TI SN74HC640N

SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
D
Inverting Logic
High-Current 3-State Outputs Can Drive up
to 15 LSTTL Loads
Package Options Include Plastic
Small-Outline (DW) and Ceramic Flat (W)
Packages, Ceramic Chip Carriers (FK), and
Standard Plastic (N) and Ceramic (J)
300-mil DIPs
SN54HC640 . . . J OR W PACKAGE
SN74HC640 . . . DW OR N PACKAGE
(TOP VIEW)
DIR
A1
A2
A3
A4
A5
A6
A7
A8
GND
description
These octal bus transceivers are designed for
asynchronous two-way communication between
data buses. These devices transmit data from the
A bus to the B bus or from the B bus to the A bus,
depending upon the level at the direction-control
(DIR) input. The output-enable (OE) input can be
used to disable the device so the buses are
effectively isolated.
The SN54HC640 is characterized for operation
over the full military temperature range of –55°C
to 125°C. The SN74HC640 is characterized for
operation from –40°C to 85°C.
FUNCTION TABLE
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
OE
B1
B2
B3
B4
B5
B6
B7
B8
A2
A1
DIR
VCC
SN54HC640 . . . FK PACKAGE
(TOP VIEW)
A3
A4
A5
A6
A7
OE
D
D
4
3 2 1 20 19
18
5
17
6
16
7
15
14
8
B1
B2
B3
B4
B5
9 10 11 12 13
INPUTS
DIR
L
L
B data to A bus
L
H
A data to B bus
H
X
Isolation
A8
GND
B8
B7
B6
OPERATION
OE
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1997, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
logic symbol†
OE
DIR
A1
19
1
2
G3
3 EN1 [BA]
3 EN2 [AB]
18
1
B1
2
A2
A3
A4
A5
A6
A7
A8
3
17
4
16
5
15
6
14
7
13
8
12
9
11
B2
B3
B4
B5
B6
B7
B8
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
logic diagram (positive logic)
OE
DIR
A1
19
1
2
18
To Seven Other Transceivers
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
B1
SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
absolute maximum ratings over operating free-air temperature range†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±35 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±70 mA
Package thermal impedance, θJA (see Note 2): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace
length of zero.
recommended operating conditions
SN54HC640
VCC
Supply voltage
VIH
High-level input voltage
VCC = 2 V
VCC = 4.5 V
VCC = 6 V
VCC = 2 V
VIL
Low-level input voltage
VI
VO
Input voltage
Output voltage
tt
Input transition (rise and fall) time
TA
SN74HC640
MIN
NOM
MAX
MIN
NOM
MAX
2
5
6
2
5
6
1.5
1.5
3.15
3.15
4.2
4.2
0.5
0
0.5
0
1.35
0
1.35
0
1.8
0
1.8
0
0
0
VCC
VCC
0
VCC
VCC
VCC = 2 V
VCC = 4.5 V
0
1000
0
1000
0
500
0
500
VCC = 6 V
0
400
0
400
–55
125
–40
85
Operating free-air temperature
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V
V
0
VCC = 4.5 V
VCC = 6 V
UNIT
V
V
V
ns
°C
3
SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –20 µA
VOH
VI = VIH or VIL
IOH = –6 mA
IOH = –7.8 mA
IOL = 20 µA
VOL
VI = VIH or VIL
IOL = 6 mA
IOL = 7.8 mA
II
IOZ
DIR or OE
A or B
ICC
Ci
VI = VCC or 0
VO = VCC or 0
VI = VCC or 0,
IO = 0
VCC
MIN
TA = 25°C
TYP
MAX
MIN
MAX
SN74HC640
MIN
2V
1.9
1.998
1.9
1.9
4.5 V
4.4
4.499
4.4
4.4
6V
5.9
5.999
5.9
5.9
4.5 V
3.98
4.3
3.7
3.84
6V
5.48
5.8
5.2
MAX
UNIT
V
5.34
2V
0.002
0.1
0.1
0.1
4.5 V
0.001
0.1
0.1
0.1
6V
0.001
0.1
0.1
0.1
4.5 V
0.17
0.26
0.4
0.33
6V
0.15
0.26
0.4
0.33
6V
±0.1
±100
±1000
±1000
nA
6V
±0.01
±0.5
±10
±5
µA
8
160
80
µA
10
10
10
pF
6V
DIR or OE
SN54HC640
2 V to 6 V
3
V
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
SN54HC640
SN74HC640
FROM
(INPUT)
TO
(OUTPUT)
VCC
2V
29
105
160
130
tpd
A or B
B or A
4.5 V
10
21
32
26
ten
tdis
tt
4
TA = 25°C
MIN
TYP
MAX
PARAMETER
OE
OE
A or B
A or B
A or B
MIN
MAX
MIN
MAX
6V
8
18
27
22
2V
109
230
340
290
4.5 V
27
46
68
58
6V
20
39
58
49
2V
40
150
225
190
4.5 V
18
30
45
38
6V
16
26
38
32
2V
20
60
90
75
4.5 V
8
12
18
15
6V
6
10
15
13
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
ns
ns
ns
ns
SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
switching characteristics over recommended operating free-air temperature range, CL = 150 pF
(unless otherwise noted) (see Figure 1)
PARAMETER
tpd
ten
tt
FROM
(INPUT)
A or B
OE
TO
(OUTPUT)
B or A
A or B
A or B
VCC
MIN
TA = 25°C
TYP
MAX
SN54HC640
MIN
MAX
SN74HC640
MIN
MAX
2V
44
190
290
235
4.5 V
14
38
58
47
6V
11
33
49
41
2V
124
315
470
395
4.5 V
31
63
94
79
6V
23
54
80
68
2V
45
210
315
265
4.5 V
17
42
63
53
6V
13
36
53
45
UNIT
ns
ns
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance per transceiver
POST OFFICE BOX 655303
No load
• DALLAS, TEXAS 75265
TYP
40
UNIT
pF
5
SN54HC640, SN74HC640
OCTAL BUS TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCLS303A – JANUARY 1996 – REVISED MAY 1997
PARAMETER MEASUREMENT INFORMATION
VCC
PARAMETER
Test
Point
From Output
Under Test
S1
tPZH
ten
RL
CL
(see Note A)
1 kΩ
tPZL
tPHZ
tdis
S2
RL
1 kΩ
CL
S1
S2
50 pF
or
150 pF
Open
Closed
Closed
Open
Open
Closed
Closed
Open
Open
Open
50 pF
tPLZ
tpd or tt
––
LOAD CIRCUIT
50 pF
or
150 pF
VCC
Input
50%
50%
0V
tPLH
In-Phase
Output
50%
10%
tPHL
90%
VOH
50%
10% V
OL
tf
90%
tr
tPHL
Out-of-Phase
Output
90%
tPLH
50%
10%
50%
10%
90%
VOH
VOL
tf
tr
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES
Output
Control
(Low-Level
Enabling)
VCC
50%
50%
0V
tPZL
Output
Waveform 1
(See Note B)
tPLZ
≈ VCC
50%
10%
≈ VCC
VOL
tPZH
Input
50%
10%
90%
VCC
90%
50%
10% 0 V
tr
Output
Waveform 2
(See Note B)
90%
VOH
≈0V
tPHZ
tf
VOLTAGE WAVEFORM
INPUT RISE AND FALL TIMES
50%
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS
NOTES: A. CL includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns.
D. The outputs are measured one at a time with one input transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1998, Texas Instruments Incorporated