LM2904W Low power dual operational amplifier Features ■ Internally frequency compensated ■ Large DC voltage gain: 100 dB ■ Wide bandwidth (unity gain): 1.1 MHz (temperature compensated) ■ Very low supply current/op (500 µA) ■ Low input bias current: 20 nA (temperature compensated) ■ Low input offset current: 2 nA ■ Input common-mode voltage range includes negative rail ■ Differential input voltage range equal to the power supply voltage ■ Large output voltage swing 0V to (VCC+ - 1.5 V) ■ ESD internal protection: 2 kV N DIP8 (Plastic package) D SO-8 (Plastic micropackage) P TSSOP8 (Thin shrink small outline package) Description This circuit consists of two independent, high gain, internally frequency compensated operational amplifiers, designed specifically for automotive and industrial control system. It operates from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Pin connections (top view) Application areas include transducer amplifiers, DC gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied from standard +5 V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. In linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from a single power supply. February 2008 Rev 8 1/19 www.st.com 19 Schematic diagram 1 Schematic diagram Figure 1. 2/19 LM2904W Schematic diagram (1/2 LM2904W) LM2904W Absolute maximum ratings and operating conditions 2 Absolute maximum ratings and operating conditions Table 1. Absolute maximum ratings (AMR) Symbol VCC Parameter Supply voltage (1) (2) Value Unit +32 V Vid Differential input voltage -0.3V to VCC + 0.3 V Vin Input voltage -0.3V to VCC + 0.3 V Infinite s 50 mA -65 to +150 °C Maximum junction temperature 150 °C Rthja Thermal resistance junction to ambient(5) SO-8 TSSOP8 DIP8 125 120 85 Rthjc Thermal resistance junction to case(5) SO-8 TSSOP8 DIP8 40 37 41 °C/W Tstg Storage temperature range -65 to +150 °C 2000 200 1500 V Output short-circuit duration(3) Iin Tstg Tj Input current (4) Storage temperature range model(6) ESD HBM: human body MM: machine model(7) CDM: charged device model(8) °C/W 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. Short-circuits from the output to VCC can cause excessive heating if VCC+ > 15 V. The maximum output current is approximately 40 mA, independent of the magnitude of VCC. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers. 4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven negative. This is not destructive and normal output is restored for input voltages above -0.3 V. 5. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values. 6. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin combinations with other pins floating. 7. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating. 8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to the ground. Table 2. Operating conditions Symbol VCC Parameter Supply voltage Vicm Common mode input voltage range Tmin ≤ Tamb ≤ Tmax Toper Operating free-air temperature range Value Unit 3 to 30 V VCC+ - 1.5 VCC+ - 2 V -40 to +125 °C 3/19 Electrical characteristics LM2904W 3 Electrical characteristics Table 3. VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified) Symbol Vio DVio Iio DIio Parameter Min. Typ. Max. Unit Input offset voltage (1) Tmin ≤ Tamb ≤ Tmax 2 7 9 mV Input offset voltage drift 7 30 µV/°C Input offset current Tmin ≤ Tamb ≤ Tmax 2 30 40 nA Input offset current drift 10 300 pA/°C 20 150 200 nA (2) Iib Input bias current Tmin ≤ Tamb ≤ Tmax Avd Large signal voltage gain VCC+= +15V, RL=2kΩ, Vo=1.4V to 11.4V Tmin ≤ Tamb ≤ Tmax 50 25 100 V/mV SVR Supply voltage rejection ratio RS ≤10kΩ Tmin ≤ Tamb ≤ Tmax 65 65 100 dB ICC Supply current, all Amp, no load VCC = +5V Tmin ≤ Tamb ≤ Tmax, VCC = +30V CMR Common-mode rejection ratio RS = 10kΩ Tmin ≤ Tamb ≤ Tmax Isource Output short-circuit current VCC+ = +15V, Vo = +2V, Vid = +1V 0.7 70 60 85 20 40 20 50 Isink Output sink current VO = 2V, VCC+ = +5V VO = +0.2V, VCC+ = +15V 10 12 VOH High level output voltage VCC+ = + 30V RL = 2kΩ Tmin ≤ Tamb ≤ Tmax RL = 10kΩ Tmin ≤ Tamb ≤ Tmax 26 26 27 27 VOL Low level output voltage RL = 10kΩ Tmin ≤ Tamb ≤ Tmax SR Slew rate VCC+ = 15V, Vin = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity gain Tmin ≤ Tamb ≤ Tmax 4/19 mA dB 60 mA mA µA V 27 28 5 0.3 0.2 1.2 2 0.6 20 20 mV V/µs LM2904W Table 3. VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. GBP Gain bandwidth product f = 100kHz, VCC+ = 30V, Vin = 10mV, RL = 2kΩ, CL = 100pF 0.7 1.1 MHz THD Total harmonic distortion f = 1kHz, AV = 20dB, RL = 2kΩ, Vo = 2Vpp, CL = 100pF, VCC+ = 30V 0.02 % Equivalent input noise voltage f = 1kHz, RS = 100Ω, VCC+ = 30V 55 nV/√ Hz Channel separation (3) 1kHz ≤ f ≤ 20kHz 120 dB en VO1/VO2 1. Electrical characteristics Max. Unit VO = 1.4 V, RS = 0 Ω, 5 V < VCC+ < 30 V, 0 V < Vic < VCC+ - 1.5 V 2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output, so there is no change in the loading charge on the input lines. 3. Due to the proximity of external components, ensure that stray capacitance does not cause coupling between these external parts. Typically, this can be detected because this type of capacitance increases at higher frequencies. 5/19 Electrical characteristics Figure 2. LM2904W Open loop frequency response Figure 3. Large signal frequency response 20 140 100k Ω 10MΩ 1k Ω VCC VOLTAGE GAIN (dB) - 100 VO VI VCC/2 OUTPUT SWING (Vpp) 0.1μF 120 + 80 VCC = 30V & -55°C Tamb 60 +125°C 40 20 VCC = +10 to + 15V & -55°C Tamb +125°C 15 2k Ω + 10 5 0 1.0 10 100 1k 10k 100k 1M 10M 1k 10k Figure 4. Voltage follower pulse response Figure 5. VCC = +5V VCC = +15V VCC = +30V OUTPUT VOLTAGE (V) 2 1 0 3 2 1 v cc v cc /2 - 0.1 IO Tamb = +25°C 0.01 0 10 20 30 40 0,001 TIME (μs) + eO - 50pF 400 Input 350 Output 300 Tamb = +25°C VCC = 30 V 250 0 1 2 3 4 5 TIME (ms) 6 7 8 Figure 7. 0,1 1 10 100 Output characteristics 8 V CC 7 6 TO VCC+ (V) 500 el 0,01 OUTPUT SINK CURRENT (μ A) Voltage follower pulse response ( ) 450 VO + 1 OUTPUT VOLTAGE REFERENCED OUTPUT VOLTAGE (V) Output characteristics RL 2 kΩ VCC = +15V 3 Figure 6. 1M 10 4 INPUT VOLTAGE (V) 100k FREQUENCY (Hz) FREQUENCY (Hz) OUTPUT VOLTAGE (mV) VO VI +7V 0 6/19 +15V - V CC /2 5 + VO IO - 4 3 2 Independent of V CC T amb = +25°C 1 0,001 0,01 0,1 1 10 100 OUTPUT SOURCE CURRENT (mA) LM2904W Electrical characteristics Figure 8. Input current versus temperature Figure 9. 90 90 80 VI = 0 V 70 OUTPUT CURRENT (mA) INPUT CURRENT (mA) Current limiting VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 - 80 70 60 + 50 40 30 20 10 10 0 0 -55 -35 -15 5 25 45 65 85 105 -55 -35 125 TEMPERATURE (°C) -15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 10. Input voltage range Figure 11. Supply current 4 15 VCC 10 SUPPLY CURRENT (mA) INPUT VOLTAGE (V) IO Négative Positive 5 ID mA 3 - 2 + Tamb = 0°C to +125°C 1 Tamb = -55°C 0 5 10 15 0 POWER SUPPLY VOLTAGE (±V) Figure 12. Voltage gain 20 30 POSITIVE SUPPLY VOLTAGE (V) Figure 13. Input current versus supply voltage 100 160 INPUT CURRENT (nA) R L = 20kΩ VOLTAGE GAIN (dB) 10 120 R L = 2k Ω 80 40 0 10 20 30 40 POSITIVE SUPPLY VOLTAGE (V) 75 50 25 Tamb= +25°C 0 10 20 30 POSITIVE SUPPLY VOLTAGE (V) 7/19 Electrical characteristics LM2904W 1.5 1.35 1.2 1.05 0.9 0.75 VCC = 15V 0.6 0.45 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) COMMON MODE REJECTION RATIO (dB) Figure 16. Common mode rejection ratio 8/19 Figure 15. Power supply rejection ratio POWER SUPPLY REJECTION RATIO (dB) GAIN BANDWIDTH PRODUCT (MHz) Figure 14. Gain bandwidth product 115 110 SVR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) Figure 17. Phase margin vs capacitive load Phase Margin at Vcc=15V and Vicm=7.5V Vs. Iout and Capacitive load value 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE (°C) LM2904W Electrical characteristics Typical single-supply applications Figure 18. AC coupled inverting amplifier Rf 100kΩ 1/2 LM2904 eI ~ R2 VCC 100kΩ R1 100kΩ Rf R1 (as shown AV = -10) R1 10kΩ CI AV = - Figure 19. AC coupled non-inverting amplifier RB 6.2kΩ R3 100kΩ 2VPP Co 1/2 LM2904 CI RL 10kΩ R3 1MΩ eI ~ 2VPP 0 eo RB 6.2kΩ RL 10k Ω R4 100kΩ VCC C1 10μF C2 10μF Figure 20. Non-inverting DC gain R5 100kΩ Figure 21. DC summing amplifier e1 100kΩ A V = 1 + R2 R1 (As shown A V = 101) 10kΩ +5V 100kΩ e2 100kΩ e3 100kΩ 1/2 LM2904 eO 100kΩ e O R2 1M Ω eO (V) 1/2 LM2904 R1 10kΩ A V= 1 + R2 R1 (as shown A V = 11) C1 0.1μF Co 0 eo R2 1MΩ e4 0 e I (mV) 100kΩ eo = e1 + e2 - e3 - e4 where (e1 + e2) ≥ (e3 + e4) to keep eo ≥ 0V Figure 22. High input Z, DC differential amplifier Figure 23. Using symmetrical amplifiers to reduce input current 1/2 R1 100kΩ 1/2 LM2904 I R4 100kΩ R2 100kΩ eI IB R3 100kΩ +V1 +V2 1/2 LM2904 eo I B LM2904 2N 929 0.001μ F Vo IB If R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2R1 ] (e2 - e1) R2 As shown eo = 101 (e2 - e1) I IB 3MΩ 1.5MΩ IB 1/2 LM2904 Input current compensation 9/19 Electrical characteristics LM2904W Figure 24. Low drift peak detector Figure 25. Active bandpass filter R1 100kΩ IB 1/2 LM2904 eI C 1μ F ZI R 1M Ω eo 0.001μ F IB R2 100kΩ R5 470kΩ R4 10MΩ R3 100kΩ IB 3R 3M Ω 1/2 LM2904 +V1 Zo 2IB 2N 929 2IB 10/19 C1 330pF 1/2 I B LM2904 C2 330pF 1/2 LM2904 R6 470kΩ Vo 1/2 LM2904 VCC 1/2 LM2904 Input current compensation R7 100kΩ R8 100kΩ Fo = 1kHz Q = 50 Av = 100 (40dB) C3 10μF LM2904W Macromodel 4 Macromodel 4.1 Important note concerning this macromodel Please consider the following remarks before using this macromodel. ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the nominal performance of a typical device within specified operating conditions (temperature, supply voltage, for example). Thus the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. Data derived from macromodels used outside of the specified conditions (VCC, temperature, for example) or even worse, outside of the device operating conditions (VCC, Vicm, for example), is not reliable in any way. 4.2 Macromodel code ** Standard Linear Ics Macromodels, 1993. ** ESD diodes added to the initial macromodel (2007). ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT LM2904W 1 2 3 4 5 *************************** .MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F D1A 1 4 MDTH 400E-12 D1B 5 1 MDTH 400E-12 D2A 2 4 MDTH 400E-12 D2B 5 2 MDTH 400E-12 * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E+01 RIN 15 16 2.600000E+01 RIS 11 15 2.003862E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-05 CPS 11 15 3.783376E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 11/19 Macromodel DINR 15 18 MDTH 400E-12 VIP 4 18 2.000000E+00 FCP 4 5 VOFP 3.400000E+01 FCN 5 4 VOFN 3.400000E+01 FIBP 2 5 VOFN 2.000000E-03 FIBN 5 1 VOFP 2.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 3.600000E+02 FIN 5 19 VOFN 3.600000E+02 RG1 19 5 3.652997E+06 RG2 19 4 3.652997E+06 CC 19 5 6.000000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 7.500000E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 7.500000E+03 VINM 5 27 1.500000E+02 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 20 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.242230E+00 DON 24 19 MDTH 400E-12 VON 24 5 7.922301E-01 .ENDS 12/19 LM2904W LM2904W 5 Package information Package information In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 13/19 Package information 5.1 LM2904W SO-8 package information Figure 26. SO-8 package mechanical drawing Table 4. SO-8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.75 0.25 Max. 0.069 A1 0.10 A2 1.25 b 0.28 0.48 0.011 0.019 c 0.17 0.23 0.007 0.010 D 4.80 4.90 5.00 0.189 0.193 0.197 E 5.80 6.00 6.20 0.228 0.236 0.244 E1 3.80 3.90 4.00 0.150 0.154 0.157 e 0.004 0.010 0.049 1.27 0.050 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k 1° 8° 1° 8° ccc 14/19 Inches 0.10 0.004 LM2904W 5.2 Package information DIP8 package information Figure 27. DIP8 package mechanical drawing Table 5. DIP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Inches Max. Min. Typ. 5.33 Max. 0.210 A1 0.38 0.015 A2 2.92 3.30 4.95 0.115 0.130 0.195 b 0.36 0.46 0.56 0.014 0.018 0.022 b2 1.14 1.52 1.78 0.045 0.060 0.070 c 0.20 0.25 0.36 0.008 0.010 0.014 D 9.02 9.27 10.16 0.355 0.365 0.400 E 7.62 7.87 8.26 0.300 0.310 0.325 E1 6.10 6.35 7.11 0.240 0.250 0.280 e 2.54 0.100 eA 7.62 0.300 eB L 10.92 2.92 3.30 3.81 0.430 0.115 0.130 0.150 15/19 Package information 5.3 LM2904W TSSOP8 package information Figure 28. TSSOP8 package mechanical drawing Table 6. TSSOP8 package mechanical data Dimensions Ref. Millimeters Min. Typ. A Max. Min. Typ. 1.2 A1 0.05 A2 0.80 b Max. 0.047 0.15 0.002 1.05 0.031 0.19 0.30 0.007 0.012 c 0.09 0.20 0.004 0.008 D 2.90 3.00 3.10 0.114 0.118 0.122 E 6.20 6.40 6.60 0.244 0.252 0.260 E1 4.30 4.40 4.50 0.169 0.173 0.177 e 16/19 Inches 1.00 0.65 k 0° L 0.45 0.60 0.006 0.039 0.041 0.0256 8° 0° 0.75 0.018 8° 0.024 L1 1 0.039 aaa 0.1 0.004 0.030 LM2904W Ordering information 6 Ordering information Table 7. Order codes Order code Temperature range Package Packing Marking LM2904WN DIP8 Tube LM2904W LM2904WD LM2904WDT SO-8 Tube or tape & reel 2904W TSSOP8 Tape & reel 2904W LM2904WYD(1) LM2904WYDT(1) SO-8 (Automotive grade level) Tube or tape & reel 2904WY LM2904WYPT(2) TSSOP8 (Automotive grade level) Tape & reel K04WY LM2904WPT -40°C, +125°C 1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent. 2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 & Q 002 or equivalent are on-going. 17/19 Revision history LM2904W 7 Revision history Table 8. Document revision history Date Revision 1-Sep-2003 1 Initial release. 1-Jul-2005 2 PPAP references inserted in the datasheet see Section 6: Ordering information on page 17. ESD protection inserted in Table 1: Absolute maximum ratings (AMR) on page 3. 1-Oct-2005 3 Correction of error in AVD min. value see Table 3 on page 4. 1-Dec-2005 4 LM2904WYPT PPAP reference added in Section 6: Ordering information on page 17. Information added in Table 1: Absolute maximum ratings (AMR) on page 3. 2-May-2006 5 Minimum value of slew rate at 25°C and in temperature added in Table 3 on page 4. 20-Jul-2007 6 Power dissipation value corrected in Table 1: Absolute maximum ratings (AMR). ESD tolerance for HBM model improved to 2kV in Table 3 on page 4. Equivalent input noise voltage parameter added in Table 3. Electrical characteristics curves updated. Added Figure 17: Phase margin vs capacitive load on page 8. Section 5: Package information updated. Section 4: Macromodel added. 18-Dec-2007 7 Reformatted electrical characteristics table, Table 3. Deleted Vopp parameter in Table 3. Corrected footnotes for automotive grade order codes in Table 7. 21-Feb-2008 8 Corrected SO-8 package mechanical data. Dimension E in drawing was marked H in table. Corrected revision history. 18/19 Changes LM2904W Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19