STMICROELECTRONICS VN750-B5

VN750 / VN750S
/ VN750PT / VN750-B5
®
HIGH SIDE DRIVER
TYPE
VN750
VN750S
VN750PT
RDS(on)
IOUT
VCC
60 mΩ
6A
36 V
SO-8
VN750-B5
CMOS COMPATIBLE INPUT
■ ON STATE OPEN LOAD DETECTION
■ OFF STATE OPEN LOAD DETECTION
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
SHUTDOWN
■ PROTECTION AGAINST LOSS OF GROUND
■ VERY LOW STAND-BY CURRENT
PENTAWATT
■
■
REVERSE BATTERY PROTECTION (*)
DESCRIPTION
The VN750, VN750S, VN750PT, VN750-B5 are a
monolithic device designed in STMicroelectronics
VIPower M0-3 Technology, intended for driving
any kind of load with one side connected to
ground.
Active V CC pin voltage clamp protects the device
against low energy spikes (see ISO7637 transient
P2PAK
PPAK
ORDER CODES
PACKAGE
PENTAWATT
SO-8
P2PAK
PPAK
TUBE
VN750
VN750S
VN750-B5
VN750PT
T&R
VN750S13TR
VN750-B513TR
VN750PT13TR
compatibility table). Active current limitation
combined with thermal shutdown and automatic
restart protect the device against overload.
The device detects open load condition both is on
and off state. Output shorted to VCC is detected in
the off state. Device automatically turns off in case
of ground pin disconnection.
BLOCK DIAGRAM
VCC
OVERVOLTAGE
DETECTION
VCC
CLAMP
UNDERVOLTAGE
DETECTION
GND
Power CLAMP
DRIVER
INPUT
OUTPUT
LOGIC
CURRENT LIMITER
ON STATE OPENLOAD
DETECTION
STATUS
OVERTEMPERATURE
DETECTION
(*) See application schematic at page 8
June 2004
OFF STATE OPENLOAD
AND OUTPUT SHORTED TO V CC
DETECTION
Rev. 1
1/31
VN750 / VN750S / VN750PT / VN750-B5
ABSOLUTE MAXIMUM RATING
Symbol
VCC
- VCC
- Ignd
IOUT
- IOUT
IIN
ISTAT
Parameter
SO-8
DC Supply Voltage
Reverse DC Supply Voltage
DC Reverse Ground Pin Current
DC Output Current
Reverse DC Output Current
DC Input Current
DC Status Current
Electrostatic Discharge
Value
PENTAWATT P2PAK
41
- 0.3
- 200
Internally Limited
-6
+/- 10
+/- 10
PPAK
Unit
V
V
mA
A
A
mA
mA
(Human Body Model: R=1.5KΩ; C=100pF)
VESD
EMAX
EMAX
Ptot
Tj
Tc
Tstg
- INPUT
4000
V
- STATUS
4000
V
- OUTPUT
5000
V
- VCC
Maximum Switching Energy
5000
V
100
(L=1.8mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A)
Maximum Switching Energy
mJ
138
(L=2.46mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A)
Power Dissipation TC=25°C
Junction Operating Temperature
Case Operating Temperature
Storage Temperature
4.2
60
60
Internally Limited
- 40 to 150
- 55 to 150
138
mJ
60
W
°C
°C
°C
CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C.
PINS
VCC
OUTPUT
OUTPUT
VCC
5
4
8
4
3
INPUT
GND
1
OUTPUT
STATUS
VCC
INPUT
GND
5
N.C.
STATUS
2
1
PENTAWATT
PPAK / P2PAK
SO-8
Connection / Pin
Floating
Status
N.C.
Output
X
X
X
To Ground
X
Input
X
Through 10KΩ resistor
CURRENT AND VOLTAGE CONVENTIONS
IS
VF
IIN
VCC
INPUT
ISTAT
IOUT
STATUS
VCC
OUTPUT
GND
VIN
VSTAT
2/31
IGND
VOUT
VN750 / VN750S / VN750PT / VN750-B5
THERMAL DATA
Symbol
Parameter
Rthj-case
Rthj-lead
Thermal Resistance Junction-case
Thermal Resistance Junction-lead
Rthj-amb
Thermal Resistance Junction-ambient Max
Max
Max
S0-8
30
93 (1)
82 (2)
Value
PENTAWATT P2PAK
2.1
2.1
62.1
52.1 (3)
62.1
37 (4)
PPAK
2.1
77.1 (3)
44 (4)
Unit
°C/W
°C/W
°C/W
°C/W
(1) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal
mounting and no artificial air flow.
(2) When mounted on a standard single-sided FR-4 board with 2cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.
(3) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air
flow.
(4) When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35µm thick). Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
POWER
Symbol
VCC
VUSD
VUSDhyst
VOV
RON
Parameter
Operating Supply Voltage
Undervoltage Shut-down
Undervoltage Shut-down
Hysteresis
Overvoltage Shut-down
On State Resistance
Test Conditions
Min
5.5
3
Supply Current
(#)
10
Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C
Off State
Off State
Off State
Off State
Output Current
Output Current
Output Current
Output Current
Unit
V
V
V
36
IOUT=2A; Tj=25°C; VCC>8V
IOUT=2A; VCC>8V
On State; VCC=13V; VIN=5V; IOUT=0A
IL(off1)
IL(off2)
IL(off3)
IL(off4)
Max
36
5.5
0.5
Off State; VCC=13V; VIN=VOUT =0V
IS
Typ
13
4
60
V
mΩ
120
25
mΩ
µA
10
20
µA
2
(#)
3.5
50
0
5
3
mA
µA
µA
µA
µA
VIN=VOUT=0V
VIN=0V; VOUT =3.5V
VIN=VOUT=0V; Vcc=13V; Tj =125°C
VIN=VOUT=0V; Vcc=13V; Tj =25°C
0
-75
Test Conditions
RL=6.5Ω from VIN rising edge to VOUT=1.3V
RL=6.5Ω from VIN falling edge to VOUT =11.7V
RL=6.5Ω from VOUT=1.3V to VOUT=10.4V
RL=6.5Ω from VOUT=11.7V to VOUT =1.3V
Min
Typ
40
30
(#)
(#)
Max
Unit
µs
µs
V/µs
V/µs
Test Conditions
Min
Typ
(#)
(#)
(#)
(#)
(#)
6.8
Max
1.25
Unit
V
µA
V
µA
V
V
SWITCHING (V CC=13V)
Symbol
td(on)
td(off)
dVOUT/dt(on)
dVOUT/dt(off)
Parameter
Turn-on Delay Time
Turn-off Delay Time
Turn-on Voltage Slope
Turn-off Voltage Slope
INPUT PIN
Symbol
VIL
IIL
VIH
IIH
Vhyst
VICL
Parameter
Input Low Level
Low Level Input Current
Input High Level
High Level Input Current
Input Hysteresis Voltage
Input Clamp Voltage
VIN=1.25V
1
3.25
VIN=3.25V
IIN=1mA
IIN=-1mA
0.5
6
-0.7
10
8
V
(#) See relative diagram
3/31
1
VN750 / VN750S / VN750PT / VN750-B5
ELECTRICAL CHARACTERISTICS (continued)
VCC - OUTPUT DIODE
Symbol
VF
Parameter
Forward on Voltage
Test Conditions
-IOUT=1.3A; Tj=150°C
Min
Typ
Max
0.6
Unit
V
STATUS PIN
Symbol
VSTAT
ILSTAT
CSTAT
Parameter
Status Low Output Voltage
Status Leakage Current
Status Pin Input
Capacitance
VSCL
Status Clamp Voltage
Test Conditions
ISTAT =1.6mA
Normal Operation; VSTAT=5V
Min
Typ
(#)
(#)
Normal Operation; VSTAT=5V
ISTAT =1mA
6
ISTAT =-1mA
6.8
Max
0.5
10
Unit
V
µA
100
pF
8
V
-0.7
V
PROTECTIONS (See note 1)
Symbol
TTSD
TR
Thyst
tSDL
Parameter
Shut-down Temperature
Reset Temperature
Thermal Hysteresis
Status delay in overload
condition
Ilim
Current limitation
Vdemag
Turn-off Output Clamp
Voltage
Test Conditions
Min
150
135
7
Typ
175
5V<VCC<36V
IOUT=2A; VIN=0V; L=6mH
6
Unit
°C
°C
°C
20
µs
15
A
15
A
15
Tj>Tjsh
9V<VCC<36V
Max
200
9
VCC-41 VCC-48 VCC-55
V
Note 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
used together with a proper software strategy. If the device operates under abnormal conditions this software must limit the duration and
number of activation cycles.
(#) See relative diagram
4/31
2
VN750 / VN750S / VN750PT / VN750-B5
ELECTRICAL CHARACTERISTICS (continued)
OPENLOAD DETECTION
Symbol
IOL
tDOL(on)
VOL
tDOL(off)
Parameter
Openload ON State
Detection Threshold
Openload ON State
Detection Delay
Openload OFF State
Voltage Detection
Test Conditions
VIN=5V
Min
Typ
Max
Unit
50
(#)
200
mA
200
µs
3.5
V
1000
µs
IOUT =0A
VIN=0V
1.5
(#)
Threshold
Openload Detection Delay
at Turn Off
OPEN LOAD STATUS TIMING (with external pull-up)
IOUT< IOL
VOUT > VOL
OVERTEMP STATUS TIMING
Tj > Tjsh
VIN
VIN
VSTAT
VSTAT
tDOL(off)
tDOL(on)
tSDL
tSDL
5/31
1
VN750 / VN750S / VN750PT / VN750-B5
Switching time Waveforms
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
t
VIN
td(on)
td(off)
t
TRUTH TABLE
CONDITIONS
Normal Operation
Current Limitation
Overtemperature
Undervoltage
Overvoltage
Output Voltage > VOL
Output Current < IOL
6/31
INPUT
L
H
L
H
H
L
H
L
H
L
H
L
H
L
H
OUTPUT
L
H
L
X
X
L
L
L
L
L
L
H
H
L
H
STATUS
H
H
H
(Tj < TTSD) H
(Tj > TTSD) L
H
L
X
X
H
H
L
H
H
L
VN750 / VN750S / VN750PT / VN750-B5
ELECTRICAL TRANSIENT REQUIREMENTS ON VCC PIN
TEST LEVELS
ISO T/R 7637/1
Test Pulse
I
II
III
IV
1
2
3a
3b
4
5
-25 V
+25 V
-25 V
+25 V
-4 V
+26.5 V
-50 V
+50 V
-50 V
+50 V
-5 V
+46.5 V
-75 V
+75 V
-100 V
+75 V
-6 V
+66.5 V
-100 V
+100 V
-150 V
+100 V
-7 V
+86.5 V
ISO T/R 7637/1
Test Pulse
1
2
3a
3b
4
5
CLASS
C
E
Delays and
Impedance
2 ms 10 Ω
0.2 ms 10 Ω
0.1 µs 50 Ω
0.1 µs 50 Ω
100 ms, 0.01 Ω
400 ms, 2 Ω
I
TEST LEVELS RESULTS
II
III
IV
C
C
C
C
C
C
C
C
C
C
C
E
C
C
C
C
C
E
C
C
C
C
C
E
CONTENTS
All functions of the device are performed as designed after exposure to disturbance.
One or more functions of the device is not performed as designed after exposure to disturbance
and cannot be returned to proper operation without replacing the device.
7/31
VN750 / VN750S / VN750PT / VN750-B5
Figure 1: Waveforms
NORMAL OPERATION
INPUT
LOAD VOLTAGE
STATUS
UNDERVOLTAGE
VUSDhyst
VCC
VUSD
INPUT
LOAD VOLTAGE
STATUS
undefined
OVERVOLTAGE
VCC<VOV
VCC>VOV
VCC
INPUT
LOAD VOLTAGE
STATUS
OPEN LOAD with external pull-up
INPUT
VOUT >VOL
LOAD VOLTAGE
VOL
STATUS
OPEN LOAD without external pull-up
INPUT
LOAD VOLTAGE
STATUS
Tj
TTSD
TR
OVERTEMPERATURE
INPUT
LOAD CURRENT
STATUS
8/31
1
1
VN750 / VN750S / VN750PT / VN750-B5
APPLICATION SCHEMATIC
+5V
+5V
VCC
Rprot
STATUS
Dld
µC
Rprot
INPUT
OUTPUT
GND
VGND
GND PROTECTION
REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This
can be used with any type of load.
The following is an indication on how to dimension the
RGND resistor.
1) RGND ≤ 600mV / (IS(on)max).
2) RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can
be found in the absolute maximum rating section of the
device’s datasheet.
Power Dissipation in RGND (when VCC<0: during reverse
battery situations) is:
PD= (-VCC)2/RGND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different
devices.
Please note that if the microprocessor ground is not
common with the device ground then the RGND will
produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary
depending on many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor
or several devices have to share the same resistor then
the ST suggests to utilize Solution 2 (see below).
Solution 2: A diode (DGND) in the ground line.
A resistor (RGND=1kΩ) should be inserted in parallel to
DGND if the device will be driving an inductive load.
RGND
DGND
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also
required to prevent that, during battery voltage transient,
the current exceeds the Absolute Maximum Rating.
Safest configuration for unused INPUT and STATUS pin
is to leave them unconnected.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are greater than the ones shown in the
ISO T/R 7637/1 table.
µC I/Os PROTECTION:
If a ground protection network is used and negative
transients are present on the VCC line, the control pins will
be pulled negative. ST suggests to insert a resistor (Rprot)
in line to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage current of µC and the current required by the
HSD I/Os (Input levels compatibility) with the latch-up limit
of µC I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V
5kΩ ≤ Rprot ≤ 65kΩ.
Recommended Rprot value is 10kΩ.
9/31
VN750 / VN750S / VN750PT / VN750-B5
OPEN LOAD DETECTION IN OFF STATE
2) no misdetection when load is disconnected: in this
case the VOUT has to be higher than VOLmax; this
results in the following condition RPU<(VPU–VOLmax)/
IL(off2).
Because Is(OFF) may significantly increase if Vout is pulled
high (up to several mA), the pull-up resistor RPU should
Off state open load detection requires an external pull-up
resistor (RPU) connected between OUTPUT pin and a
positive supply voltage (VPU) like the +5V line used to
supply the microprocessor.
The external resistor has to be selected according to the
following requirements:
1) no false open load indication when load is connected:
in this case we have to avoid VOUT to be higher than
VOlmin; this results in the following condition
VOUT=(VPU/(RL+RPU))RL<VOlmin.
be connected to a supply that is switched OFF when the
module is in standby.
The values of VOLmin, VOLmax and IL(off2) are available in
the Electrical Characteristics section.
Open Load detection in off state
V batt.
VPU
VCC
RPU
INPUT
DRIVER
+
LOGIC
IL(off2)
OUT
+
R
STATUS
VOL
GROUND
10/31
RL
VN750 / VN750S / VN750PT / VN750-B5
High Level Input Current
Off State Output Current
IL(off1) (uA)
Iih (uA)
7
3
2.5
6
Off state
Vcc=36V
Vin=Vout=0V
2
Vin=3.25V
5
1.5
4
1
3
0.5
2
0
1
-0.5
-1
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
100
125
150
175
Tc (ºC)
Status Leakage Current
Input Clamp Voltage
Vicl (V)
Ilstat (uA)
8
0.05
7.8
Iin=1mA
7.6
0.04
7.4
Vstat=5V
7.2
0.03
7
0.02
6.8
6.6
6.4
0.01
6.2
6
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
Tc (°C)
Status Low Output Voltage
Status Clamp Voltage
Vstat (V)
Vscl (V)
0.6
8
7.8
Istat=1mA
0.5
7.6
Istat=1.6mA
7.4
0.4
7.2
0.3
7
6.8
0.2
6.6
6.4
0.1
6.2
0
6
-50
-25
0
25
50
75
Tc (ºC)
100
125
150
175
-50
-25
0
25
50
75
Tc (°C)
11/31
VN750 / VN750S / VN750PT / VN750-B5
On State Resistance Vs VCC
On State Resistance Vs Tcase
Ron (mOhm)
Ron (mOhm)
140
120
110
120
Iout=2A
Iout=2A
Vcc=8V; 13V; 36V
100
100
Tc= 150°C
90
80
80
Tc= 125°C
70
60
60
50
40
Tc= 25°C
40
20
Tc= - 40°C
30
0
20
-50
-25
0
25
50
75
100
125
150
175
5
10
15
20
Tc (ºC)
Openload On State Detection Threshold
30
35
40
Input High Level
Iol (mA)
Vih (V)
220
3.6
200
3.4
Vcc=13V
Vin=5V
180
25
Vcc (V)
3.2
160
140
3
120
2.8
100
2.6
80
60
2.4
40
2.2
20
0
2
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (ºC)
50
75
100
125
150
175
100
125
150
175
Tc (ºC)
Input Low Level
Input Hysteresis Voltage
Vil (V)
Vhyst (V)
2.8
1.5
2.6
1.4
1.3
2.4
1.2
2.2
1.1
2
1
1.8
0.9
1.6
0.8
1.4
0.7
1.2
0.6
1
0.5
-50
-25
0
25
50
75
Tc (ºC)
12/31
100
125
150
175
-50
-25
0
25
50
75
Tc (ºC)
VN750 / VN750S / VN750PT / VN750-B5
Overvoltage Shutdown
Openload Off State Voltage Detection Threshold
Vol (V)
Vov (V)
50
5
48
4.5
Vin=0V
46
4
44
3.5
42
3
40
38
2.5
36
2
34
1.5
32
1
30
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
50
75
100
125
150
175
100
125
150
175
Tc (ºC)
Tc (°C)
Turn-on Voltage Slope
Turn-off Voltage Slope
dVout/dt/(on) (V/ms)
dVout/dt(off) (V/ms)
1000
500
900
450
Vcc=13V
Rl=6.5Ohm
800
Vcc=13V
Rl=6.5Ohm
400
700
350
600
300
500
250
400
200
300
150
200
100
100
50
0
0
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
-50
-25
0
25
50
75
Tc (ºC)
Ilim Vs T case
Ilim (A)
20
18
Vcc=13V
16
14
12
10
8
6
4
2
0
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
13/31
1
VN750 / VN750S / VN750PT / VN750-B5
SO-8 Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.1
1
10
100
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
14/31
VN750 / VN750S / VN750PT / VN750-B5
PPAK, P 2PAK Maximum turn off current versus load inductance
ILMAX (A)
100
10
A
B
C
1
0.1
1
10
100
L(mH)
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at T Jstart=100ºC
C= Repetitive Pulse at T Jstart=125ºC
Conditions:
VCC=13.5V
Values are generated with R L=0Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
15/31
VN750 / VN750S / VN750PT / VN750-B5
SO-8 THERMAL DATA
SO-8 PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.14cm2, 0.8cm2, 2cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
SO-8 at 2 pins connected to TAB
110
105
100
95
90
85
80
75
70
0
0.5
1
1.5
PCB Cu heatsink area (cm^2)
16/31
2
2.5
VN750 / VN750S / VN750PT / VN750-B5
P2PAK THERMAL DATA
P2PAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.97cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
8
10
PCB Cu heatsink area (cm^2)
17/31
VN750 / VN750S / VN750PT / VN750-B5
PPAK THERMAL DATA
PPAK PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 60mm x 60mm, PCB thickness=2mm,
Cu thickness=35µm, Copper areas: 0.44cm2, 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (ºC/W)
90
80
70
60
50
40
30
20
10
0
0
2
4
6
PCB Cu heatsink area (cm^2)
18/31
8
10
VN750 / VN750S / VN750PT / VN750-B5
SO-8 Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
0.5 cm2
100
2 cm2
10
1
0.1
0.01
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of a single channel HSD
in SO-8
10
100
1000
Pulse calculation formula
Z TH δ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.05
0.8
3.5
21
16
58
0.006
2.60E-03
0.0075
0.045
0.35
1.05
2
28
2
19/31
VN750 / VN750S / VN750PT / VN750-B5
PPAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.44 cm2
6 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
T ime (s)
Thermal fitting model of a single channel HSD
in PPAK
10
100
1000
Pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
20/31
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.15
0.7
1.6
2
15
61
0.0006
0.0025
0.08
0.3
0.45
0.8
6
24
5
VN750 / VN750S / VN750PT / VN750-B5
P2PAK Thermal Impedance Junction Ambient Single Pulse
ZTH (°C/W)
1000
100
0.5 cm 2
6 cm2
10
1
0.1
0.0001
0.001
0.01
0.1
1
Time (s)
Thermal fitting model of a single channel HSD
in P 2PAK
10
100
1000
Pulse calculation formula
Z THδ = R T H ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Thermal Parameter
Tj
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
Pd
T_amb
Area/island (cm2)
R1 (°C/W)
R2 (°C/W)
R3 ( °C/W)
R4 (°C/W)
R5 (°C/W)
R6 (°C/W)
C1 (W.s/°C)
C2 (W.s/°C)
C3 (W.s/°C)
C4 (W.s/°C)
C5 (W.s/°C)
C6 (W.s/°C)
0.5
0.15
0.7
0.7
4
9
37
0.0006
0.0025
0.055
0.4
2
3
6
22
5
21/31
VN750 / VN750S / VN750PT / VN750-B5
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
A
a1
inch
MAX.
0.1
TYP.
MAX.
0.068
0.25
a2
0.003
0.009
1.65
0.064
a3
0.65
0.85
0.025
0.033
b
0.35
0.48
0.013
0.018
b1
0.19
0.25
0.007
0.010
C
0.25
0.5
0.010
0.019
c1
45 (typ.)
D
4.8
5
0.188
0.196
E
5.8
6.2
0.228
0.244
e
1.27
0.050
e3
3.81
0.150
F
3.8
4
0.14
0.157
L
0.4
1.27
0.015
0.050
M
0.6
S
L1
22/31
MIN.
1.75
0.023
8 (max.)
0.8
1.2
0.031
0.047
VN750 / VN750S / VN750PT / VN750-B5
PENTAWATT (VERTICAL) MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
4.8
0.189
C
1.37
0.054
D
2.4
2.8
0.094
0.110
D1
1.2
1.35
0.047
0.053
E
0.35
0.55
0.014
0.022
F
0.8
1.05
0.031
0.041
F1
1
1.4
0.039
0.055
G
3.2
3.4
3.6
0.126
0.134
0.142
G1
6.6
6.8
7
0.260
0.268
0.276
H2
H3
10.4
10.05
10.4
0.409
0.396
0.409
L
17.85
0.703
L1
15.75
0.620
L2
21.4
0.843
L3
22.5
0.886
L5
2.6
3
0.102
0.118
L6
15.1
15.8
0.594
0.622
L7
6
6.6
0.236
0.260
M
4.5
0.177
M1
4
0.157
Diam.
3.65
3.85
0.144
0.152
23/31
VN750 / VN750S / VN750PT / VN750-B5
P2PAK MECHANICAL DATA
DIM.
mm.
MIN.
TYP
MAX.
A
4.30
4.80
A1
2.40
2.80
A2
0.03
0.23
b
0.80
1.05
c
0.45
0.60
c2
1.17
1.37
D
8.95
9.35
D2
E
8.00
10.00
E1
e
10.40
8.50
3.20
3.60
e1
6.60
7.00
L
13.70
14.50
L2
1.25
1.40
L3
0.90
1.70
L5
1.55
R
V2
Package Weight
2.40
0.40
0º
8º
1.40 Gr (typ)
P010R
24/31
VN750 / VN750S / VN750PT / VN750-B5
PPAK MECHANICAL DATA
DIM.
MIN.
A
2.20
2.40
A1
0.90
1.10
A2
0.03
0.23
B
0.40
0.60
B2
5.20
5.40
C
0.45
0.60
C2
0.48
D1
TYP
MAX.
0.60
5.1
D
6.00
6.20
E
6.40
6.60
E1
4.7
e
1.27
G
4.90
5.25
G1
2.38
2.70
H
9.35
10.10
L2
L4
0.8
0.60
R
V2
Package Weight
1.00
1.00
0.2
0º
8º
Gr. 0.3
P032T1
25/31
VN750 / VN750S / VN750PT / VN750-B5
SO-8 TUBE SHIPMENT (no suffix)
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
A
100
2000
532
3.2
6
0.6
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
12
4
8
1.5
1.5
5.5
4.5
2
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
26/31
500mm min
VN750 / VN750S / VN750PT / VN750-B5
PENTAWATT TUBE SHIPMENT (no suffix)
B
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
50
1000
532
18
33.1
1
All dimensions are in mm.
A
27/31
VN750 / VN750S / VN750PT / VN750-B5
P2PAK TUBE SHIPMENT (no suffix)
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
C
50
1000
532
18
33.1
1
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
1000
1000
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
24
4
16
1.5
1.5
11.5
6.5
2
End
Start
Top
cover
tape
No components
Components
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
28/31
No components
500mm min
VN750 / VN750S / VN750PT / VN750-B5
PPAK SUGGESTED PAD LAYOUT
PPAK TUBE SHIPMENT (no suffix)
A
C
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
B
3
1.8
75
3000
532
6
21.3
0.6
6.7
All dimensions are in mm.
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
16.4
60
22.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
All dimensions are in mm.
16
4
8
1.5
1.5
7.5
2.75
2
End
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
29/31
1
VN750 / VN750S / VN750PT / VN750-B5
REVISION HISTORY
Date
Revision
Description of Changes
- Current and voltage convention update (page 2).
- “Configuration diagram (top view) & suggested connections for unused and n.c.
pins” insertion (page 2).
May 2004
1
- 6cm2 Cu condition insertion in Thermal Data table (page 3).
- VCC - OUTPUT DIODE section update (page 4).
- Revision History table insertion (page 30).
- Disclaimers update (page 31).
30/31
1
VN750 / VN750S / VN750PT / VN750-B5
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners
 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
http://www.st.com
31/31