STMICROELECTRONICS MC33079YD

MC33079
Low Noise Quad Operational Amplifier
■
Low voltage noise: 4.5nV/√Hz
■
High gain bandwidth product: 15MHz
■
High slew rate: 7V/µs
■
Low distortion: 0.002%
■
Large output voltage swing: +14.3V/-14.6V
■
Excellent frequency stability
■
ESD protection 2kV
■
Macromodel included in this specification
N
DIP14
(Plastic Package)
D
SO-14
(Plastic Micropackage)
Description
The MC33079 is a monolithic quad operational
amplifier particularly well suited for audio
applications.
Pin Connections (top view)
It offers low voltage noise (4.5nV/√Hz) and high
frequency performances (15MHz Gain Bandwidth
product, 7V/µs slew rate).
Output 1 1
In addition the MC33079 has a very low distortion
(0.002%) and excellent phase/gain margins.
14 Output 4
Inverting Input 1 2
-
-
13 Inverting Input 4
Non-inverting Input 1 3
+
+
12 Non-inverting Input 4
11 VCC -
VCC + 4
The output stage allows a large output voltage
swing and symmetrical source and sink currents.
Non-inverting Input 2
5
+
+
10 Non-inverting Input 3
Inverting Input 2
6
-
-
9
Inverting Input 3
8
Output 3
Output 2 7
Order Codes
Part Number
MC33079N
MC33079D/DT
MC33079YD/YDT
June 2005
Temperature Range
-40, +105°C
-40, + 125°C
Package
Packaging
Marking
DIP14
SO-14
SO14 (automotive grade level)
Tube
Tube or Tape & Reel
Tube or Tape & Reel
33079Y
Rev 2
1/12
www.st.com
12
Absolute Maximum Ratings
1
MC33079
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Parameter
Value
Unit
±18 or +36
V
VCC
Supply Voltage
Vid
Differential Input Voltage - note (1)
±30
V
Vi
Input Voltage - see note 1
±15
V
Infinite
s
-40 to 105
°C
Output Short Circuit Duration
Toper
Operating Free-Air Temperature Range
Tj
Junction Temperature
+150
°C
Tstg
Storage Temperature
-65 to +150
°C
Ptot
Maximum Power Dissipation - note (2)
500
mW
1. Either or both input voltages must not exceed the magnitude of Vcc + or Vcc -.
2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not
exceeded.
Table 2.
Operating conditions
Symbol
VCC
2/12
Parameter
Supply Voltage
Value
Unit
±2.5 to ±15
V
MC33079
2
Schematic Diagram (1/4 MC33079)
Schematic Diagram (1/4 MC33079)
Figure 1.
Typical application schematic
VCC
Output
Inverting
Input
Non-inverting
Input
VCC
3/12
ELECTRICAL CHARACTERISTICS
3
ELECTRICAL CHARACTERISTICS
Table 3.
Symbol
VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Max.
Unit
2.5
3.5
mV
Vio
Input Offset Voltage (Vo = 0V, Vic = 0V)
Tmin. ≤ Tamb ≤ Tmax.
DVio
Input Offset Voltage Drift
Vo = 0V, Vic = 0V, Tmin . ≤ Tamb ≤ T max.
Iio
Input Offset Current (Vo = 0V, V ic = 0V)
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
10
150
175
nA
Iib
Input Bias Current (Vo = 0V, V ic = 0V)
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
250
750
800
nA
µV/°C
2
Vicm
Input Common Mode Voltage Range (∆Vio = 5mV, Vo = 0V)
±13
±14
V
Avd
Large Signal Voltage Gain (RL = 2kΩ, Vo = ±10V)
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
90
85
100
dB
±Vopp
Output Voltage Swing (Vid = ±1V)
RL = 600Ω
RL = 600Ω
RL = 2.0kΩ
RL = 2.0kΩ
RL = 10kΩ
RL = 10kΩ
13.2
13.5
12.2
-12.7
14
-14.2
14.3
-14.6
V
-13.2
-14
CMR
Common-mode Rejection Ratio (Vic = ±13V)
80
100
dB
SVR
Supply Voltage Rejection Ratio (VCC+ / VCC- = +15V / -15V to
+5V / -5V)
80
105
dB
Io
Output Short Circuit Current (Vid = ±1V, Output to Ground)
Source
Sink
15
20
29
27
mA
ICC
Supply Current (Vo = 0V, All amplifiers)
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
SR
Slew Rate (Vi = -10V to +10V, R L = 2kΩ, CL = 100pF, AV =
+1)
5
7
V/µs
Gain Bandwidth Product (RL = 2kΩ, CL = 100pF, f = 100kHz)
10
15
MHz
9
MHz
-11
-6
dB
GBP
B
Am
4/12
MC33079
Unity Gain Bandwidth (Open loop)
Gain Margin (RL = 2kΩ)CL = 0pF
CL = 100pF
8
10
12
mA
MC33079
ELECTRICAL CHARACTERISTICS
Table 3.
VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
φm
Phase Margin (RL = 2kΩ), CL = 0pF
CL = 100pF
55
30
Degrees
en
Equivalent Input Noise Voltage (RS = 100Ω, f = 1kHz)
4.5
nV
-----------Hz
in
Equivalent Input Noise Current (f = 1kHz)
0.5
pA
-----------Hz
0.002
%
120
dB
Full Power Bandwidth (Vo = 27Vpp, R L = 2kΩ, THD ≤ 1%)
120
kHz
Zo
Output Impedance (Vo = 0V, f = 9MHz)
37
Ω
Ri
Input Resistance (Vic = 0V)
175
kΩ
Ci
Input Capacitance (Vic = 0V)
12
pF
THD
Total Harmonic Distortion (RL = 2kΩ, f = 20Hz to 20kHz,
Vo = 3Vrms, AV = +1)
VO1/VO2 Channel Separation (f = 20Hz to 20kHz)
FPB
Table 4.
VCC+ = +15V, VCC- = -15V, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Value
Unit
0
mV
Avd
RL = 2kΩ, Vo = ±10V
100
dB
ICC
No load, per operator
2
mA
Vicm
∆Vio = 5mV, VO = 0V
28
V
Vopp
RL = 2kΩ
28.2
V
Isink
VO = 0V
37
mA
Isource
VO = 0V
29
mA
GBP
RL = 2kΩ, CL = 100pF
15
MHz
SR
RL = 10kΩ, CL = 100pF, Av = +1
7
V/µs
φm
RL = 2kΩ, CL = 0pF
55
Degrees
5/12
ELECTRICAL CHARACTERISTICS
Figure 2.
MC33079
Supply current vs. supply voltage
Figure 3.
Output voltage vs. supply voltage
10
15
10
Output Voltage (V)
Supply Current (mA)
8
6
4
2
5
0
Vid = ±1V
RL = 600Ω
-5
-10
0
-15
0
5
10
15
20
25
30
0
5
Supply Voltage (V)
Equivalent input noise voltage vs.
frequency
Figure 5.
Equivalent Input Noise Voltage (nV/VHz)
10
VCC = ±15V, Av = 100
Rs = 100Ω, Tamb = 25°C
8
6
4
2
0
0.01
Output short circuit current vs.
output voltage
60
40
20
VCC = 0/30V
Tamb = 25°C
0
-20
-40
0.1
1
10
100
0
1000
10
Frequency (kHz)
Figure 6.
15
Supply Voltage (V)
Output Short Circuit Current (mA)
Figure 4.
10
20
30
Output Voltage (V)
Output voltage vs. supply voltage
Figure 7.
THD + Noise vs. frequency
15
0.01
THD+Noise (%)
Output Voltage (V)
10
5
Vid = ±1V
RL = 2kΩ
0
-5
RL = 2kΩ, Vo = 3Vrms
VCC = ±15V
gain = 10
0.005
gain = 1
-10
0
-15
0.01
0
5
10
Supply Voltage (V)
6/12
15
0.1
1
Frequency (kHz)
10
100
MC33079
Figure 8.
ELECTRICAL CHARACTERISTICS
Voltage gain and phase vs. frequency Figure 9.
60
180
phase
60
0
0
RL = 2kΩ, CL = 100pF
VCC = ±15V, Av = -100
-20
THD+Noise (%)
120
gain
20
0.020
Phase (Deg)
Gain (dB)
40
Total harmonic distortion vs. output
voltage
RL = 2kΩ, f = 1kHz
VCC = ±15V, Av = 10
0.015
0.010
0.005
-60
0.000
-40
-120
10
100
1000
10000
100000
0
1
2
3
4
5
6
7
8
9
Vout (Vrms)
Frequency (kHz)
7/12
Macromodels
4
Macromodels
Note:
Note: Please consider following remarks before using this macromodel:
MC33079
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design
approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED
OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is
often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the
product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc)
or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not reliable in any
way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT MC33079 1 3 2 4 5 (analog)
********************************************************
.MODEL MDTH D IS=1E-8 KF=2.286238E-16 CJO=10F
* INPUT STAGE
CIP 2 5 1.200000E-11
CIN 1 5 1.200000E-11
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.363636E+00
RIN 15 16 2.363636E+00
RIS 11 15 1.224040E+01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.100000E-04
CPS 11 15 2.35E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 1.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 1.718182E+01
FCN 5 4 VOFN 1.718182E+01
FIBP 2 5 VOFN 4.545455E-03
FIBN 5 1 VOFP 4.545455E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 9.545455E+02
FIN 5 19 VOFN 9.545455E+02
8/12
MC33079
Macromodels
CC 19 29 1.500000E-08
HZTP 30 29 VOFP 1.523529E+02
HZTN 5 30 VOFN 1.523529E+02
DOPM 51 22 MDTH 400E-12
DONM 21 52 MDTH 400E-12
HOPM 22 28 VOUT 5.172414E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 4.054054E+03
VINM 5 27 1.500000E+02
DBIDON1 19 53 MDTH 400E-12
V1 51 53 0.68
DBIDON2 54 19 MDTH 400E-12
V2 54 52 0.68
RG11 51 5 3.04E+05
RG12 51 4 3.04E+05
RG21 52 5 0.6072E+05
RG22 52 4 0.6072E+05
E1 50 40 51 0 1 E2 40 39 52 0 1
EDEC1 38 39 4 0 0.5
EDEC2 0 38 5 0 0.5
DOP 51 25 MDTH 400E-12
VOP 4 25 1.474575E+00
DON 24 52 MDTH 400E-12
VON 24 5 1.474575E+00
RAJUS 50 5 1E12
GCOMP 5 4 4 5 8.1566068E-04
RPM1 5 80 1E+06
RPM2 4 80 1E+06
GAVPH 5 82 50 80 3.26E-03
RAVPHGH 82 4 613
RAVPHGB 82 5 613
RAVPHDH 82 83 1000
RAVPHDB 82 84 1000
CAVPHH 4 83 0.159E-09
CAVPHB 5 84 0.159E-09
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 4.780354E+01
COUT 3 5 1.000000E-12
.ENDS
9/12
Package Mechanical Data
5
MC33079
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages.
These packages have a Lead-free second level interconnect. The category of second level
interconnect is marked on the package and on the inner box label, in compliance with JEDEC
Standard JESD97. The maximum ratings related to soldering conditions are also marked on
the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:
www.st.com.
5.1
DIP14 Package
Plastic DIP-14 MECHANICAL DATA
mm.
inch
DIM.
MIN.
a1
0.51
B
1.39
TYP
MAX.
MIN.
TYP.
MAX.
0.020
1.65
0.055
0.065
b
0.5
0.020
b1
0.25
0.010
D
20
0.787
E
8.5
0.335
e
2.54
0.100
e3
15.24
0.600
F
7.1
0.280
I
5.1
0.201
L
Z
3.3
1.27
0.130
2.54
0.050
0.100
P001A
10/12
MC33079
5.2
Package Mechanical Data
SO-14 Package
SO-14 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
MIN.
TYP.
1.75
0.1
0.068
0.2
a2
MAX.
0.003
0.007
1.65
0.064
b
0.35
0.46
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.5
0.019
c1
45˚ (typ.)
D
8.55
8.75
0.336
E
5.8
6.2
0.228
e
1.27
e3
3.8
G
L
M
S
0.244
0.050
7.62
F
0.344
0.300
4.0
0.149
4.6
5.3
0.181
0.208
0.5
1.27
0.019
0.050
0.68
0.157
0.026
8 ˚ (max.)
PO13G
11/12
Revision History
6
MC33079
Revision History
Date
Revision
Changes
October 2001
1
Initial release.
June 2005
2
PPAP references inserted in the datasheet see table order code p1
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
12/12