VND830-E DOUBLE CHANNEL HIGH SIDE DRIVER Table 1. General Features Type VND830-E Figure 1. Package RDS(on) Iout VCC 60mΩ (*) 6A (*) 36V ) s t( (*) Per each channel CMOS COMPATIBLE INPUTS OPEN DRAIN STATUS OUTPUTS ■ ON STATE OPEN LOAD DETECTION ■ OFF STATE OPEN LOAD DETECTION ■ SHORTED LOAD PROTECTION ■ UNDERVOLTAGE AND OVERVOLTAGE SHUTDOWN ■ LOSS OF GROUND PROTECTION ■ VERY LOW STAND-BY CURRENT c u d ■ ■ REVERSE BATTERY PROTECTION (**) ■ IN COMPLIANCE WITH THE 2002/95/EC EUROPEAN DIRECTIVE ■ ) s ( ct so e t le b O - DESCRIPTION The VND830-E is a monolithic device made by using STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground. Active V CC pin voltage clamp protects the devices against low energy spikes (see ISO7637 transient compatibility table). u d o o r P SO-16L Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both is on and off state. Output shorted to VCC is detected in the off state. Device automatically turns off in case of ground pin disconnection. r P e t e l o s b O Table 2. Order Codes Package SO-16L Tube VND830-E Tape and Reel VND830TR-E Note: (*) See application schematic at page 9 Rev. 3 February 2005 1/20 VND830-E Figure 2. Block Diagram VCC VCC CLAMP OVERVOLTAGE UNDERVOLTAGE CLAMP 1 GND OUTPUT1 INPUT1 DRIVER 1 CLAMP 2 STATUS1 CURRENT LIMITER 1 ) s t( DRIVER 2 LOGIC OVERTEMP. 1 c u d OPENLOAD ON 1 CURRENT LIMITER 2 INPUT2 OPENLOAD OFF 1 OUTPUT2 o r P OPENLOAD ON 2 STATUS2 OPENLOAD OFF 2 e t le OVERTEMP. 2 O ) Table 3. Absolute Maximum Ratings Symbol VCC s ( t c DC Supply Voltage Value Unit 41 V - VCC Reverse DC Supply Voltage - 0.3 V - IGND DC Reverse Ground Pin Current - 200 mA Internally Limited A -6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA 4000 V 4000 V 5000 V 5000 V (L=1.8mH; RL=0Ω; Vbat=13.5V; Tjstart=150ºC; IL=9A) 102 mJ Power Dissipation Tlead=25°C 8.3 W Internally Limited °C IOUT - IOUT u d o ISTAT o s b VESD Pr DC Output Current Reverse DC Output Current e t e l IIN O Parameter o s b Electrostatic Discharge (Human R=1.5KΩ; C=100pF) Body Model: - INPUT - STATUS - OUTPUT - VCC Maximum Switching Energy EMAX Ptot Tj Junction Operating Temperature Tc Case Operating Temperature - 40 to 150 °C Storage Temperature - 55 to 150 °C Tstg 2/20 VND830-E Figure 3. Configuration Diagram (Top View) & Suggested Connections for Unused and N.C. Pins 1 VCC VCC 16 N.C. OUTPUT 1 GND OUTPUT 1 INPUT 1 OUTPUT 1 STATUS 1 OUTPUT 2 STATUS 2 OUTPUT 2 OUTPUT 2 INPUT 2 8 VCC Connection / Pin Status Floating X To Ground VCC 9 N.C. X X Output X Input X Through 10KΩ resistor c u d Figure 4. Current and Voltage Conventions IIN1 ISTAT1 VIN1 b O - VIN2 P e ct STATUS 2 VSTAT2 IS VF1 (*) VCC VCC IOUT1 VOUT1 INPUT 2 IOUT2 ISTAT2 du ro (s) IIN2 o r P OUTPUT 1 STATUS 1 VSTAT1 e t le so INPUT 1 ) s t( OUTPUT 2 VOUT2 GND IGND t e l o s b O (*) VFn = VCCn - VOUTn during reverse battery condition Table 4. Thermal Data Symbol Rthj-lead Rthj-amb Parameter Thermal resistance junction-lead Thermal resistance junction-ambient (MAX) (MAX) Value 15 65 (*) 48 (**) Unit °C/W °C/W Note: (*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. Note: (**) When mounted on a standard single-sided FR-4 board with 6 cm 2 of Cu (at least 35µm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 3/20 VND830-E ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C< Tj <150°C, unless otherwise specified) (Per each channel) Table 5. Power Output Symbol Parameter VCC (**) Test Conditions Min. Typ. Max. Unit Operating Supply Voltage 5.5 13 36 V VUSD (**) Undervoltage Shut-down 3 4 5.5 V VOV (**) Overvoltage Shut-down 36 On State Resistance RON IS (**) Supply Current V IOUT =2A; Tj =25 °C 60 IOUT =2A; VCC> 8V 120 mΩ mΩ µA ) s ( Off State; VCC=13V; VIN=VOUT=0V 12 40 Off State; VCC=13V; VIN=VOUT=0V; Tj=25°C 12 25 µA 5 7 mA 50 µA 0 µA t c u d o r On State; VCC=13V; VIN=5V; IOUT=0A P e et IL(off1) Off State Output Current VIN=VOUT=0V 0 IL(off2) Off State Output Current VIN=0V; VOUT =3.5V IL(off3) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =125°C 5 µA IL(off4) Off State Output Current VIN=VOUT=0V; VCC=13V; Tj =25°C 3 µA -75 l o s Note: (**) Per device. b O - Table 6. Protection (Per each channel) (See note 1) Symbol Parameter TTSD Shut-down Temperature Reset Temperature Thyst Thermal Hysteresis TSDL Status Delay in Overload Conditions Ilim e t e l o s b Vdemag O o r P Current limitation Turn-off Output Clamp Voltage Test Conditions ct du TR (s) Min. Typ. Max. Unit 150 175 200 °C 135 7 °C 15 Tj>TTSD VCC=13V 6 9 5.5V < VCC < 36V IOUT =2A; L= 6mH VCC-41 VCC-48 °C 20 µs 15 A 15 A VCC-55 V Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles Table 7. VCC - Output Diode Symbol VF 4/20 Parameter Forward on Voltage Test Conditions -IOUT=1.3A; Tj=150°C Min Typ Max 0.6 Unit V VND830-E ELECTRICAL CHARACTERISTICS (continued) Table 8. Status Pin Symbol Parameter Test Conditions VSTAT Status Low Output Voltage ISTAT = 1.6 mA ILSTAT Status Leakage Current Normal Operation; VSTAT= 5V Status Pin Input Normal Operation; VSTAT= 5V CSTAT Capacitance ISTAT = 1mA VSCL Status Clamp Voltage ISTAT = - 1mA Min 6 Typ Max 0.5 10 Unit V µA 100 pF 8 V 6.8 -0.7 V Table 9. Switching (V CC=13V) Symbol Parameter td(on) Turn-on Delay Time td(off) Turn-off Delay Time Test Conditions RL=6.5Ω from VIN rising edge to VOUT =1.3V RL=6.5Ω from VIN falling edge to VOUT =11.7V dV/dt(on) Turn-on Voltage Slope RL=6.5Ω from VOUT=1.3V to VOUT =10.4V dV/dt(off) Turn-off Voltage Slope RL=6.5Ω from VOUT=11.7V to VOUT =1.3V IOL tDOL(on) VOL Parameter Openload ON State O ) Detection Threshold Openload ON State o s b s ( t c du Detection Delay Openload OFF State Voltage Detection Threshold Openload Detection Delay at Turn Off e t e l tDOL(off) Test Conditions o r P VIN=5V Typ od 30 Pr Unit µs µs See relative diagram See relative diagram V/µs V/µs Min Typ Max Unit 50 100 200 mA 200 µs 3.5 V 1000 µs Max 1.25 Unit V µA V 10 µA IOUT=0A VIN=0V ) s t( Max uc 30 o s b Table 10. Openload Detection Symbol e t le Min 1.5 2.5 Table 11. Logic Input O Symbol VIL IIL VIH IIH Vhyst VICL Parameter Test Conditions Input Low Level Low Level Input Current VIN = 1.25V Input High Level High Level Input CurVIN = 3.25V rent Input Hysteresis Voltage IIN = 1mA Input Clamp Voltage IIN = -1mA Min Typ 1 3.25 0.5 6 V 6.8 -0.7 8 V V 5/20 VND830-E Table 12. Truth Table CONDITIONS INPUT OUTPUT SENSE Normal Operation L H L H H H Current Limitation L H H L X X H (Tj < TTSD) H (Tj > TTSD) L Overtemperature L H L L H L Undervoltage L H L L X X Overvoltage L H L L H H Output Voltage > VOL L H H H Output Current < IOL L H L H ) s t( c u d e t le Figure 5. Switching time Waveforms o r P L H H L o s b O ) s ( t c VOUTn du e t e ol o r P 80% 90% dVOUT/dt(off) dVOUT/dt(on) s b O VINn 10% t td(on) td(off) t 6/20 VND830-E Table 13. Electrical Transient Requirements On V CC Pin ISO T/R 7637/1 Test Pulse I II TEST LEVELS III IV 1 2 3a 3b 4 5 -25 V +25 V -25 V +25 V -4 V +26.5 V -50 V +50 V -50 V +50 V -5 V +46.5 V -75 V +75 V -100 V +75 V -6 V +66.5 V -100 V +100 V -150 V +100 V -7 V +86.5 V ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 CLASS C E TEST LEVELS RESULTS II III C C C C C C C C C C E E I C C C C C C e t le Delays and Impedance 2 ms 10 Ω 0.2 ms 10 Ω 0.1 µs 50 Ω 0.1 µs 50 Ω 100 ms, 0.01 Ω 400 ms, 2 Ω ) s t( o r P c u d IV C C C C C E CONTENTS All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device. o s b O ) s ( t c u d o r P e t e l o s b O 7/20 VND830-E Figure 6. Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn ) s t( UNDERVOLTAGE VUSDhyst VCC c u d VUSD INPUTn OUTPUT VOLTAGEn STATUSn undefined e t le OVERVOLTAGE o s b VCC<VOV VCC O ) INPUTn OUTPUT VOLTAGEn STATUSn INPUTn s ( t c u d o OPEN LOAD with external pull-up Pr OUTPUT VOLTAGEn STATUSn e t e ol bs O VOUT >VOL VOL OPEN LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn OVERTEMPERATURE Tj TTSD TR INPUTn OUTPUT CURRENTn STATUSn 8/20 o r P VND830-E Figure 7. Application Schematic +5V +5V +5V VCC Rprot STATUS1 Dld µC Rprot ) s t( INPUT1 OUTPUT1 Rprot STATUS2 Rprot INPUT2 c u d e t le so GND ) s ( ct r P e u d o GND PROTECTION REVERSE BATTERY t e l o NETWORK b O - RGND VGND AGAINST Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND ≤ 600mV / IS(on)max. 2) RGND ≥ (−VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the of the device’s datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on many devices are ON in the case of several high side drivers sharing the same RGND. s b O o r P OUTPUT2 DGND If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggest to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1kΩ) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. LOAD DUMP PROTECTION Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table. 9/20 VND830-E .µC I/Os PROTECTION: If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the µC I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os. -VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup ≥ 20mA; VOHµC ≥ 4.5V 5kΩ ≤ Rprot ≤ 65kΩ. Recommended Rprot value is 10kΩ. supply the microprocessor. The external resistor has to be selected according to the following requirements: 1) no false open load indication when load is connected: in this case we have to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT=(VPU/(RL+RPU))RL<VOlmin. 2) no misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU<(VPU–VOLmax)/ IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pull-up resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in the Electrical Characteristics section. ) s t( OPEN LOAD DETECTION IN OFF STATE c u d Off state open load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5V line used to e t le Figure 8. Open Load detection in off state o r P o s b V batt. VPU O ) VCC s ( t c e t e l o s b O u d o Pr INPUT STATUS RPU DRIVER + LOGIC IL(off2) OUT + R VOL GROUND 10/20 RL VND830-E Figure 12. High Level Input Current Figure 9. Off State Output Current IL(off1) (uA) Iih (uA) 2.5 5 2.25 4.5 Off state Vcc=36V Vin=Vout=0V 2 1.75 Vin=3.25V 4 3.5 1.5 3 1.25 2.5 1 2 0.75 1.5 0.5 1 0.25 0.5 0 0 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) d o r Vicl (V) 125 150 175 125 150 175 125 150 175 P e et Ilstat (uA) 8 0.05 l o s 7.8 Iin=1mA 7.6 7.4 7.2 ) (s 7 6.8 t c u 6.6 6.4 d o r 6.2 6 P e -25 0 25 t e l o 50 75 Ob 0.04 Vstat=5V 0.03 0.02 0.01 0 100 125 150 175 -50 -25 0 25 Tc (°C) 50 75 100 Tc (°C) Figure 11. Status Low Output Voltage Figure 14. Status Clamp Voltage bs Vstat (V) O 100 Figure 13. Status Leakage Current Figure 10. Input Clamp Voltage -50 uc 75 Tc (°C) ) s t( Vscl (V) 0.8 8 7.8 0.7 Istat=1mA Istat=1.6mA 7.6 0.6 7.4 0.5 7.2 0.4 7 6.8 0.3 6.6 0.2 6.4 0.1 6.2 0 6 -50 -25 0 25 50 75 Tc (°C) 100 125 150 175 -50 -25 0 25 50 75 100 Tc (°C) 11/20 VND830-E Figure 15. Overvoltage Shutdown Figure 18. ILIM Vs Tcase Vov (V) Ilim (A) 50 20 48 18 46 16 44 14 42 12 40 10 38 8 36 6 34 4 32 2 30 0 Vcc=13V -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) dVout/dt(off) (V/ms) 600 l o s 550 Vcc=13V Rl=6.5Ohm 500 ) s ( ct 300 u d o 200 100 0 -50 -25 0 e t e ol Pr 25 50 75 100 150 b O - 500 175 400 350 300 250 -50 -25 0 25 Tc (ºC) 50 75 100 125 Tc (ºC) Figure 20. On State Resistance Vs VCC Ron (mOhm) Ron (mOhm) 160 120 Tc=150°C 110 Iout=2A Vcc=8V; 13V & 36V 120 150 Vcc=13V Rl=6.5Ohm 450 175 bs 140 175 200 125 Figure 17. On State Resistance Vs Tcase O 150 P e et dVout/dt(on) (V/ms) 400 125 Figure 19. Turn-off Voltage Slope 800 600 100 d o r Figure 16. Turn-on Voltage Slope 700 uc 75 Tc (°C) ) s t( 100 90 80 100 70 60 80 Tc=25°C 50 60 40 Tc= - 40°C 30 40 20 Iout=5A 20 10 0 0 -50 -25 0 25 50 75 Tc (°C) 12/20 100 125 150 175 5 10 15 20 25 Vcc (V) 30 35 40 VND830-E Figure 21. Input High Level Figure 24. Input Low Level Vih (V) Vil (V) 3.6 2.6 3.4 2.4 3.2 2.2 3 2 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2 1 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 Tc (°C) l o s 5 150 4.5 140 Vcc=13V Vin=5V )- 120 s ( t c r P e 80 70 -50 -25 0 t e l o 25 50 75 100 175 Ob Vin=0V 4 3.5 3 2.5 2 1.5 u d o 90 150 P e et Vol (V) 100 125 Figure 25. Openload Off State Detection Threshold Iol (mA) 110 100 d o r Figure 22. Openload On State Detection Threshold 130 uc 75 Tc (°C) ) s t( 1 0.5 0 125 150 -50 175 -25 0 25 50 75 100 125 150 175 Tc (°C) Tc (°C) Figure 23. Input Hysteresis Voltage s b O Vhyst (V) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175 Tc (°C) 13/20 VND830-E Figure 26. SO-16L Maximum turn off current versus load inductance ILMAX (A) 100 ) s t( 10 c u d A e t le 1 0.1 1 ) s ( ct A = Single Pulse at TJstart=150ºC B= Repetitive pulse at T Jstart=100ºC C= Repetitive Pulse at T Jstart=125ºC u d o r P e t e l o Conditions: VCC=13.5V o s b - OL(mH) o r P B C 10 100 Values are generated with R L=0Ω In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. s b O VIN, IL Demagnetization Demagnetization Demagnetization t 14/20 VND830-E SO-16L Thermal Data Figure 27. SO-16L PC Board ) s t( c u d Layout condition of Rth and Zth measurements (PCB FR4 area= 41mm x 48mm, PCB thickness=2mm, Cu thickness=35µm, Copper areas: 0.5cm2, 6cm2). e t le o r P Figure 28. Rthj-amb Vs PCB copper area in open box free air condition o s b 70 O ) s ( t c RTH j-amb (°C/W) u d o 65 r P e 60 t e l o 55 s b O 50 45 40 0 1 2 3 4 5 6 7 PCB Cu heatsink area (cm^2) 15/20 VND830-E Figure 29. SO-16L Thermal Impedance Junction Ambient Single Pulse ZT H (°C/W) 1000 100 Footprint 6 cm2 10 ) s t( c u d 1 e t le 0.1 o s b 0.01 0.0001 0.001 0.01 -O 0.1 1 T ime (s) ) s ( ct u d o Figure 30. Thermal fitting model of a double channel HSD in SO-16L e t e ol bs Tj_1 O Pr C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 C2 R1 R2 Pd2 T_amb 16/20 100 1000 Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) δ = tp ⁄ T Table 14. Thermal Parameter C1 C1 10 Pulse calculation formula where Pd1 Tj_2 o r P R1 R2 R3 R4 R5 R6 C1 C2 C3 C4 C5 C6 Area/island (cm2) (°C/W) (°C/W) ( °C/W) (°C/W) (°C/W) (°C/W) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) (W.s/°C) Footprint 0.05 0.3 2.2 12 15 37 0.001 5.00E-03 0.02 0.3 1 3 6 22 5 VND830-E PACKAGE MECHANICAL Table 15. SO-16L Mechanical Data millimeters Symbol Min A a1 a2 b b1 C c1 D E e e3 F L M S Typ Max 2.65 0.2 2.45 0.49 0.32 0.1 0.35 0.23 0.5 45° (typ.) ) s t( 10.1 10.0 10.5 10.65 1.27 8.89 7.4 0.5 8° (max.) e t le Figure 31. SO-16L Package Dimensions o r P c u d 7.6 1.27 0.75 o s b O ) s ( t c u d o r P e t e l o s b O 17/20 VND830-E Figure 32. SO-16L Tube Shipment (No Suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) C B 50 1000 532 3.5 13.8 0.6 All dimensions are in mm. A ) s t( c u d Figure 33. Tape And Reel Shipment (Suffix “TR”) o r P REEL DIMENSIONS e t le so ) s ( ct b O - Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) u d o 1000 1000 330 1.5 13 20.2 16.4 60 22.4 r P e TAPE DIMENSIONS t e l o According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 s b O Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.1/-0) D1 (min) F (± 0.05) K (max) P1 (± 0.1) 16 4 12 1.5 1.5 7.5 6.5 2 End All dimensions are in mm. Start Top cover tape No components Components 500mm min Empty components pockets saled with cover tape. User direction of feed 18/20 No components 500mm min VND830-E REVISION HISTORY Date Nov. 2004 Feb. 2005 Revision Description of Changes 2 - RDS(on) value correction: 60mΩ instead of 35mΩ. 3 - Iol curve changed. ) s t( c u d e t le o r P o s b O ) s ( t c u d o r P e t e l o s b O 19/20 VND830-E ) s t( c u d e t le o r P o s b O ) s ( t c u d o r P e t e l o s b O Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 20/20