STMICROELECTRONICS LM2904WDT

LM2904W
Low power dual operational amplifier
Features
■
Internally frequency compensated
■
Large DC voltage gain: 100 dB
■
Wide bandwidth (unity gain): 1.1 MHz
(temperature compensated)
■
Very low supply current/op (500 µA)
■
Low input bias current: 20 nA (temperature
compensated)
■
Low input offset current: 2 nA
■
Input common-mode voltage range includes
negative rail
■
Differential input voltage range equal to the
power supply voltage
■
Large output voltage swing 0V to (VCC+ - 1.5 V)
■
ESD internal protection: 2 kV
N
DIP8
(Plastic package)
D
SO-8
(Plastic micropackage)
P
TSSOP8
(Thin shrink small outline package)
Description
This circuit consists of two independent, high
gain, internally frequency compensated
operational amplifiers, designed specifically for
automotive and industrial control system. It
operates from a single power supply over a wide
range of voltages. The low power supply drain is
independent of the magnitude of the power supply
voltage.
Pin connections (top view)
Application areas include transducer amplifiers,
DC gain blocks and all the conventional op-amp
circuits which now can be more easily
implemented in single power supply systems. For
example, these circuits can be directly supplied
from standard +5 V which is used in logic systems
and will easily provide the required interface
electronics without requiring any additional power
supply.
In linear mode the input common-mode voltage
range includes ground and the output voltage can
also swing to ground, even though operated from
a single power supply.
February 2008
Rev 8
1/19
www.st.com
19
Schematic diagram
1
Schematic diagram
Figure 1.
2/19
LM2904W
Schematic diagram (1/2 LM2904W)
LM2904W
Absolute maximum ratings and operating conditions
2
Absolute maximum ratings and operating conditions
Table 1.
Absolute maximum ratings (AMR)
Symbol
VCC
Parameter
Supply voltage (1)
(2)
Value
Unit
+32
V
Vid
Differential input voltage
-0.3V to VCC + 0.3
V
Vin
Input voltage
-0.3V to VCC + 0.3
V
Infinite
s
50
mA
-65 to +150
°C
Maximum junction temperature
150
°C
Rthja
Thermal resistance junction to ambient(5)
SO-8
TSSOP8
DIP8
125
120
85
Rthjc
Thermal resistance junction to case(5)
SO-8
TSSOP8
DIP8
40
37
41
°C/W
Tstg
Storage temperature range
-65 to +150
°C
2000
200
1500
V
Output short-circuit duration(3)
Iin
Tstg
Tj
Input current
(4)
Storage temperature range
model(6)
ESD
HBM: human body
MM: machine model(7)
CDM: charged device model(8)
°C/W
1. All voltage values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. Short-circuits from the output to VCC can cause excessive heating if VCC+ > 15 V. The maximum output current is
approximately 40 mA, independent of the magnitude of VCC. Destructive dissipation can result from simultaneous shortcircuits on all amplifiers.
4. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base
junction of the input PNP transistor becoming forward biased and thereby acting as input diode clamps. In addition to this
diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the
Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time during which an input is driven
negative. This is not destructive and normal output is restored for input voltages above -0.3 V.
5. Short-circuits can cause excessive heating and destructive dissipation. Rth are typical values.
6. Human body model: 100 pF discharged through a 1.5 kΩ resistor between two pins of the device, done for all couples of pin
combinations with other pins floating.
7. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device
with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
8. Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to
the ground.
Table 2.
Operating conditions
Symbol
VCC
Parameter
Supply voltage
Vicm
Common mode input voltage range
Tmin ≤ Tamb ≤ Tmax
Toper
Operating free-air temperature range
Value
Unit
3 to 30
V
VCC+ - 1.5
VCC+ - 2
V
-40 to +125
°C
3/19
Electrical characteristics
LM2904W
3
Electrical characteristics
Table 3.
VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Symbol
Vio
DVio
Iio
DIio
Parameter
Min.
Typ.
Max.
Unit
Input offset voltage (1)
Tmin ≤ Tamb ≤ Tmax
2
7
9
mV
Input offset voltage drift
7
30
µV/°C
Input offset current
Tmin ≤ Tamb ≤ Tmax
2
30
40
nA
Input offset current drift
10
300
pA/°C
20
150
200
nA
(2)
Iib
Input bias current
Tmin ≤ Tamb ≤ Tmax
Avd
Large signal voltage gain
VCC+= +15V, RL=2kΩ, Vo=1.4V to 11.4V
Tmin ≤ Tamb ≤ Tmax
50
25
100
V/mV
SVR
Supply voltage rejection ratio
RS ≤10kΩ
Tmin ≤ Tamb ≤ Tmax
65
65
100
dB
ICC
Supply current, all Amp, no load
VCC = +5V
Tmin ≤ Tamb ≤ Tmax, VCC = +30V
CMR
Common-mode rejection ratio
RS = 10kΩ
Tmin ≤ Tamb ≤ Tmax
Isource
Output short-circuit current
VCC+ = +15V, Vo = +2V, Vid = +1V
0.7
70
60
85
20
40
20
50
Isink
Output sink current
VO = 2V, VCC+ = +5V
VO = +0.2V, VCC+ = +15V
10
12
VOH
High level output voltage
VCC+ = + 30V
RL = 2kΩ
Tmin ≤ Tamb ≤ Tmax
RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax
26
26
27
27
VOL
Low level output voltage
RL = 10kΩ
Tmin ≤ Tamb ≤ Tmax
SR
Slew rate
VCC+ = 15V, Vin = 0.5 to 3V, RL = 2kΩ, CL = 100pF, unity gain
Tmin ≤ Tamb ≤ Tmax
4/19
mA
dB
60
mA
mA
µA
V
27
28
5
0.3
0.2
1.2
2
0.6
20
20
mV
V/µs
LM2904W
Table 3.
VCC+ = 5V, VCC- = Ground, VO = 1.4V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
GBP
Gain bandwidth product
f = 100kHz, VCC+ = 30V, Vin = 10mV, RL = 2kΩ, CL = 100pF
0.7
1.1
MHz
THD
Total harmonic distortion
f = 1kHz, AV = 20dB, RL = 2kΩ,
Vo = 2Vpp, CL = 100pF, VCC+ = 30V
0.02
%
Equivalent input noise voltage
f = 1kHz, RS = 100Ω, VCC+ = 30V
55
nV/√ Hz
Channel separation (3)
1kHz ≤ f ≤ 20kHz
120
dB
en
VO1/VO2
1.
Electrical characteristics
Max.
Unit
VO = 1.4 V, RS = 0 Ω, 5 V < VCC+ < 30 V, 0 V < Vic < VCC+ - 1.5 V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output,
so there is no change in the loading charge on the input lines.
3. Due to the proximity of external components, ensure that stray capacitance does not cause coupling between these
external parts. Typically, this can be detected because this type of capacitance increases at higher frequencies.
5/19
Electrical characteristics
Figure 2.
LM2904W
Open loop frequency response
Figure 3.
Large signal frequency response
20
140
100k Ω
10MΩ
1k Ω
VCC
VOLTAGE GAIN (dB)
-
100
VO
VI
VCC/2
OUTPUT SWING (Vpp)
0.1μF
120
+
80
VCC = 30V &
-55°C Tamb
60
+125°C
40
20
VCC = +10 to + 15V &
-55°C Tamb +125°C
15
2k Ω
+
10
5
0
1.0
10
100
1k
10k
100k
1M
10M
1k
10k
Figure 4.
Voltage follower pulse response
Figure 5.
VCC = +5V
VCC = +15V
VCC = +30V
OUTPUT VOLTAGE (V)
2
1
0
3
2
1
v cc
v cc /2
-
0.1
IO
Tamb = +25°C
0.01
0
10
20
30
40
0,001
TIME (μs)
+
eO
-
50pF
400
Input
350
Output
300
Tamb = +25°C
VCC = 30 V
250
0
1
2
3
4
5
TIME (ms)
6
7
8
Figure 7.
0,1
1
10
100
Output characteristics
8
V CC
7
6
TO VCC+ (V)
500
el
0,01
OUTPUT SINK CURRENT (μ A)
Voltage
follower pulse
response
(
)
450
VO
+
1
OUTPUT VOLTAGE REFERENCED
OUTPUT
VOLTAGE (V)
Output characteristics
RL 2 kΩ
VCC = +15V
3
Figure 6.
1M
10
4
INPUT
VOLTAGE (V)
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
OUTPUT VOLTAGE (mV)
VO
VI
+7V
0
6/19
+15V
-
V CC /2
5
+
VO
IO
-
4
3
2
Independent of V CC
T amb = +25°C
1
0,001 0,01
0,1
1
10
100
OUTPUT SOURCE CURRENT (mA)
LM2904W
Electrical characteristics
Figure 8.
Input current versus temperature
Figure 9.
90
90
80
VI = 0 V
70
OUTPUT CURRENT (mA)
INPUT CURRENT (mA)
Current limiting
VCC = +30 V
60
50
VCC = +15 V
40
30
VCC = +5 V
20
-
80
70
60
+
50
40
30
20
10
10
0
0
-55 -35
-15
5
25
45
65
85 105
-55 -35
125
TEMPERATURE (°C)
-15
5
25
45
65
85 105
125
TEMPERATURE (°C)
Figure 10. Input voltage range
Figure 11. Supply current
4
15
VCC
10
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
IO
Négative
Positive
5
ID
mA
3
-
2
+
Tamb = 0°C to +125°C
1
Tamb = -55°C
0
5
10
15
0
POWER SUPPLY VOLTAGE (±V)
Figure 12. Voltage gain
20
30
POSITIVE SUPPLY VOLTAGE (V)
Figure 13. Input current versus supply voltage
100
160
INPUT CURRENT (nA)
R L = 20kΩ
VOLTAGE GAIN (dB)
10
120
R L = 2k Ω
80
40
0
10
20
30
40
POSITIVE SUPPLY VOLTAGE (V)
75
50
25
Tamb= +25°C
0
10
20
30
POSITIVE SUPPLY VOLTAGE (V)
7/19
Electrical characteristics
LM2904W
1.5
1.35
1.2
1.05
0.9
0.75
VCC =
15V
0.6
0.45
0.3
0.15
0
-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
COMMON MODE REJECTION RATIO (dB)
Figure 16. Common mode rejection ratio
8/19
Figure 15. Power supply rejection ratio
POWER SUPPLY REJECTION RATIO (dB)
GAIN BANDWIDTH PRODUCT (MHz)
Figure 14. Gain bandwidth product
115
110
SVR
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
Figure 17. Phase margin vs capacitive load
Phase Margin at Vcc=15V and Vicm=7.5V
Vs. Iout and Capacitive load value
115
110
105
100
95
90
85
80
75
70
65
60-55-35-15 5 25 45 65 85 105 125
TEMPERATURE (°C)
LM2904W
Electrical characteristics
Typical single-supply applications
Figure 18. AC coupled inverting amplifier
Rf
100kΩ
1/2
LM2904
eI ~
R2
VCC 100kΩ
R1
100kΩ
Rf
R1
(as shown AV = -10)
R1
10kΩ
CI
AV = -
Figure 19. AC coupled non-inverting amplifier
RB
6.2kΩ
R3
100kΩ
2VPP
Co
1/2
LM2904
CI
RL
10kΩ
R3
1MΩ
eI ~
2VPP
0
eo
RB
6.2kΩ
RL
10k Ω
R4
100kΩ
VCC
C1
10μF
C2
10μF
Figure 20. Non-inverting DC gain
R5
100kΩ
Figure 21. DC summing amplifier
e1
100kΩ
A V = 1 + R2
R1
(As shown A V = 101)
10kΩ
+5V
100kΩ
e2
100kΩ
e3
100kΩ
1/2
LM2904
eO
100kΩ
e
O
R2
1M Ω
eO
(V)
1/2
LM2904
R1
10kΩ
A V= 1 + R2
R1
(as shown A V = 11)
C1
0.1μF
Co
0
eo
R2
1MΩ
e4
0
e I (mV)
100kΩ
eo = e1 + e2 - e3 - e4
where (e1 + e2) ≥ (e3 + e4)
to keep eo ≥ 0V
Figure 22. High input Z, DC differential
amplifier
Figure 23. Using symmetrical amplifiers to
reduce input current
1/2
R1
100kΩ
1/2
LM2904
I
R4
100kΩ
R2
100kΩ
eI
IB
R3
100kΩ
+V1
+V2
1/2
LM2904
eo
I B LM2904
2N 929
0.001μ F
Vo
IB
If R1 = R5 and R3 = R4 = R6 = R7
eo = [ 1 + 2R1 ] (e2 - e1)
R2
As shown eo = 101 (e2 - e1)
I
IB
3MΩ
1.5MΩ
IB
1/2
LM2904
Input current compensation
9/19
Electrical characteristics
LM2904W
Figure 24. Low drift peak detector
Figure 25. Active bandpass filter
R1
100kΩ
IB
1/2
LM2904
eI
C
1μ F
ZI
R
1M Ω
eo
0.001μ F
IB
R2
100kΩ
R5
470kΩ
R4
10MΩ
R3
100kΩ
IB
3R
3M Ω
1/2
LM2904
+V1
Zo
2IB
2N 929
2IB
10/19
C1
330pF
1/2
I B LM2904
C2
330pF
1/2
LM2904
R6
470kΩ
Vo
1/2
LM2904
VCC
1/2
LM2904
Input current
compensation
R7
100kΩ
R8
100kΩ
Fo = 1kHz
Q = 50
Av = 100 (40dB)
C3
10μF
LM2904W
Macromodel
4
Macromodel
4.1
Important note concerning this macromodel
Please consider the following remarks before using this macromodel.
●
All models are a trade-off between accuracy and complexity (i.e. simulation time).
●
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of
a design approach and help to select surrounding component values.
●
A macromodel emulates the nominal performance of a typical device within specified
operating conditions (temperature, supply voltage, for example). Thus the
macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the
main parameters of the product.
Data derived from macromodels used outside of the specified conditions (VCC, temperature,
for example) or even worse, outside of the device operating conditions (VCC, Vicm, for
example), is not reliable in any way.
4.2
Macromodel code
** Standard Linear Ics Macromodels, 1993.
** ESD diodes added to the initial macromodel (2007).
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT LM2904W 1 2 3 4 5
***************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
D1A 1 4 MDTH 400E-12
D1B 5 1 MDTH 400E-12
D2A 2 4 MDTH 400E-12
D2B 5 2 MDTH 400E-12
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
11/19
Macromodel
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
12/19
LM2904W
LM2904W
5
Package information
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
13/19
Package information
5.1
LM2904W
SO-8 package information
Figure 26. SO-8 package mechanical drawing
Table 4.
SO-8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.75
0.25
Max.
0.069
A1
0.10
A2
1.25
b
0.28
0.48
0.011
0.019
c
0.17
0.23
0.007
0.010
D
4.80
4.90
5.00
0.189
0.193
0.197
E
5.80
6.00
6.20
0.228
0.236
0.244
E1
3.80
3.90
4.00
0.150
0.154
0.157
e
0.004
0.010
0.049
1.27
0.050
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
1°
8°
1°
8°
ccc
14/19
Inches
0.10
0.004
LM2904W
5.2
Package information
DIP8 package information
Figure 27. DIP8 package mechanical drawing
Table 5.
DIP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Inches
Max.
Min.
Typ.
5.33
Max.
0.210
A1
0.38
0.015
A2
2.92
3.30
4.95
0.115
0.130
0.195
b
0.36
0.46
0.56
0.014
0.018
0.022
b2
1.14
1.52
1.78
0.045
0.060
0.070
c
0.20
0.25
0.36
0.008
0.010
0.014
D
9.02
9.27
10.16
0.355
0.365
0.400
E
7.62
7.87
8.26
0.300
0.310
0.325
E1
6.10
6.35
7.11
0.240
0.250
0.280
e
2.54
0.100
eA
7.62
0.300
eB
L
10.92
2.92
3.30
3.81
0.430
0.115
0.130
0.150
15/19
Package information
5.3
LM2904W
TSSOP8 package information
Figure 28. TSSOP8 package mechanical drawing
Table 6.
TSSOP8 package mechanical data
Dimensions
Ref.
Millimeters
Min.
Typ.
A
Max.
Min.
Typ.
1.2
A1
0.05
A2
0.80
b
Max.
0.047
0.15
0.002
1.05
0.031
0.19
0.30
0.007
0.012
c
0.09
0.20
0.004
0.008
D
2.90
3.00
3.10
0.114
0.118
0.122
E
6.20
6.40
6.60
0.244
0.252
0.260
E1
4.30
4.40
4.50
0.169
0.173
0.177
e
16/19
Inches
1.00
0.65
k
0°
L
0.45
0.60
0.006
0.039
0.041
0.0256
8°
0°
0.75
0.018
8°
0.024
L1
1
0.039
aaa
0.1
0.004
0.030
LM2904W
Ordering information
6
Ordering information
Table 7.
Order codes
Order code
Temperature
range
Package
Packing
Marking
LM2904WN
DIP8
Tube
LM2904W
LM2904WD
LM2904WDT
SO-8
Tube or
tape & reel
2904W
TSSOP8
Tape & reel
2904W
LM2904WYD(1)
LM2904WYDT(1)
SO-8
(Automotive grade level)
Tube or
tape & reel
2904WY
LM2904WYPT(2)
TSSOP8
(Automotive grade level)
Tape & reel
K04WY
LM2904WPT
-40°C, +125°C
1. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001
& Q 002 or equivalent.
2. Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC
Q001 & Q 002 or equivalent are on-going.
17/19
Revision history
LM2904W
7
Revision history
Table 8.
Document revision history
Date
Revision
1-Sep-2003
1
Initial release.
1-Jul-2005
2
PPAP references inserted in the datasheet see Section 6: Ordering information
on page 17.
ESD protection inserted in Table 1: Absolute maximum ratings (AMR) on
page 3.
1-Oct-2005
3
Correction of error in AVD min. value see Table 3 on page 4.
1-Dec-2005
4
LM2904WYPT PPAP reference added in Section 6: Ordering information on
page 17.
Information added in Table 1: Absolute maximum ratings (AMR) on page 3.
2-May-2006
5
Minimum value of slew rate at 25°C and in temperature added in Table 3 on
page 4.
20-Jul-2007
6
Power dissipation value corrected in Table 1: Absolute maximum ratings
(AMR).
ESD tolerance for HBM model improved to 2kV in Table 3 on page 4.
Equivalent input noise voltage parameter added in Table 3.
Electrical characteristics curves updated.
Added Figure 17: Phase margin vs capacitive load on page 8.
Section 5: Package information updated.
Section 4: Macromodel added.
18-Dec-2007
7
Reformatted electrical characteristics table, Table 3.
Deleted Vopp parameter in Table 3.
Corrected footnotes for automotive grade order codes in Table 7.
21-Feb-2008
8
Corrected SO-8 package mechanical data. Dimension E in drawing was
marked H in table.
Corrected revision history.
18/19
Changes
LM2904W
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
19/19