TI TLC0831IP

TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
D
D
D
D
D
D
D
D
D
8-Bit Resolution
Easy Microprocessor Interface or
Standalone Operation
Operates Ratiometrically or With 5-V
Reference
Single Channel or Multiplexed Twin
Channels With Single-Ended or Differential
Input Options
Input Range 0 to 5 V With Single 5-V Supply
Inputs and Outputs Are Compatible With
TTL and MOS
Conversion Time of 32 µs at
fclock = 250 kHz
Designed to Be Interchangeable With
National Semiconductor ADC0831 and
ADC0832
Total Unadjusted Error . . . ± 1 LSB
TLC0831 . . . D OR P PACKAGE
(TOP VIEW)
CS
IN+
IN–
GND
1
8
2
7
3
6
4
5
VCC
CLK
DO
REF
TLC0832 . . . D OR P PACKAGE
(TOP VIEW)
CS
CH0
CH1
GND
1
8
2
7
3
6
4
5
VCC /REF
CLK
DO
DI
description
These devices are 8-bit successive-approximation analog-to-digital converters. The TLC0831 has single input
channels; the TLC0832 has multiplexed twin input channels. The serial output is configured to interface with
standard shift registers or microprocessors.
The TLC0832 multiplexer is software configured for single-ended or differential inputs. The differential analog
voltage input allows for common-mode rejection or offset of the analog zero input voltage value. In addition, the
voltage reference input can be adjusted to allow encoding any smaller analog voltage span to the full 8 bits of
resolution.
The operation of the TLC0831 and TLC0832 devices is very similar to the more complex TLC0834 and TLC0838
devices. Ratiometric conversion can be attained by setting the REF input equal to the maximum analog input
signal value, which gives the highest possible conversion resolution. Typically, REF is set equal to VCC (done
internally on the TLC0832).
The TLC0831C and TLC0832C are characterized for operation from 0°C to 70°C. The TLC0831I and TLC0832I
are characterized for operation from – 40°C to 85°C.
AVAILABLE OPTIONS
PACKAGE
TA
SMALL OUTLINE
(D)
PLASTIC DIP
(P)
0°C to 70°C
TLC0831CD
TLC0832CD
TLC0831CP
TLC0832CP
– 40°C to 85°C
TLC0831ID
TLC0832ID
TLC0831IP
TLC0832IP
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
functional block diagram
Start
Flip-Flop
CLK
CS
CLK
Shift Register
ODD/EVEN
D
DI
(TLC0832
only)
S
R
Start
CLK
To Internal
Circuits
CLK
SGL/DIF
CH0/IN+
CH1/IN –
Analog
MUX
S
Comparator
R
Time
Delay
EN
CS
CS
CS
CS
CS
EN
REF
(TLC0831
only)
Ladder
and
Decoder
Bits 0–7
R
EN
SAR
Logic
and
Latch
CLK
Bits 0–7
Bit 1
MSB
First
9-Bit
Shift
Register
LSB
First
One
Shot
2
POST OFFICE BOX 655303
R
• DALLAS, TEXAS 75265
EOC
R
CLK
D
DO
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
functional description
The TLC0831 and TLC0832 use a sample-data-comparator structure that converts differential analog inputs
by a successive-approximation routine. The input voltage to be converted is applied to an input terminal and
is compared to ground (single ended), or to an adjacent input (differential). The TLC0832 input terminals can
be assigned a positive (+) or negative (–) polarity. The TLC0831 contains only one differential input channel with
fixed polarity assignment; therefore it does not require addressing. The signal can be applied differentially,
between IN+ and IN–, to the TLC0831 or can be applied to IN+ with IN– grounded as a single ended input. When
the signal input applied to the assigned positive terminal is less than the signal on the negative terminal, the
converter output is all zeros.
Channel selection and input configuration are under software control using a serial-data link from the controlling
processor. A serial-communication format allows more functions to be included in a converter package with no
increase in size. In addition, it eliminates the transmission of low-level analog signals by locating the converter
at the analog sensor and communicating serially with the controlling processor. This process returns noise-free
digital data to the processor.
A conversion is initiated by setting CS low, which enables all logic circuits. CS must be held low for the complete
conversion process. A clock input is then received from the processor. An interval of one clock period is
automatically inserted to allow the selected multiplexed channel to settle. DO comes out of the high-impedance
state and provides a leading low for one clock period of multiplexer settling time. The SAR comparator compares
successive outputs from the resistive ladder with the incoming analog signal. The comparator output indicates
whether the analog input is greater than or less than the resistive-ladder output. As the conversion proceeds,
conversion data is simultaneously output from DO, with the most significant bit (MSB) first. After eight clock
periods, the conversion is complete. When CS goes high, all internal registers are cleared. At this time, the
output circuits go to the high-impedance state. If another conversion is desired, CS must make a high-to-low
transition followed by address information.
A TLC0832 input configuration is assigned during the multiplexer-addressing sequence. The multiplexer
address shifts into the converter through the data input (DI) line. The multiplexer address selects the analog
inputs to be enabled and determines whether the input is single ended or differential. When the input is
differential, the polarity of the channel input is assigned. In addition to selecting the differential mode, the polarity
may also be selected. Either channel of the channel pair may be designated as the negative or positive input.
On each low-to-high transition of the clock input, the data on DI is clocked into the multiplexer-address shift
register. The first logic high on the input is the start bit. A 2-bit assignment word follows the start bit on the
TLC0832. On each successive low-to-high transition of the clock input, the start bit and assignment word are
shifted through the shift register. When the start bit is shifted into the start location of the multiplexer register,
the input channel is selected and conversion starts. The TLC0832 DI terminal to the multiplexer shift register
is disabled for the duration of the conversion.
The TLC0832 outputs the least-significant-bit (LSB) first data after the MSB-first data stream. The DI and DO
terminals can be tied together and controlled by a bidirectional processor I/O bit received on a single wire. This
is possible because DI is only examined during the multiplexer-addressing interval and DO is still in the
high-impedance state.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
sequence of operation
TLC0831
1
2
3
4
5
6
7
8
9
10
CLK
tsu
tconv
CS
MSB-First Data
MUX
Settling Time
Hi-Z
DO
MSB
7
Hi-Z
LSB
6
5
4
3
2
1
0
TLC0832
1
2
3
4
5
6
10
11
12
13
14
18
19
20
21
CLK
tconv
tsu
CS
+Sign Bit
Start
ODD
SGL
Bit
DI
(TLC0832
only)
Don’t Care
DIF EVEN
MSB-First Data
LSB-First Data
MUX
Settling Time
DO
Hi-Z
MSB
7
LSB
6
2
1
MSB
0
1
2
6
TLC0832 MUX-ADDRESS CONTROL LOGIC TABLE
MUX ADDRESS
SGL/DIF
L
L
H
H
CHANNEL NUMBER
ODD/EVEN
L
H
L
H
CH0
CH1
+
–
+
–
+
+
H = high level, L = low level,
– or + = terminal polarity for the selected input channel
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
absolute maximum ratings over recommended operating free-air temperature range (unless
otherwise noted)†
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5 V
Input voltage range, VI: Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC + 0.3 V
Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VCC + 0.3 V
Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
Total input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 20 mA
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: P package . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.
recommended operating conditions
Supply voltage, VCC
High-level input voltage, VIH
MIN
NOM
MAX
4.5
5
5.5
2
Low-level input voltage, VIL
Clock frequency, fclock
Clock duty cycle (see Note 2)
UNIT
V
V
0.8
V
10
600
kHz
40%
60%
Pulse duration, CS high, twH(CS)
220
ns
Setup time, CS low or TLC0832 data valid before CLK↑, tsu
350
ns
Hold time, TLC0832 data valid after CLK↑, th
Operating free-air
free air temperature,
temperature TA
90
C suffix
I suffix
ns
0
70
– 40
85
°C
NOTE 2: The clock-duty-cycle range ensures proper operation at all clock frequencies. When a clock frequency is used outside the
recommended duty-cycle range, the minimum pulse duration (high or low) is 1 µs.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
electrical characteristics over recommended range of operating free-air temperature, VCC = 5 V,
fclock = 250 kHz (unless otherwise noted)
digital section
TEST CONDITIONS†
PARAMETER
VCC = 4.75 V,
VCC = 4.75 V,
IOH = – 360 µA
IOH = – 10 µA
VCC = 4.75 V,
VIH = 5 V
IOL = 1.6 mA
High-level input current
IIL
Low-level input current
VIL = 0
IOH
High-level output
(source) current
VOH = VO,
TA = 25°C
IOL
Low-level output (sink) current
VOH
High level output voltage
High-level
VOL
IIH
Low-level output voltage
IOZ
High-impedance-state
g
output
current (DO)
Ci
Input capacitance
VOL = VCC,
VO = 5 V,
VO = 0,
C SUFFIX
MIN
TYP‡
MAX
2.8
2.4
4.6
4.5
0.34
UNIT
V
0.4
V
0.005
1
0.005
1
µA
– 0.005
–1
– 0.005
–1
µA
– 6.5
TA = 25°C
TA = 25°C
TA = 25°C
I SUFFIX
MIN
TYP‡
MAX
– 24
8
– 6.5
26
8
– 24
mA
26
mA
0.01
3
0.01
3
– 0.01
–3
– 0.01
–3
5
Co
Output capacitance
5
† All parameters are measured under open-loop conditions with zero common-mode input voltage.
‡ All typical values are at VCC = 5 V, TA = 25°C.
µA
5
pF
5
pF
analog and converter section
TEST CONDITIONS†
PARAMETER
VIC
Common-mode input voltage
See Note 3
On channel
II(
tdb )
I(stdby)
Off channel
Standby input current (see Note 4)
On channel
Off channel
MIN
TYP‡
MAX
– 0.05
to
VCC+ 0.05
UNIT
V
VI = 5 V
VI = 0
1
–1
VI = 0
VI = 5 V
–1
µA
1
ri(REF)
Input resistance to REF
1.3
2.4
5.9
kΩ
† All parameters are measured under open-loop conditions with zero common-mode input voltage.
‡ All typical values are at VCC = 5 V, TA = 25°C.
NOTES: 3. When channel IN– is more positive than channel IN+, the digital output code is 0000 0000. Connected to each analog input are two
on-chip diodes that conduct forward current for analog input voltages one diode drop above VCC. Care must be taken during testing
at low VCC levels (4.5 V) because high-level analog input voltage (5 V) can, especially at high temperatures, cause the input diode
to conduct and cause errors for analog inputs that are near full scale. As long as the analog voltage does not exceed the supply
voltage by more than 50 mV, the output code is correct. To achieve an absolute 0- to 5-V input range requires a minimum VCC of
4.95 V for all variations of temperature and load.
4. Standby input currents go in or out of the on or off channels when the A/D converter is not performing conversion and the clock is
in a high or low steady-state conditions.
total device
TYP‡
MAX
TLC0831
0.6
1.25
TLC0832
2.5
4.7
PARAMETER
ICC
Supply current
MIN
‡ All typical values are at VCC = 5 V, TA = 25°C.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
mA
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
operating characteristics VCC = Vref = 5 V, fclock = 250 kHz, tr = tf = 20 ns, TA = 25°C (unless otherwise
noted)
TEST CONDITIONS†
PARAMETER
Supply-voltage variation error
Total unadjusted error (see Note 5)
Common-mode error
MSB-first data
tpd
d
Propagation
delay
g
y time,,
output data after CLK↑ (see Note 6)
tdi
dis
Output disable time,
time DO after CS↑
tconv
Conversion time (multiplexer-addressing
time not included)
LSB-first data
TYP
MAX
UNIT
VCC = 4.75 V to 5.25 V
Vref = 5 V,
TA = MIN to MAX
± 1/16
± 1/4
LSB
±1
LSB
Differential mode
± 1/16
± 1/4
LSB
650
1500
250
600
125
250
CL = 100 pF
CL = 10 pF,
CL = 100 pF,
RL = 10 kΩ
RL = 2 kΩ
MIN
500
8
ns
ns
clock
periods
† All parameters are measured under open-loop conditions with zero common-mode input voltage. For conditions shown as MIN or MAX, use the
appropriate value specified under recommended operating conditions.
NOTES: 5. Total unadjusted error includes offset, full-scale, linearity, and multiplexer errors.
6. The MSB-first data is output directly from the comparator and, therefore, requires additional delay to allow for comparator response
time. LSB-first data applies only to TLC0832.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
PARAMETER MEASUREMENT INFORMATION
VCC
CLK
50%
50%
GND
VCC
tsu
tsu
CLK
VCC
50%
GND
CS
tpd
0.4 V
GND
th
2V
VOH
th
DO
50%
VOL
VCC
2V
DI
0.4 V
0.4 V
Figure 2. Data-Output Timing
GND
Figure 1. TLC0832 Data-Input Timing
VCC
Test
Point
S1
RL
From Output
Under Test
CL
(see Note A)
S2
LOAD CIRCUIT
tr
CS
50%
tr
VCC
90%
10%
CS
10%
GND
DO
Output
90%
VCC
GND
DO
Output
S1 open
S2 closed
–VCC
10%
VOLTAGE WAVEFORMS
VOLTAGE WAVEFORMS
NOTE A: CL includes probe and jig capacitance.
Figure 3. Output Disable Time Test Circuit and Voltage Waveforms
8
GND
tdis
tdis
S1 open
S2 closed
VCC
90%
50%
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
GND
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
TYPICAL CHARACTERISTICS
UNADJUSTED OFFSET ERROR
vs
REFERENCE VOLTAGE
LINEARITY ERROR
vs
REFERENCE VOLTAGE
1.5
VCC = 5 V
fclock = 1 MHz
TA = 25°C
VI+ = VI – = 0 V
14
1.25
12
E L – Linearity Error – LSB
EO(unadj) – Unadjusted Offset Error – LSB
16
10
8
6
4
1.0
0.75
0.5
0.25
2
0
0.01
0.1
1.0
0
10
1
0
Vref – Reference Voltage – V
2
4
5
Vref – Reference Voltage – V
Figure 4
Figure 5
LINEARITY ERROR
vs
FREE-AIR TEMPERATURE
LINEARITY ERROR
vs
CLOCK FREQUENCY
0.5
3
Vref = 5 V
fclock = 1 MHz
Vref = 5 V
VCC = 5 V
2.5
0.45
E L – Linearity Error – LSB
E L – Linearity Error – LSB
3
0.4
0.35
0.3
0.25
– 50
2
1.5
1
0
25
50
75
100
0
25°C
400
500
– 40°C
0.5
– 25
85°C
0
TA – Free-Air Tempertature – °C
100
200
300
600
fclock – Clock Frequency – kHz
Figure 6
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
TYPICAL CHARACTERISTICS
TLC0831
TLC0831
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT
vs
CLOCK FREQUENCY
1.5
1.5
VCC = 5 V
TA = 25°C
I CC – Supply Current – mA
I CC – Supply Current – mA
fclock = 1 MHz
CS = High
VCC = 5.5 V
VCC = 5 V
1
VCC = 4.5 V
0.5
– 50
1
0.5
0
– 25
0
25
50
75
100
0
100
200
Figure 8
Figure 9
OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
25
VCC = 5 V
I O – Output Current – mA
20
IOL (VOL = 5 V)
15
– IOH (VOH = 0 V)
10
– IOH (VOH = 2.4 V)
5
IOL (VOL = 0.4 V)
– 25
0
25
50
TA – Free-Air Temperature – °C
Figure 10
10
400
fclock – Clock Frequency – kHz
TA – Free-Air Temperature — °C
0
– 50
300
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
75
100
500
TLC0831C, TLC0831I
TLC0832C, TLC0832I
8-BIT ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL CONTROL
SLAS107B – JANUARY 1995 – REVISED APRIL 1996
Differential Nonlinearity – LSB
TYPICAL CHARACTERISTICS
1
0.5
0
Vref = 5 V
TA = 25°C
FCLK = 250 kHz
VDD = 5 V
–0.5
–1
0
32
64
96
128
160
192
224
256
224
256
Output Code
Figure 11. Differential Nonlinearity With Output Code
Integral Nonlinearity – LSB
1
Vref = 5 V
TA = 25°C
FCLK = 250 kHz
VDD = 5 V
0.5
0
–0.5
–1
0
32
64
96
128
160
192
Output Code
Figure 12. Integral Nonlinearity With Output Code
Total Unadjusted Error – LSB
1
Vref = 5 V
TA = 25°C
FCLK = 250 kHz
VDD = 5 V
0.5
0
–0.5
–1
0
32
64
96
128
160
192
224
256
Output Code
Figure 13. Total Unadjusted Error With Output Code
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
PACKAGING INFORMATION
(1)
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLC0831CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0831CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0831ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0831IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0831IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0832CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832CP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0832CPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0832ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLC0832IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLC0832IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
The marketing status values are defined as follows:
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jul-2006
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated