TS914 Rail-to-rail CMOS quad operational amplifier Features ■ Rail-to-rail input and output voltage ranges ■ Single (or dual) supply operation from 2.7V to 16V ■ Extremely low input bias current: 1pA typ ■ Low input offset voltage: 5mV max. ■ Specified for 600Ω and 100Ω loads ■ Low supply current: 200μA/ampli (VCC = 3V) ■ Latch-up immunity ■ Spice macromodel included in this specification N DIP-14 (Plastic package) D SO-14 (Plastic micropackage) Description Pin connections (top view) The TS914 is a rail-to-rail CMOS quad operational amplifier designed to operate with a single or dual supply voltage. The input voltage range Vicm includes the two supply rails VCC+ and VCC-. The output reaches: ■ VCC- +50mV, VCC+ -50mV, with RL = 10kΩ ■ VCC- +350mV, VCC+ -350mV, with RL = 600Ω This product offers a broad supply voltage operating range from 2.7V to 16V and a supply current of only 200μA/amp (VCC = 3V). Output 1 1 Inverting Input 1 2 - - 14 Output 4 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 V CC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 Output 2 7 8 Output 3 11 VCC - Source and sink output current capability is typically 40mA (at VCC = 3V), fixed by an internal limitation circuit. Order codes Part number Temperature range Package Packing Marking TS914IN DIP14 Tube TS914IN TS914ID/IDT SO-14 Tube or tape & reel 914I DIP14 Tube TS914AIN SO-14 Tube or tape & reel 914AI SO-14 (automotive grade level) Tube or tape & reel TS914AIN TS914AID/AIDT TS914IYD/IYDT TS914AIYD/AIYDT January 2007 -40, +125°C Rev 5 914IY 914AIY 1/19 www.st.com 19 Contents TS914 Contents 1 Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 3 2 Typical application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 Macromodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 6 2/19 4.1 Important note concerning this macromodel . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Macromodel code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 DIP-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 SO-14 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 TS914 1 Absolute maximum ratings and operating conditions Absolute maximum ratings and operating conditions Table 1. Symbol VCC Vid Absolute maximum ratings Parameter Test conditions Supply voltage (1) Differential input voltage (2) (3) Value Unit 18 V ±18 V -0.3 to 18 V Vi Input voltage Iin Current on inputs ±50 mA Io Current on outputs ±130 mA Tj Maximum junction temperature 150 °C -65 to +150 °C Tstg Storage temperature Rthja Thermal resistance junction to ambient (4) DIP-14 83 SO-14 103 Rthjc Thermal resistance junction to case DIP-14 °C/W 33 SO-14 HBM: human body model ESD 31 (5) (6) MM: machine model CDM: charged device °C/W model(7) 1 kV 50 V 1.5 kV 1. All voltage values, except differential voltage are with respect to network ground terminal. 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V. 4. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous shortcircuit on all amplifiers. These are typical values. 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a 1.5kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating. 6. Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating. 7. Charged device model: all pins and the package are charged together to the specified voltage and then discharged directly to the ground through only one pin. This is done for all pins. Table 2. Operating conditions Symbol VCC Parameter Value Supply voltage Vicm Common mode input voltage range Toper Operating free air temperature range Unit 2.7 to 16 - V + VCC -0.2 to VCC +0.2 V -40 to + 125 °C 3/19 Typical application information 2 TS914 Typical application information Figure 1. Typical application information VCC Non-inverting Input Internal Vref Inverting Input Output VCC 4/19 TS914 Electrical characteristics 3 Electrical characteristics Table 3. VCC+ = 3V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Parameter Vio Input offset voltage (Vicm = Vo = VCC/2) ΔVio Input offset voltage drift Test conditions Min. Typ. Tamb TS914 Tamb TS914A Tmin ≤ Tamb ≤ Tmax, TS914 Tmin ≤ Tamb ≤ Tmax, TS914A Max. Unit 10 5 12 7 mV μV/°C 5 Iio Input offset current (1) Tamb Tmin ≤ Tamb ≤ Tmax 1 100 200 pA Iib Input bias current (1) Tmin ≤ Tamb ≤ Tmax Tamb Tmin. ≤ Tamb ≤ Tmax 1 150 300 pA ICC Supply current per amplifier, AVCL = 1, no load Tamb Tmin ≤ Tamb ≤ Tmax 200 300 400 μA Common mode rejection ratio Vic = 0 to 3 V, Vo = 1.5 V 70 dB SVR Supply voltage rejection ratio VCC+ 80 dB Avd Large signal voltage gain RL = 10 kΩ, Vo = 1.2 V to 1.8 V Tamb Tmin ≤ Tamb ≤ Tmax 3 2 10 V/mV 2.9 2.2 High level output voltage Vid = 1 V, Tamb RL = 10 kΩ RL = 600 Ω RL = 100 Ω Vid = 1V, Tmin ≤ Tamb ≤ Tmax RL = 10 kΩ RL = 600 Ω 2.97 2.7 2 V CMR VOH VOL Low level output voltage = 2.7 to 3.3 V, Vo = VCC/2 Vid = -1V, Tamb RL = 10 kΩ RL = 600 Ω RL = 100 Ω Vid = -1V, Tmin ≤ Tamb ≤ Tmax RL = 10 kΩ RL = 600 Ω Output short circuit current Vid = ±1 V Source (Vo = VCC) Sink (Vo = VCC+) Gain bandwith product SR Slew rate φm Phase margin en Equivalent input noise voltage Io GBP VO1/VO2 Channel separation 2.8 2.1 50 300 900 100 600 mV 150 900 40 40 mA AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz 0.8 MHz AVCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1.3V to 1.7V 0.5 V/μs 30 ° Rs = 100 Ω, f = 1 kHz 30 nV/√Hz f = 1 kHz 120 dB 1. Maximum values include unavoidable inaccuracies of the industrial tests. 5/19 Electrical characteristics Table 4. TS914 VCC+ = 5V, Vcc- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Parameter Vio Input offset voltage (Vicm = Vo = VCC/2) ΔVio Input offset voltage drift Test conditions Min. Typ. Tamb, TS914 Tamb, TS914A Tmin ≤ Tamb ≤ Tmax, TS914 Tmin ≤ Tamb ≤ Tmax, TS914A Max. Unit 10 5 12 7 mV μV/°C 5 Iio Input offset current (1) Tamb Tmin ≤ Tamb ≤ Tmax 1 100 200 pA Iib Input bias current (1) Tamb Tmin ≤ Tamb ≤ Tmax 1 150 300 pA ICC Supply current per amplifier, AVCL = 1, no load Tamb Tmin ≤ Tamb ≤ Tmax 230 350 450 Common mode rejection ratio Vic = 1.5 to 3V, Vo = 2.5V 85 dB SVR Supply voltage rejection ratio VCC+ 80 dB Avd Large signal voltage gain RL = 10kΩ, Vo = 1.5V to 3.5V Tamb Tmin ≤ Tamb ≤ Tmax 10 7 40 V/mV 4.85 4.20 High level output voltage Vid = 1V, Tamb RL = 10kΩ RL = 600Ω RL = 100Ω Vid = 1V, Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω 4.95 4.65 3.7 V CMR VOH VOL Low level output voltage = 3 to 5V, Vo = VCC/2 Vid = -1V, Tamb RL = 10kΩ RL = 600Ω RL = 100Ω Vid = -1V, Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Output short circuit current Vid = ±1V Source (Vo = VCC) Sink (Vo = VCC+) Gain bandwith product AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz SR Slew rate AVCL = 1, RL = 10kΩ, CL = 100pF, Vi = 1V to 4V φm Phase margin en Equivalent input noise voltage Io GBP VO1/VO2 Channel separation 4.8 4.1 50 350 1400 100 680 mV 150 900 60 60 mA 1 MHz 0.8 V/μs 30 ° Rs = 100Ω, f = 1kHz 30 nV/√Hz f = 1kHz 120 dB 1. Maximum values include unavoidable inaccuracies of the industrial tests. 6/19 μA TS914 Table 5. Symbol Electrical characteristics VCC+ = 10V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Parameter Vio Input offset voltage (Vicm = Vo = VCC/2) ΔVio Input offset voltage drift Test Conditions Min. Typ. Max. Unit 10 5 12 7 mV Tamb, TS914 Tamb, TS914A Tmin ≤ Tamb ≤ Tmax, TS914 Tmin ≤ Tamb ≤ Tmax, TS914A μV/°C 5 Iio Input offset current (1) Tamb Tmin ≤ Tamb ≤ Tmax 1 100 200 pA Iib Input bias current (1) Tamb Tmin ≤ Tamb ≤ Tmax 1 150 300 pA Vicm Common mode input voltage range Per amplifier, AVCL = 1, no load Tamb Tmin ≤ Tamb ≤ Tmax CMR Common mode rejection ratio Vic = 3 to 7V, Vo = 5V Vic = 0 to 10V, Vo = 5V SVR Supply voltage rejection ratio VCC+ = 5 to 10V, Vo = VCC/2 Avd Large signal voltage gain RL = 10kΩ, Vo = 2.5V to 7.5V Tamb Tmin ≤ Tamb ≤ Tmax High level output voltage Vid = 1V, Tamb RL = 10kΩ RL = 600Ω RL = 100Ω Vid = 1V, Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω VOH VOL Low level output voltage Vid = -1V, Tamb RL = 10kΩ RL = 600Ω RL = 100Ω Vid = -1V, Tmin ≤ Tamb ≤ Tmax RL = 10kΩ RL = 600Ω Output short circuit current Vid = ±1V Supply current Per amplifier, AVCL = 1, no load, Tamb Per amp., AVCL = 1, no load, Tmin ≤ Tamb ≤ Tmax Gain bandwith product AVCL = 100, RL = 10kΩ, CL = 100pF, f = 100kHz SR Slew rate φm en Io ICC GBP VDD - 0.2 to VCC + 0.2 V 90 75 dB 90 dB 15 10 60 V/mV 9.85 9 9.95 9.35 7.8 V 9.8 9 50 650 2300 180 800 mV 150 900 60 400 mA 600 700 μA 1.4 MHz AVCL = 1, RL = 10kΩ, CL = 100pF, Vi =2.5V to 7.5V 1 V/μs Phase margin Rs = 100Ω, f = 1kHz 40 ° Equivalent input noise voltage Rs = 100Ω, f = 1kHz 30 nV/√Hz 7/19 Electrical characteristics Table 5. Symbol THD TS914 VCC+ = 10V, VDD = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Parameter Total harmonic distortion Test Conditions AVCL = 1, RL = 10kΩ, CL = 100pF, Vo = 4.75 to 5.25V, f = 1kHz Min. Typ. Max. Unit 0.02 % Cin Input capacitance 1.5 pF Rin Input resistance >10 Tera Ω 120 dB VO1/VO2 Channel separation f = 1kHz 1. Maximum values include unavoidable inaccuracies of the industrial tests. 8/19 TS914 Electrical characteristics Figure 2. Supply current (each amplifier) vs. supply voltage Figure 3. 5 Tamb = 25°C A VCL = 1 V O = VCC / 2 500 OUTPUT VOLTAGE, VOH (V) SUPPLY CURRENT, I CC ( m A) 600 400 300 200 100 0 High level output voltage vs. high level output current 4 8 12 T amb = 25 ° C V id = 100mV 4 3 2 VCC = +3V 1 0 16 -70 SUPPLY VOLTAGE, V CC (V) Figure 4. Low level output voltage vs. low level output current Figure 5. T amb = 25 ° C V id = -100mV VCC = +5V VCC = +3V 2 1 0 30 50 70 90 V CC = 10V V i = 5V No load 10 1 25 50 High level output voltage vs. high level output current T amb = 25° C Vid = 100mV 16 12 75 100 125 TEMPERATURE, T amb ( °C) Figure 7. Low level output voltage vs. low level output current 10 OUTPUT VOLTAGE, VOL (V) OUTPUT VOLTAGE, VOH (V) 20 0 Input bias current vs. temperature OUTPUT CURRENT, I OL (mA) Figure 6. -20 100 INPUT BIAS CURRENT, I ib (pA) OUTPUT VOLTAGE, V OL (V) 3 -40 OUTPUT CURRENT, I OH (mA) 5 4 VCC = +5V VCC = +16V VCC = +10V 8 4 8 T amb = 25 ° C V id = -100mV 6 4 V CC = 16V V CC = 10V 2 0 -70 -40 -20 OUTPUT CURRENT, I OH (mA) 0 0 30 50 70 90 OUTPUT CURRENT, I OL (mA) 9/19 Electrical characteristics GAIN 40 GAIN (dB) 30 PHASE 20 0 45 Phase Margin Tamb = 25°C VCC = 10V R L = 10k W C L = 100pF A VCL = 100 10 0 90 135 Gain Bandwidth Product 180 -10 10 2 10 3 4 5 6 10 10 10 FREQUENCY, f (Hz) 10 7 1800 Tamb = 25°C R L = 10kW C L = 100pF 1400 1000 600 200 0 4 8 50 Tamb = 25°C R L = 10kW C L = 100pF GAIN (dB) 30 8 12 30 16 10 10 SUPPLY VOLTAGE, VCC (V) Phase Margin Tamb = 25°C V CC = 10V R L = 600W C L = 100pF A VCL = 100 20 2 10 3 0 45 PHASE 0 10 20 4 GAIN 40 40 0 16 Figure 11. Gain and phase vs. frequency 60 50 12 SUPPLY VOLTAGE, VCC (V) Figure 10. Phase margin vs. supply voltage PHASE MARGIN, f m (Degrees) Gain bandwidth product vs. supply voltage 135 Gain Bandwidth Product 4 5 10 10 10 FREQUENCY, f (Hz) 90 180 6 10 PHASE (Degrees) 50 Figure 9. GAIN BANDW. PROD., GBP (kHz) Gain and phase vs. frequency PHASE (Degrees) Figure 8. TS914 7 1800 PHASE MARGIN, fm (Degrees) GAIN BANDW. PROD., GBP (kHz) Figure 12. Gain bandwidth product vs. supply Figure 13. Phase margin vs. supply voltage voltage Tamb = 25°C R L = 600W C L = 100pF 1400 1000 600 200 0 4 8 12 SUPPLY VOLTAGE, VCC (V) 10/19 16 60 Tamb = 25°C R L = 600W C L = 100pF 50 40 30 20 0 4 8 12 SUPPLY VOLTAGE, VCC (V) 16 TS914 Electrical characteristics EQUIVALENT INPUT VOLTAGE NOISE (nV/VHz) Figure 14. Input voltage noise vs. frequency 150 VCC = 10V Tamb = 25°C RS = 100W 100 50 0 10 100 1000 10000 FREQUENCY (Hz) 11/19 Macromodels TS914 4 Macromodels 4.1 Important note concerning this macromodel Please consider the following remarks before using this macromodel: ● All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute for breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the nominal performance of a typical device within specified operating conditions (such as temperature or supply voltage, etc). Thus, the macromodel is often not as exhaustive as the datasheet, its purpose is to illustrate the main parameters of the product. ● Data derived from macromodels used outside of the specified conditions (such as VCC, or temperature) or even worse, outside of the device’s operating conditions (such as VCC or Vicm) is not reliable in any way. The values provided in Table 6 are derived from this macromodel. Table 6. VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Unit 0 mV Avd RL = 10kΩ 10 V/mV ICC No load, per operator 100 μA -0.2 to 3.2 V Vicm 12/19 Value VOH RL = 600Ω 2.96 V VOL RL = 60Ω 300 mV Isink VO = 3V 40 mA Isource VO = 0V 40 mA GBP RL = 10kΩ, CL = 100pF 0.8 MHz SR RL = 10kΩ, CL = 100pF 0.3 V/μs φm Phase margin 30 Degrees TS914 4.2 Macromodels Macromodel code * Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY * .SUBCKT TS914 1 2 3 4 5 ************************************************* .MODEL MDTH D IS=1E-8 KF=6.564344E-14 CJO=10F CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 6.500000E+00 RIN 15 16 6.500000E+00 RIS 11 15 7.322092E+00 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 4.000000E-05 CPS 11 15 2.498970E-08 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.000000E+00 FCP 4 5 VOFP 5.750000E+00 FCN 5 4 VOFN 5.750000E+00 * AMPLIFYING STAGE FIP 5 19 VOFP 4.400000E+02 FIN 5 19 VOFN 4.400000E+02 RG1 19 5 4.904961E+05 RG2 19 4 4.904961E+05 CC 19 29 2.200000E-08 HZTP 30 29 VOFP 1.8E+03 HZTN 5 30 VOFN 1.8E+03 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 3800 VIPM 28 4 230 HONM 21 27 VOUT 3800 VINM 5 27 230 EOUT 26 23 19 5 1 VOUT 23 5 0 ROUT 26 3 82 COUT 3 5 1.000000E-12 DOP 19 68 MDTH 400E-12 VOP 4 25 1.724 13/19 Macromodels HSCP 68 25 VSCP1 0.8E+8 DON 69 19 MDTH 400E-12 VON 24 5 1.7419107 HSCN 24 69 VSCN1 0.8E+8 VSCTHP 60 61 0.0875 DSCP1 61 63 MDTH 400E-12 VSCP1 63 64 0 ISCP 64 0 1.000000E-8 DSCP2 0 64 MDTH 400E-12 DSCN2 0 74 MDTH 400E-12 ISCN 74 0 1.000000E-8 VSCN1 73 74 0 DSCN1 71 73 MDTH 400E-12 VSCTHN 71 70 -0.55 ESCP 60 0 2 1 500 ESCN 70 0 2 1 -2000 .ENDS 14/19 TS914 TS914 5 Package mechanical data Package mechanical data In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com. 15/19 Package mechanical data 5.1 TS914 DIP-14 package Dimensions Ref. Millimeters Min. a1 0.51 B 1.39 Typ. Max. Min. Typ. Max. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 16/19 Inches 3.3 1.27 0.130 2.54 0.050 0.100 TS914 5.2 Package mechanical data SO-14 package Dimensions Ref. Millimeters Min. Typ. A a1 Inches Max. Min. Typ. 1.75 0.1 0.2 a2 Max. 0.068 0.003 0.007 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45° (typ.) D 8.55 8.75 0.336 0.344 E 5.8 6.2 0.228 0.244 e 1.27 0.050 e3 7.62 0.300 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.68 0.026 8° (max.) 17/19 Revision history 6 TS914 Revision history Date Revision 1-Dec-2001 1 First release. 1-Nov-2004 2 Vio max on 1st page from 2mV to 5mV. 1-Jun-2005 3 PIPAP references inserted in the datasheet see order code table on cover page. 1-Feb-2006 4 Parameters added in Table 1. on page 3 (Tj, ESD, Rthja, Rthjc). 5 Correction to package name in order code table on cover page. Addition of a table of contents. Corrections to macromodel. 8-Jan-2007 18/19 Changes TS914 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 19/19