.92
***OUTPUT RESISTOR
ROUT 23 20 10
.ENDS
10/15
TS274
6
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
6.1
DIP14 package
Plastic DIP-14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
a1
0.51
B
1.39
TYP
MAX.
MIN.
TYP.
MAX.
0.020
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
0.280
I
5.1
0.201
L
Z
3.3
1.27
0.130
2.54
0.050
0.100
P001A
11/15
Package mechanical data
6.2
TS274
SO-14 package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
0.003
0.007
0.46
0.013
0.018
0.25
0.007
1.65
b
0.35
b1
0.19
C
MAX.
0.064
0.5
0.010
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
e
1.27
e3
0.344
0.244
0.050
7.62
0.300
F
3.8
4.0
0.149
G
4.6
5.3
0.181
0.208
L
0.5
1.27
0.019
0.050
M
S
0.68
0.157
0.026
8 ˚ (max.)
PO13G
12/15
TS274
6.3
Package mechanical data
TSSOP14 package
TSSOP14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
TYP
A
MAX.
MIN.
TYP.
MAX.
1.2
A1
0.05
A2
0.8
b
0.047
0.15
0.002
0.004
0.006
1.05
0.031
0.039
0.041
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.0089
D
4.9
5
5.1
0.193
0.197
0.201
E
6.2
6.4
6.6
0.244
0.252
0.260
E1
4.3
4.4
4.48
0.169
0.173
0.176
1
e
0.65 BSC
K
0˚
L
0.45
A
0.60
0.0256 BSC
8˚
0˚
0.75
0.018
8˚
0.024
0.030
A2
A1
b
e
K
c
L
E
D
E1
PIN 1 IDENTIFICATION
1
0080337D
13/15
Revision history
7
TS274
Revision history
Table 4.
Date
Revision
Nov. 2001
1
Initial release.
2
– ESD protection inserted in Table 1. on page 3.
– Thermal Resistance Junction to Case information added see Table
1. on page 3.
– Macromodel insertion in paragraph 5 on page 9.
April 2006
14/15
Document revision history
Changes
TS274
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED,
AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS,
NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR
SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
15/15