MC33079 Low Noise Quad Operational Amplifier ■ Low voltage noise: 4.5nV/√Hz ■ High gain bandwidth product: 15MHz ■ High slew rate: 7V/µs ■ Low distortion: 0.002% ■ Large output voltage swing: +14.3V/-14.6V ■ Excellent frequency stability ■ ESD protection 2kV ■ Macromodel included in this specification N DIP14 (Plastic Package) D SO-14 (Plastic Micropackage) Description The MC33079 is a monolithic quad operational amplifier particularly well suited for audio applications. Pin Connections (top view) It offers low voltage noise (4.5nV/√Hz) and high frequency performances (15MHz Gain Bandwidth product, 7V/µs slew rate). Output 1 1 In addition the MC33079 has a very low distortion (0.002%) and excellent phase/gain margins. 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 The output stage allows a large output voltage swing and symmetrical source and sink currents. Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 Order Codes Part Number MC33079N MC33079D/DT MC33079YD/YDT June 2005 Temperature Range -40, +105°C -40, + 125°C Package Packaging Marking DIP14 SO-14 SO14 (automotive grade level) Tube Tube or Tape & Reel Tube or Tape & Reel 33079Y Rev 2 1/12 www.st.com 12 Absolute Maximum Ratings 1 MC33079 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter Value Unit ±18 or +36 V VCC Supply Voltage Vid Differential Input Voltage - note (1) ±30 V Vi Input Voltage - see note 1 ±15 V Infinite s -40 to 105 °C Output Short Circuit Duration Toper Operating Free-Air Temperature Range Tj Junction Temperature +150 °C Tstg Storage Temperature -65 to +150 °C Ptot Maximum Power Dissipation - note (2) 500 mW 1. Either or both input voltages must not exceed the magnitude of Vcc + or Vcc -. 2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. Table 2. Operating conditions Symbol VCC 2/12 Parameter Supply Voltage Value Unit ±2.5 to ±15 V MC33079 2 Schematic Diagram (1/4 MC33079) Schematic Diagram (1/4 MC33079) Figure 1. Typical application schematic VCC Output Inverting Input Non-inverting Input VCC 3/12 ELECTRICAL CHARACTERISTICS 3 ELECTRICAL CHARACTERISTICS Table 3. Symbol VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Unit 2.5 3.5 mV Vio Input Offset Voltage (Vo = 0V, Vic = 0V) Tmin. ≤ Tamb ≤ Tmax. DVio Input Offset Voltage Drift Vo = 0V, Vic = 0V, Tmin . ≤ Tamb ≤ T max. Iio Input Offset Current (Vo = 0V, V ic = 0V) Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 10 150 175 nA Iib Input Bias Current (Vo = 0V, V ic = 0V) Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 250 750 800 nA µV/°C 2 Vicm Input Common Mode Voltage Range (∆Vio = 5mV, Vo = 0V) ±13 ±14 V Avd Large Signal Voltage Gain (RL = 2kΩ, Vo = ±10V) Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. 90 85 100 dB ±Vopp Output Voltage Swing (Vid = ±1V) RL = 600Ω RL = 600Ω RL = 2.0kΩ RL = 2.0kΩ RL = 10kΩ RL = 10kΩ 13.2 13.5 12.2 -12.7 14 -14.2 14.3 -14.6 V -13.2 -14 CMR Common-mode Rejection Ratio (Vic = ±13V) 80 100 dB SVR Supply Voltage Rejection Ratio (VCC+ / VCC- = +15V / -15V to +5V / -5V) 80 105 dB Io Output Short Circuit Current (Vid = ±1V, Output to Ground) Source Sink 15 20 29 27 mA ICC Supply Current (Vo = 0V, All amplifiers) Tamb = +25°C Tmin. ≤ Tamb ≤ Tmax. SR Slew Rate (Vi = -10V to +10V, R L = 2kΩ, CL = 100pF, AV = +1) 5 7 V/µs Gain Bandwidth Product (RL = 2kΩ, CL = 100pF, f = 100kHz) 10 15 MHz 9 MHz -11 -6 dB GBP B Am 4/12 MC33079 Unity Gain Bandwidth (Open loop) Gain Margin (RL = 2kΩ)CL = 0pF CL = 100pF 8 10 12 mA MC33079 ELECTRICAL CHARACTERISTICS Table 3. VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit φm Phase Margin (RL = 2kΩ), CL = 0pF CL = 100pF 55 30 Degrees en Equivalent Input Noise Voltage (RS = 100Ω, f = 1kHz) 4.5 nV -----------Hz in Equivalent Input Noise Current (f = 1kHz) 0.5 pA -----------Hz 0.002 % 120 dB Full Power Bandwidth (Vo = 27Vpp, R L = 2kΩ, THD ≤ 1%) 120 kHz Zo Output Impedance (Vo = 0V, f = 9MHz) 37 Ω Ri Input Resistance (Vic = 0V) 175 kΩ Ci Input Capacitance (Vic = 0V) 12 pF THD Total Harmonic Distortion (RL = 2kΩ, f = 20Hz to 20kHz, Vo = 3Vrms, AV = +1) VO1/VO2 Channel Separation (f = 20Hz to 20kHz) FPB Table 4. VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 2kΩ, Vo = ±10V 100 dB ICC No load, per operator 2 mA Vicm ∆Vio = 5mV, VO = 0V 28 V Vopp RL = 2kΩ 28.2 V Isink VO = 0V 37 mA Isource VO = 0V 29 mA GBP RL = 2kΩ, CL = 100pF 15 MHz SR RL = 10kΩ, CL = 100pF, Av = +1 7 V/µs φm RL = 2kΩ, CL = 0pF 55 Degrees 5/12 ELECTRICAL CHARACTERISTICS Figure 2. MC33079 Supply current vs. supply voltage Figure 3. Output voltage vs. supply voltage 10 15 10 Output Voltage (V) Supply Current (mA) 8 6 4 2 5 0 Vid = ±1V RL = 600Ω -5 -10 0 -15 0 5 10 15 20 25 30 0 5 Supply Voltage (V) Equivalent input noise voltage vs. frequency Figure 5. Equivalent Input Noise Voltage (nV/VHz) 10 VCC = ±15V, Av = 100 Rs = 100Ω, Tamb = 25°C 8 6 4 2 0 0.01 Output short circuit current vs. output voltage 60 40 20 VCC = 0/30V Tamb = 25°C 0 -20 -40 0.1 1 10 100 0 1000 10 Frequency (kHz) Figure 6. 15 Supply Voltage (V) Output Short Circuit Current (mA) Figure 4. 10 20 30 Output Voltage (V) Output voltage vs. supply voltage Figure 7. THD + Noise vs. frequency 15 0.01 THD+Noise (%) Output Voltage (V) 10 5 Vid = ±1V RL = 2kΩ 0 -5 RL = 2kΩ, Vo = 3Vrms VCC = ±15V gain = 10 0.005 gain = 1 -10 0 -15 0.01 0 5 10 Supply Voltage (V) 6/12 15 0.1 1 Frequency (kHz) 10 100 MC33079 Figure 8. ELECTRICAL CHARACTERISTICS Voltage gain and phase vs. frequency Figure 9. 60 180 phase 60 0 0 RL = 2kΩ, CL = 100pF VCC = ±15V, Av = -100 -20 THD+Noise (%) 120 gain 20 0.020 Phase (Deg) Gain (dB) 40 Total harmonic distortion vs. output voltage RL = 2kΩ, f = 1kHz VCC = ±15V, Av = 10 0.015 0.010 0.005 -60 0.000 -40 -120 10 100 1000 10000 100000 0 1 2 3 4 5 6 7 8 9 Vout (Vrms) Frequency (kHz) 7/12 Macromodels 4 Macromodels Note: Note: Please consider following remarks before using this macromodel: MC33079 All models are a trade-off between accuracy and complexity (i.e. simulation time). Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any way. ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT MC33079 1 3 2 4 5 (analog) ******************************************************** .MODEL MDTH D IS=1E-8 KF=2.286238E-16 CJO=10F * INPUT STAGE CIP 2 5 1.200000E-11 CIN 1 5 1.200000E-11 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.363636E+00 RIN 15 16 2.363636E+00 RIS 11 15 1.224040E+01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 1.100000E-04 CPS 11 15 2.35E-09 DINN 17 13 MDTH 400E-12 VIN 17 5 1.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 1.718182E+01 FCN 5 4 VOFN 1.718182E+01 FIBP 2 5 VOFN 4.545455E-03 FIBN 5 1 VOFP 4.545455E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 9.545455E+02 FIN 5 19 VOFN 9.545455E+02 8/12 MC33079 Macromodels CC 19 29 1.500000E-08 HZTP 30 29 VOFP 1.523529E+02 HZTN 5 30 VOFN 1.523529E+02 DOPM 51 22 MDTH 400E-12 DONM 21 52 MDTH 400E-12 HOPM 22 28 VOUT 5.172414E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 4.054054E+03 VINM 5 27 1.500000E+02 DBIDON1 19 53 MDTH 400E-12 V1 51 53 0.68 DBIDON2 54 19 MDTH 400E-12 V2 54 52 0.68 RG11 51 5 3.04E+05 RG12 51 4 3.04E+05 RG21 52 5 0.6072E+05 RG22 52 4 0.6072E+05 E1 50 40 51 0 1 E2 40 39 52 0 1 EDEC1 38 39 4 0 0.5 EDEC2 0 38 5 0 0.5 DOP 51 25 MDTH 400E-12 VOP 4 25 1.474575E+00 DON 24 52 MDTH 400E-12 VON 24 5 1.474575E+00 RAJUS 50 5 1E12 GCOMP 5 4 4 5 8.1566068E-04 RPM1 5 80 1E+06 RPM2 4 80 1E+06 GAVPH 5 82 50 80 3.26E-03 RAVPHGH 82 4 613 RAVPHGB 82 5 613 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.159E-09 CAVPHB 5 84 0.159E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 4.780354E+01 COUT 3 5 1.000000E-12 .ENDS 9/12 Package Mechanical Data 5 MC33079 Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. inch DIM. MIN. a1 0.51 B 1.39 TYP MAX. MIN. TYP. MAX. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 3.3 1.27 0.130 2.54 0.050 0.100 P001A 10/12 MC33079 5.2 Package Mechanical Data SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 MAX. 0.003 0.007 1.65 0.064 b 0.35 0.46 0.013 0.018 b1 0.19 0.25 0.007 0.010 C 0.5 0.019 c1 45˚ (typ.) D 8.55 8.75 0.336 E 5.8 6.2 0.228 e 1.27 e3 3.8 G L M S 0.244 0.050 7.62 F 0.344 0.300 4.0 0.149 4.6 5.3 0.181 0.208 0.5 1.27 0.019 0.050 0.68 0.157 0.026 8 ˚ (max.) PO13G 11/12 Revision History 6 MC33079 Revision History Date Revision Changes October 2001 1 Initial release. June 2005 2 PPAP references inserted in the datasheet see table order code p1 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 12/12