STM32F050x4 STM32F050x6 Low- and medium-density advanced ARM™-based 32-bit MCU with up to 32 Kbytes Flash, timers, ADC and comm. interfaces Datasheet − production data Features ■ Core: ARM 32-bit Cortex™-M0 CPU, frequency up to 48 MHz ■ Memories – 16 to 32 Kbytes of Flash memory – 4 Kbytes of SRAM with HW parity checking ■ CRC calculation unit ■ Reset and supply management – Voltage range: 2.0 V to 3.6 V – Power-on/Power-down reset (POR/PDR) – Programmable voltage detector (PVD) – Low power modes: Sleep, Stop and Standby – VBAT supply for RTC and backup registers LQFP48 7x7 UFQFPN32 5x5 UFQFPN28 4x4 TSSOP20 – 1 x 16-bit timer with 1 IC/OC – Independent and system watchdog timers – SysTick timer: 24-bit downcounter ■ Calendar RTC with alarm and periodic wakeup from Stop/Standby ■ Communication interfaces – 1 x I2C interface; supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, and wakeup from STOP – 1 x USART supporting master synchronous SPI and modem control; one with ISO7816 interface, LIN, IrDA capability auto baud rate detection and wakeup feature – 1 x SPI (18 Mbit/s) with 4 to 16 programmable bit frames, with I2S interface multiplexed ■ Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator ■ Up to 39 fast I/Os – All mappable on external interrupt vectors – Up to 25 I/Os with 5 V tolerant capability ■ Serial wire debug (SWD) ■ 96-bit unique ID ■ 5-channel DMA controller ■ Extended temperature range: -40 to +105°C ■ 1 × 12-bit, 1.0 µs ADC (up to 10 channels) – Conversion range: 0 to 3.6V – Separate analog supply from 2.4 up to 3.6 V ■ Up to 9 timers – 1 x 16-bit 7-channel advanced-control timer for 6 channels PWM output, with deadtime generation and emergency stop – 1 x 32-bit and 1 x 16-bit timer, with up to 4 IC/OC, usable for IR control decoding – 1 x 16-bit timer, with 2 IC/OC, 1 OCN, deadtime generation and emergency stop – 1 x 16-bit timer, with IC/OC and OCN, deadtime generation, emergency stop and modulator gate for IR control November 2012 This is information on a product in full production. Table 1. Reference Device summary Part number STM32F050x4 STM32F050F4, STM32F050G4, STM32F050K4, STM32F050C4 STM32F050x6 STM32F050F6, STM32F050G6, STM32F050K6, STM32F050C6 Doc ID 023683 Rev 1 1/97 www.st.com 1 Contents STM32F050xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 3.11 2/97 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 16 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.2 General-purpose timers (TIM2..3, TIM14..17) . . . . . . . . . . . . . . . . . . . . 18 3.11.3 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.4 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 20 3.13 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver transmitter (USART) . . . 21 3.15 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 22 Doc ID 023683 Rev 1 STM32F050xx 3.16 Contents Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 40 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 40 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.16 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.17 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.19 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Doc ID 023683 Rev 1 3/97 Contents 7 STM32F050xx Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 93 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4/97 Doc ID 023683 Rev 1 STM32F050xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F050xx family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . 10 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 30 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 31 STM32F050x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 40 Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Typical and maximum current consumption from VDD supply at VDD = 3.6 . . . . . . . . . . . 43 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 44 Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 45 Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 45 Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 46 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 48 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Doc ID 023683 Rev 1 5/97 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. 6/97 STM32F050xx NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 WWDG min-max timeout value @48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 85 UFQFPN32 – 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 UFQFPN28 – 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 TSSOP20 – 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 91 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Doc ID 023683 Rev 1 STM32F050xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 UFQFPN32 32-pin package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 UFQFPN28 28-pin package pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 TSSOP20 20-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32F050xx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 HSI14 oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 68 Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 68 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 I2S slave timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 I2S master timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 LQFP48 - 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 85 LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 UFQFPN32 - 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package outline . . . 87 UFQFPN32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 UFQFPN28 - 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package outline . . . 89 UFQFPN28 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Doc ID 023683 Rev 1 7/97 Introduction 1 STM32F050xx Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F050x4 and STM32F050x6 microcontrollers, hereafter referred to as STM32F050xx. This datasheet should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM Cortex™-M0 core, please refer to the Cortex™-M0 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html. 8/97 Doc ID 023683 Rev 1 STM32F050xx 2 Description Description The STM32F050xx family incorporates the high-performance ARM Cortex™-M0 32-bit RISC core operating at a 48 MHz maximum frequency, high-speed embedded memories (Flash memory up to 32 Kbytes and SRAM up to 4 Kbytes), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (one I2C, one SPI, one I2S, and one USART), one 12-bit ADC, up to five general-purpose 16-bit timers, a 32-bit timer and an advanced-control PWM timer. The STM32F050xx family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F050xx family includes devices in five different packages ranging from 20 pins to 48 pins. Depending on the device chosen, different sets of peripherals are included. An overview of the complete range of peripherals proposed in this family is provided. These features make the STM32F050xx microcontroller family suitable for a wide range of applications such as control application and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. Doc ID 023683 Rev 1 9/97 Description Table 2. STM32F050xx STM32F050xx family device features and peripheral counts Peripheral Flash (Kbytes) SRAM (Kbytes) STM32F050Fx 16 32 4 STM32F050Gx 16 32 16 4 Advanced control 1 (16-bit) General purpose 4 (16-bit) 1 (32-bit) SPI (I2S)(1) I C 1 USART 1 GPIOs 1 (9 ext. + 3 int.) 15 23 27 39 2.0 to 3.6 V Ambient operating temperature: -40 °C to 85 °C / -40 °C to 105 °C Junction temperature: -40°C to 105°C / -40 °C to 125 °C TSSOP20 UFQFPN28 1. The SPI interface can be used either in SPI mode or in I2S audio mode. 10/97 4 48 MHz Operating voltage Packages 32 1 (10 ext. + 3 int.) Max. CPU frequency Operating temperature 16 1 2 12-bit synchronized ADC (number of channels) 32 STM32F050Cx 4 Timers Comm. interfaces STM32F050Kx Doc ID 023683 Rev 1 UFQFPN32 LQFP48 STM32F050xx 3ERIAL7IRE $EBUG 6$$ FLASH OBL )NTERFACE 37#,+ 37$!4 AS!& Block diagram .6)# '0$-! CHANNELS "US-ATRIX .6)# 32!- #/24%8-#05 F(#,+-(Z CONTROLLER Figure 1. Description 0/7%2 6/,4 2%' 64/ 6 &,!3( +" BITS 6$$ TO 6 633 6$$ 0/2 2ESET 32! +" 6$$! )NT 3500,9 350%26)3)/. 0/2 0$2 6 $$ 06$ 2#(3-(Z 2#(3-(Z .234 6$$! 6$$! 6$$ 2#,3 84!, /3# -(Z 0,, /3#). 0& /3#/54 0& )7$' 0!;= '0)/PORT! 0";= '0)/PORT" 0#;= '0)/PORT# 0&;= '0)/PORT& !(" DECODER 2%3%4 #,/#+ #/.42/, !("0#,+ !0"0#,+ !$##,+ #%##,+ 53!24#,+ (#,+ &#,+ 0OWER #ONTROLLER 84!, K(Z 24# #2# 6"!4 6 TO 6 637 "ACKUP REG /3#?). /3#?/54 4!-0%224# !,!2- /54 24# INTERFACE 4)-%2 CHANNELS COMPL CHANNELS "2+ %42 INPUT AS !& 4)-%2 CH %42 AS !& 4)-%2 CH %42 AS !& 4)-%2 CHANNEL AS !& 4)-%2 CHANNEL COMPL "2+ AS !& 4)-%2 CHANNEL COMPL "2+ AS !& !(" !0" !& -/3)3$ -)3/-#+ 3#+#+ .3373AS!& %84)4 7+50 )2?/54AS!& 77$' 30))3 $"'-#5 393#&' )& 53!24 )# 2848 #43 243 #+ AS !& 3#,3$!3-"AL M! FOR &- AS !& 4EMP SENSOR !$#?). BIT!$# )& 6$$! 633! 6$$! -36 Doc ID 023683 Rev 1 11/97 Functional overview STM32F050xx 3 Functional overview 3.1 ARM® CortexTM-M0 core with embedded Flash and SRAM The ARM Cortex™-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F050xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features: ● 4 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. ● The non-volatile memory is divided into two arrays: – 16 to 32 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: 3.3 – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected – Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot in RAM selection disabled Boot modes At startup, the boot pin and boot selector option bit are used to select one of three boot options: ● Boot from User Flash ● Boot from System Memory ● Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. 12/97 Doc ID 023683 Rev 1 STM32F050xx 3.4 Functional overview Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes 3.5.2 ● VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. ● VDDA = 2.0 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. ● VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. ● The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. ● The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Doc ID 023683 Rev 1 13/97 Functional overview 3.5.3 STM32F050xx Voltage regulator The regulator has three operating modes: main (MR), low power (LPR) and power down. ● MR is used in normal operating mode (Run) ● LPR can be used in Stop mode where the power demand is reduced ● Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. 3.5.4 Low-power modes The STM32F050xx family supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC alarm, I2C1 or USART1. The I2C1 and the USART1 can be configured to enable the HSI RC oscillator for processing incoming data. If this is used, the voltage regulator should not be put in the low-power mode but kept in normal mode. ● Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pins, or an RTC alarm occurs. Note: 14/97 The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. Doc ID 023683 Rev 1 STM32F050xx 3.6 Functional overview Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. Figure 2. Clock tree &,)4&#,+ TO&LASHPROGRAMMINGINTERFACE (3) TO)# 393#,+ TO)3 -(Z (3) (3)2# (#,+ 0,,32# 0,,-5, 0,, XX X 37 (3) 0,,#,+ (3% !(" !(" PRESCALER 393#,+ #33 /3#?/54 /3#?). /3#?). -(Z (3%/3# -(Z (3) (3)2# ,3%/3# K(Z TO24# ,3% 0#,+ )F!0"PRESCALER XELSEX !$# 0RESCALER 0#,+ 393#,+ (3) ,3% TO!0"PERIPHERALS TO4)- TO!$# -(ZMAX TO53!24 24#3%,;= /3#?/54 ,3)2# K(Z -#/ 24##,+ !0" PRESCALER TO!("BUSCORE MEMORYAND$-! TOCORTEX3YSTEMTIMER &(#,+#ORTEXFREERUNNINGCLOCK -AINCLOCK OUTPUT ,3) 0,,#,+ (3) (3) (3% 393#,+ ,3) ,3% TO)7$' )7$'#,+ -#/ -36 Doc ID 023683 Rev 1 15/97 Functional overview 3.7 STM32F050xx General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.8 Direct memory access controller (DMA) The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. DMA can be used with the main peripherals: SPI, I2S, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F050xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M0) and 4 priority levels. ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail-chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 39 GPIOs can be connected to the 16 external interrupt lines. 16/97 Doc ID 023683 Rev 1 STM32F050xx 3.10 Functional overview Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name 3.10.2 Description Memory address TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF F7B8 - 0x1FFF F7B9 TS_CAL2 TS ADC raw data acquired at temperature of 110 °C VDDA= 3.3 V 0x1FFF F7C2 - 0x1FFF F7C3 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Temperature sensor calibration values Calibration value name VREFINT_CAL Description Raw data acquired at temperature of 30 °C VDDA= 3.3 V Doc ID 023683 Rev 1 Memory address 0x1FFF F7BA - 0x1FFF F7BB 17/97 Functional overview 3.11 STM32F050xx Timers and watchdogs The STM32F050xx family devices include up to six general-purpose timers, one basic timer and an advanced control timer. Table 5 compares the features of the advanced-control, general-purpose and basic timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes TIM2 32-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes General purpose 3.11.1 Capture/compare Complementary channels outputs Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for: ● Input capture ● Output compare ● PWM generation (edge or center-aligned modes) ● One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.11.2 General-purpose timers (TIM2..3, TIM14..17) There are six synchronizable general-purpose timers embedded in the STM32F050xx devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. 18/97 Doc ID 023683 Rev 1 STM32F050xx Functional overview TIM2, TIM3 STM32F050xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining. TIM2 and TIM3 both have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation Their counters can be frozen in debug mode. 3.11.3 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with userdefined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.4 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. Doc ID 023683 Rev 1 19/97 Functional overview 3.11.5 STM32F050xx SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: 3.12 ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source (HCLK or HCLK/8) Real-time clock (RTC) and backup registers The RTC and the 5 backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when VDD power is not present. They are not reset by a system or power reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: ● Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. ● Automatically correction for 28, 29 (leap year), 30, and 31 day of the month. ● Programmable alarm with wake up from Stop and Standby mode capability. ● On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. ● Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. ● 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. ● Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. The RTC clock sources can be: 20/97 ● A 32.768 kHz external crystal ● A resonator or oscillator ● The internal low-power RC oscillator (typical frequency of 40 kHz) ● The high-speed external clock divided by 32. Doc ID 023683 Rev 1 STM32F050xx 3.13 Functional overview Inter-integrated circuit interface (I2C) The I2C interface (I2C1) can operate in multimaster or slave mode. It can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive. It supports 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). It also includes programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match. The I2C interface can be served by the DMA controller. 3.14 Universal synchronous/asynchronous receiver transmitter (USART) The device embeds an universal synchronous/asynchronous receiver transmitters (USART1), which communicates at speeds of up to 6 Mbit/s. It provides hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. It also supports SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing it to wake up the MCU from Stop mode. The USART interface can be served by the DMA controller. Doc ID 023683 Rev 1 21/97 Functional overview 3.15 STM32F050xx Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) The SPI (SPI1) is able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. One standard I2S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency. 3.16 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 22/97 Doc ID 023683 Rev 1 STM32F050xx Pinouts and pin description 6"!4 0# 0#/3#?). 0#/3#?/54 0&/3#?). 0&/3#?/54 .234 633! 6$$! 0! 0! 0! 0" 0! 0" 0" 0" 0" 0" "//4 ,1&0 0& 0& 0! 0! 0! 0! 0! 0! 0" 0" 0" 0" 6$$ 0" 633 0" 0" 0" 0" 0! 0! 0! 0! 0! 0! 0" LQFP48 48-pin package pinout 6$$ 633 Figure 3. -36 UFQFPN32 32-pin package pinout 0" "//4 0" 0" 0" 0" 0" 0! Figure 4. 6$$ 0&/3#?). 0&/3#?/54 .234 6$$! 0! 0! 0! 633 633! 0! 0! 0! 0! 0! 0! 0! 6$$ 0! 0! 0! 0! 0! 0" 0" 0" 4 Pinouts and pin description -36 Doc ID 023683 Rev 1 23/97 Pinouts and pin description UFQFPN28 28-pin package pinout 0" 0" 0" 0" 0" 0! 0! Figure 5. STM32F050xx 0! 0! 0! 0! 6$$ 633 0" 0! 0" 0! 0! 0! 0! 0! "//4 0&/3#?). 0&/3#?/54 .234 6$$! 0! 0! -36 Figure 6. TSSOP20 20-pin package pinout "//4 0&/3#?). 0&/3#?/54 0! 0! 0! 0! 6$$ 633 0" 0! 0! 0! .234 6$$! 0! 0! 0! 0! 0! -36 24/97 Doc ID 023683 Rev 1 STM32F050xx Pinouts and pin description Table 7. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor I/O structure Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate Functions selected through GPIOx_AFR registers functions Pin functions Additional Functions directly selected/enabled through peripheral registers functions Doc ID 023683 Rev 1 25/97 Pinouts and pin description Pin definitions UFQFPN32 UFQFPN28 TSSOP20 1 - - - Pin name (function after reset) Pin type LQFP48 Pin number VBAT S I/O structure Table 8. STM32F050xx Pin functions Notes Alternate functions Additional functions Backup power supply 2 - - - PC13 I/O TC (1)(2) RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2 3 - - - PC14/OSC32_IN (PC14) I/O TC (1)(2) OSC32_IN 4 - - - PC15/OSC32_OUT (PC15) I/O TC (1)(2) OSC32_OUT 5 2 2 2 PF0/OSC_IN (PF0) I/O FT OSC_IN 6 3 3 3 PF1/OSC_OUT (PF1) I/O FT OSC_OUT 7 4 4 4 NRST I/O RST 8 0 - - VSSA S Analog ground 9 5 5 5 VDDA S Analog power supply 10 6 6 6 PA0 I/O TTa TIM2_CH1_ETR, USART1_CTS(3) ADC_IN0, RTC_TAMP2, WKUP1 11 7 7 7 PA1 I/O TTa TIM2_CH2, EVENTOUT, USART1_RTS(3) ADC_IN1 12 8 8 8 PA2 I/O TTa TIM2_CH3, USART1_TX(3) ADC_IN2 13 9 9 9 PA3 I/O TTa TIM2_CH4, USART1_RX(3) ADC_IN3 TTa SPI1_NSS, I2S1_WS, TIM14_CH1, USART1_CK(3) ADC_IN4 TTa SPI1_SCK, I2S1_CK, TIM2_CH1_ETR ADC_IN5 14 15 26/97 10 11 10 11 10 11 PA4 PA5 I/O I/O Doc ID 023683 Rev 1 Device reset input / internal reset output (active low) STM32F050xx Pin definitions (continued) 16 12 12 12 Pin name (function after reset) PA6 Pin type TSSOP20 UFQFPN28 UFQFPN32 LQFP48 Pin number I/O I/O structure Table 8. Pinouts and pin description Pin functions Notes Alternate functions Additional functions TTa SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT ADC_IN6 ADC_IN7 17 13 13 13 PA7 I/O TTa SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT 18 14 14 - PB0 I/O TTa TIM3_CH3, TIM1_CH2N, EVENTOUT ADC_IN8 19 15 15 14 PB1 I/O TTa TIM3_CH4, TIM14_CH1, TIM1_CH3N ADC_IN9 20 16 - - PB2 I/O FT 21 - - - PB10 I/O FTf TIM2_CH3, I2C1_SCL(3) 22 - - - PB11 I/O FTf TIM2_CH4, EVENTOUT, I2C1_SDA(3) 23 0 16 15 VSS S Ground 24 17 17 16 VDD S Digital power supply 25 - - - PB12 I/O FT TIM1_BKIN, EVENTOUT, SPI1_NSS(3) 26 - - - PB13 I/O FT TIM1_CH1N, SPI1_SCK(3) 27 - - - PB14 I/O FT TIM1_CH2N, SPI1_MISO(3) 28 - - - PB15 I/O FT TIM1_CH3N, SPI1_MOSI(3) Doc ID 023683 Rev 1 RTC_REFIN 27/97 Pinouts and pin description Pin definitions (continued) Pin name (function after reset) Pin type TSSOP20 UFQFPN28 UFQFPN32 LQFP48 Pin number I/O structure Table 8. STM32F050xx Pin functions Notes Alternate functions 29 18 18 - PA8 I/O FT USART1_CK, TIM1_CH1, EVENTOUT, MCO 30 19 19 17 PA9 I/O FTf USART1_TX, TIM1_CH2, I2C1_SCL(3) FTf USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA(3) 31 20 20 18 PA10 I/O 32 21 - - PA11 I/O FT USART1_CTS, TIM1_CH4, EVENTOUT 33 22 - - PA12 I/O FT USART1_RTS, TIM1_ETR, EVENTOUT 34 23 21 19 PA13 (SWDAT) I/O FT 35 - - - PF6 I/O FTf I2C1_SCL(3) 36 - - - PF7 I/O FTf I2C1_SDA(3) 37 24 22 20 PA14 (SWCLK) I/O FT 38 39 40 28/97 25 26 27 23 24 25 - - - PA15 PB3 PB4 I/O I/O I/O (4) (4) IR_OUT, SWDAT SWCLK, USART1_TX(3) FT SPI1_NSS, I2S1_WS, TIM2_CH_ETR, EVENTOUT, USART1_RX(3) FT SPI1_SCK, I2S1_CK, TIM2_CH2, EVENTOUT FT SPI1_MISO, I2S1_MCK, TIM3_CH1, EVENTOUT Doc ID 023683 Rev 1 Additional functions STM32F050xx Pin definitions (continued) Pin name (function after reset) Pin type TSSOP20 UFQFPN28 UFQFPN32 LQFP48 Pin number I/O structure Table 8. Pinouts and pin description Pin functions Notes Alternate functions 41 28 26 - PB5 I/O FT SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 42 29 27 - PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N 43 30 28 - PB7 I/O FTf I2C1_SDA, USART1_RX, TIM17_CH1N 44 31 1 1 BOOT0 I B 45 32 - - PB8 I/O FTf I2C1_SCL, TIM16_CH1 FTf I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT Additional functions Boot memory selection 46 - - - PB9 I/O 47 0 - - VSS S Ground 48 1 - - VDD S Digital power supply 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - these GPIOs must not be used as a current sources (e.g. to drive an LED). 2. After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the STM32F05xx reference manual. 3. This alternate feature is available on standard dies only. 4. After reset, these pins are configured as SWDAT and SWCLK alternate functions, and the internal pull-up on SWDAT pin and internal pull-down on SWCLK pin are activated. Doc ID 023683 Rev 1 29/97 Pin name Alternate functions selected through GPIOA_AFR registers for port A AF0 PA0 PA1 EVENTOUT PA2 PA3 AF1 AF2 USART1_CKS(1) TIM2_CH1_ ETR USART1_TX(1) TIM2_CH2 USART1_RX(1) TIM2_CH3 USART1_CTS (1) AF3 AF4 Doc ID 023683 Rev 1 AF6 TIM16_CH1 EVENTOUT TIM17_CH1 EVENTOUT TIM2_CH4 PA4 SPI1_NSS, I2S1_WS PA5 SPI1_SCK, I2S1_CK PA6 SPI1_MISO, I2S1_MCK TIM3_CH1 TIM1_BKIN PA7 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N PA8 MCO USART1_CK TIM1_CH1 USART1_TX TIM1_CH2 I2C1_SCL(1) I2C1_SDA(1) PA9 AF5 USART1_RTS(1) TIM14_CH1 AF7 Pinouts and pin description 30/97 Table 9. TIM2_CH1_ ETR PA10 TIM17_BKIN USART1_RX TIM1_CH3 PA11 EVENTOUT USART1_CTS TIM1_CH4 PA12 EVENTOUT USART1_RTS TIM1_ETR PA13 SWDAT IR_OUT PA14 SWCLK USART1_TX(1) PA15 SPI1_NSS, I2S1_WS USART1_RX(1) TIM2_CH1_ ETR TIM14_CH1 EVENTOUT EVENTOUT 1. This alternate feature is available on standard dies only. STM32F050xx Alternate functions selected through GPIOB_AFR registers for port B Pin name AF0 AF1 AF2 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N PB3 SPI1_SCK, I2S1_CK EVENTOUT TIM2_CH2 PB4 SPI1_MISO, I2S1_MCK TIM3_CH1 EVENTOUT PB5 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM16_BKIN PB6 USART1_TX I2C1_SCL TIM16_CH1N PB7 USART1_RX I2C1_SDA TIM17_CH1N I2C1_SCL TIM16_CH1 I2C1_SDA TIM17_CH1 AF3 STM32F050xx Table 10. PB2 Doc ID 023683 Rev 1 PB8 PB9 IR_OUT PB10 (1) TIM2_CH3 (1) I2C1_SCL PB11 EVENTOUT I2C1_SDA TIM2_CH4 PB12 SPI1_NSS(1) EVENTOUT TIM1_BKIN PB13 (1) SPI1_SCK I2C1_SMBA EVENTOUT TIM1_CH1N PB14 (1) SPI1_MISO TIM1_CH2N PB15 SPI1_MOSI(1) TIM1_CH3N 1. This alternate feature is available on standard dies only. Pinouts and pin description 31/97 Memory mapping 5 STM32F050xx Memory mapping Figure 7. STM32F050xx memory map X&&&&&&&& X&& !(" X% X% X #ORTEX-INTERNAL PERIPHERALS RESERVED X# X&& !(" X RESERVED X! X X&&&&&&& X&&&&# X&&&& X !0" RESERVED X /PTION BYTES RESERVED 3YSTEMMEMORY X X&&&%# !0" X X RESERVED X 0ERIPHERALS X X &LASHMEMORY X 32!X RESERVED #/$% X X &LASHSYSTEMMEMORY OR32!-DEPENDINGON "//4CONFIGURATION X X 2ESERVED -36 32/97 Doc ID 023683 Rev 1 STM32F050xx Memory mapping Table 11. STM32F050x peripheral register boundary addresses Bus Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1KB GPIOF 0x4800 1000 - 0x4800 13FF 1KB Reserved 0x4800 0C00 - 0x4800 0FFF 1KB Reserved 0x4800 0800 - 0x4800 0BFF 1KB GPIOC 0x4800 0400 - 0x4800 07FF 1KB GPIOB 0x4800 0000 - 0x4800 03FF 1KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 4000 - 0x4002 43FF 1KB Reserved 0x4002 3400 - 0x4002 3FFF 3KB Reserved 0x4002 3000 - 0x4002 33FF 1KB CRC 0x4002 2400 - 0x4002 2FFF 3KB Reserved 0x4002 2000 - 0x4002 23FF 1KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3KB Reserved 0x4002 1000 - 0x4002 13FF 1KB RCC 0x4002 0400 - 0x4002 0FFF 3KB Reserved 0x4002 0000 - 0x4002 03FF 1KB DMA 0x4001 8000 - 0x4001 FFFF 32KB Reserved 0x4001 5C00 - 0x4001 7FFF 9KB Reserved 0x4001 5800 - 0x4001 5BFF 1KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3KB Reserved 0x4001 4800 - 0x4001 4BFF 1KB TIM17 0x4001 4400 - 0x4001 47FF 1KB TIM16 0x4001 4000 - 0x4001 43FF 1KB Reserved 0x4001 3C00 - 0x4001 3FFF 1KB Reserved 0x4001 3800 - 0x4001 3BFF 1KB USART1 0x4001 3400 - 0x4001 37FF 1KB Reserved 0x4001 3000 - 0x4001 33FF 1KB SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF 1KB TIM1 0x4001 2800 - 0x4001 2BFF 1KB Reserved 0x4001 2400 - 0x4001 27FF 1KB ADC 0x4001 0800 - 0x4001 23FF 7KB Reserved 0x4001 0400 - 0x4001 07FF 1KB EXTI 0x4001 0000 - 0x4001 03FF 1KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32KB Reserved AHB2 AHB1 APB Doc ID 023683 Rev 1 33/97 Memory mapping STM32F050xx Table 11. STM32F050x peripheral register boundary addresses (continued) Bus Boundary address Size Peripheral 0x4000 7C00 - 0x4000 7FFF 1KB Reserved 0x4000 7800 - 0x4000 7BFF 1KB Reserved 0x4000 7400 - 0x4000 77FF 1KB Reserved 0x4000 7000 - 0x4000 73FF 1KB PWR 0x4000 5C00 - 0x4000 6FFF 5KB Reserved 0x4000 5800 - 0x4000 5BFF 1KB Reserved 0x4000 5400 - 0x4000 57FF 1KB I2C1 0x4000 4800 - 0x4000 53FF 3 KB Reserved 0x4000 4400 - 0x4000 47FF 1KB Reserved 0x4000 3C00 - 0x4000 43FF 2KB Reserved 0x4000 3800 - 0x4000 3BFF 1KB Reserved 0x4000 3400 - 0x4000 37FF 1KB Reserved 0x4000 3000 - 0x4000 33FF 1KB IWDG 0x4000 2C00 - 0x4000 2FFF 1KB WWDG 0x4000 2800 - 0x4000 2BFF 1KB RTC 0x4000 2400 - 0x4000 27FF 1KB Reserved 0x4000 2000 - 0x4000 23FF 1KB TIM14 0x4000 1400 - 0x4000 1FFF 3KB Reserved 0x4000 1000 - 0x4000 13FF 1KB Reserved 0x4000 0800 - 0x4000 0FFF 2KB Reserved 0x4000 0400 - 0x4000 07FF 1KB TIM3 0x4000 0000 - 0x4000 03FF 1KB TIM2 APB 34/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 8. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 9. Figure 8. Pin loading conditions Figure 9. Pin input voltage -#5PIN -#5PIN C = 50 pF 6). -36 Doc ID 023683 Rev 1 -36 35/97 Electrical characteristics 6.1.6 STM32F050xx Power supply scheme Figure 10. Power supply scheme 6"!4 6 "ACKUPCIRCUITRY ,3%24# 7AKEUPLOGIC "ACKUPREGISTERS /54 '0)/S ). ,EVELSHIFTER 0O WERSWI TCH )/ ,OGIC +ERNELLOGIC #05 $IGITAL -EMORIES 6$$ § 6$$ §N& §& 6$$! 2EGULATOR § 633 6$$! 62%& 62%& N& & !$# $!# !NALOG 2#S0,, 633! -36 Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. 6.1.7 Current consumption measurement Figure 11. Current consumption measurement scheme * %%@7#"5 6"!4 )$$ 6$$ )$$! 6$$! -36 36/97 Doc ID 023683 Rev 1 STM32F050xx 6.2 Electrical characteristics Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 12: Voltage characteristics, Table 13: Current characteristics, and Table 14: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 12. Voltage characteristics(1) Symbol VDD–VDDA VIN(2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Ratings Min Max Unit - 0.4 V Input voltage on FT and FTf pins VSS −0.3 VDD + 4.0 V Input voltage on TTa pins VSS −0.3 4.0 V Input voltage on any other pin VSS − 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV Allowed voltage difference for VDD > VDDA Electrostatic discharge voltage (human body model) see Section 6.3.11: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 13: Current characteristics for the maximum allowed injected current values. Table 13. Current characteristics Symbol Ratings Max. IVDD(Σ) Total current into sum of all VDD_x and VDDSDx power lines (source)(1) 120 IVSS(Σ) Total current out of sum of all VSS_x and VSSSD ground lines (sink)(1) -120 IVDD(PIN) Maximum current into each VDD_x or VDDSDx power pin (source)(1) 100 IVSS(PIN) Maximum current out of each VSS_x or VSSSD ground pin (sink)(1) -100 Output current sunk by any I/O and control pin IIO(PIN) ΣIIO(PIN) Output current source by any I/O and control pin IINJ(PIN) - 25 80 Total output current sourced by sum of all IOs and control pins(2) -80 Injected current on TC and RST Injected current on TTa pins ΣIINJ(PIN) 25 Total output current sunk by sum of all IOs and control pins(2) Injected current on FT, FTf and B pins(3) pin(4) (5) Total injected current (sum of all I/O and control pins)(6) Unit mA -5/+0 ±5 ±5 ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. Doc ID 023683 Rev 1 37/97 Electrical characteristics STM32F050xx 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 12: Voltage characteristics for the maximum allowed input voltage values. 5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer also to Table 12: Voltage characteristics for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note (2) below Table 51: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 14. Thermal characteristics Symbol TSTG TJ 38/97 Ratings Storage temperature range Maximum junction temperature Doc ID 023683 Rev 1 Value Unit –65 to +150 °C 150 °C STM32F050xx Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 15. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency 0 48 fPCLK Internal APB clock frequency 0 48 VDD Standard operating voltage 2 3.6 2 3.6 2.4 3.6 1.65 3.6 –0.3 VDD+0.3 –0.3 VDDA+0.3 –0.3 5.5 BOOT0 0 5.5 LQFP48 - 364 - 526 - 169 - 182 VDDA(1) VBAT MHz Analog operating voltage (ADC not used) Analog operating voltage (ADC used) Must have a potential equal to or higher than VDD Backup operating voltage TC I/O TTa I/O VIN PD Unit I/O input voltage (2) FT and FTf I/O Power dissipation at TA = 85 °C UFQFPN32 for suffix 6 or TA = 105 °C for UFQFPN28 suffix 7(3) V V V V mW TSSOP20 Ambient temperature for 6 suffix version Maximum power dissipation –40 85 Low power dissipation(4) –40 105 Ambient temperature for 7 suffix version Maximum power dissipation –40 105 –40 125 6 suffix version –40 105 7 suffix version –40 125 °C TA TJ Low power dissipation (4) °C Junction temperature range °C 1. When the ADC is used, refer to Table 49: ADC characteristics. 2. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled. 3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 14: Thermal characteristics). 4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 14: Thermal characteristics). Doc ID 023683 Rev 1 39/97 Electrical characteristics 6.3.2 STM32F050xx Operating conditions at power-up / power-down The parameters given in Table 16 are derived from tests performed under the ambient temperature condition summarized in Table 15. Table 16. Operating conditions at power-up / power-down Symbol Parameter tVDD tVDDA 6.3.3 Conditions Min Max VDD rise time rate 0 ∞ VDD fall time rate 20 ∞ VDDA rise time rate 0 ∞ VDDA fall time rate 20 ∞ Unit µs/V Embedded reset and power control block characteristics The parameter given in Table 17 is derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. Table 17. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) VPDRhyst (1) tRSTTEMPO(3) Parameter Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge 1.8(2) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V - 40 - mV 1.5 2.5 4.5 ms PDR hysteresis Reset temporization 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Guaranteed by design, not tested in production. Table 18. Symbol 40/97 Programmable voltage detector characteristics Parameter VPVD0 PVD threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 Min(1) Typ Max(1) Unit Rising edge 2.1 2.18 2.26 V Falling edge 2 2.08 2.16 V Rising edge 2.19 2.28 2.37 V Falling edge 2.09 2.18 2.27 V Rising edge 2.28 2.38 2.48 V Falling edge 2.18 2.28 2.38 V Rising edge 2.38 2.48 2.58 V Falling edge 2.28 2.38 2.48 V Rising edge 2.47 2.58 2.69 V Falling edge 2.37 2.48 2.59 V Conditions Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Table 18. Symbol Programmable voltage detector characteristics (continued) Parameter Min(1) Typ Max(1) Unit Rising edge 2.57 2.68 2.79 V Falling edge 2.47 2.58 2.69 V Rising edge 2.66 2.78 2.9 V Falling edge 2.56 2.68 2.8 V Rising edge 2.76 2.88 3 V Falling edge 2.66 2.78 2.9 V Conditions VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 VPVD7 PVD threshold 7 VPVDhyst(2) PVD hysteresis - 100 - mV PVD current consumption - 0.15 0.26 µA IDD(PVD) 1. Data based on characterization results only, not tested in production. 2. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 19 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. Table 19. Symbol Embedded internal reference voltage Parameter VREFINT Internal reference voltage TS_vrefint (2) ADC sampling time when reading the internal reference voltage ΔVREFINT Internal reference voltage spread over the temperature range TCoeff Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.2 1.25 V –40 °C < TA < +85 °C VDDA = 3 V ±10 mV Temperature coefficient 1.16 1.2 1.24(1) V - 5.1 17.1(3) µs - - 10(3) mV - - 100(3) ppm/°C 1. Data based on characterization results, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 3. Guaranteed by design, not tested in production. Doc ID 023683 Rev 1 41/97 Electrical characteristics 6.3.5 STM32F050xx Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 11: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. The data provided apply to standard dies only. Typical and maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except when explicitly mentioned ● The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0 to 24 MHz and 1 wait state above 24 MHz) ● Prefetch is ON when the peripherals are enabled, otherwise it is OFF (to enable prefetch the PRFTBE bit in the FLASH_ACR register must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 20 to Table 26 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 15: General operating conditions. 42/97 Doc ID 023683 Rev 1 STM32F050xx Table 20. Electrical characteristics Typical and maximum current consumption from VDD supply at VDD = 3.6 All peripherals enabled Symbol Parameter Conditions All peripherals disabled Max @ TA(1) fHCLK Typ Max @ TA(1) 25 °C 85 °C 105 °C Supply current in Run mode, executing from Flash External clock (HSE bypass) Internal clock (HSI) IDD Supply current in Run mode, executing from RAM External clock (HSE bypass) Internal clock (HSI) Supply current in Sleep mode, executing from Flash or RAM External clock (HSE bypass) Internal clock (HSI) Unit Typ 25 °C 85 °C 105 °C 48 MHz 18.4 20.0 20.1 20.4 11.4 12.5 12.5 12.6 32 MHz 12.4 13.2 13.2 13.8 7.9 8.3 8.5 8.6 24 MHz 9.9 10.7 10.7 11.0 6.2 6.8 7.0 7.0 8 MHz 3.3 3.6 3.8 3.9 2.2 2.6 2.6 2.6 1 MHz 0.8 1.1 1.1 1.1 0.7 0.9 0.9 0.9 48 MHz 18.9 20.9 21.1 21.5 11.7 12.3 12.9 13.1 32 MHz 12.8 13.7 14.2 14.8 8.0 8.7 9.1 9.1 24 MHz 9.7 10.4 11.2 11.3 6.1 6.5 6.7 6.9 8 MHz 3.5 4.0 4.0 4.1 2.4 2.6 2.7 2.7 48 MHz 17.3 19.7 19.8 20.0 10.3 11.2 11.3 11.7 32 MHz 11.2 12.5 12.7 12.7 6.7 7.3 7.6 7.6 24 MHz 8.9 10.0 10.1 10.2 5.1 5.5 5.8 5.9 8 MHz 2.8 3.1 3.3 3.4 1.7 2.0 2.1 2.1 1 MHz 0.3 0.6 0.6 1.3 0.2 0.5 0.8 0.8 48 MHz 17.4 19.7 20.0 20.2 10.4 11.2 11.3 11.8 32 MHz 11.8 12.8 13.1 13.3 6.8 7.4 7.7 7.9 24 MHz 9.0 10.0 10.1 10.2 5.2 5.7 6.0 6.0 8 MHz 3.0 3.2 3.5 3.6 1.8 2.0 2.2 2.2 48 MHz 10.7 11.7 11.9 12.5 2.4 2.6 2.7 2.9 32 MHz 7.1 7.8 8.1 8.2 1.6 1.7 1.9 1.9 24 MHz 5.5 6.3 6.4 6.4 1.3 1.4 1.5 1.5 8 MHz 1.8 2.0 2.0 2.1 0.4 0.4 0.5 0.5 1 MHz 0.2 0.5 0.5 0.5 0.1 0.1 0.1 0.1 48 MHz 10.8 11.9 12.1 12.6 2.4 2.7 2.7 2.9 32 MHz 7.3 8.0 8.4 8.5 1.7 1.9 1.9 2.0 24 MHz 5.5 6.2 6.5 6.5 1.3 1.5 1.5 1.6 8 MHz 1.9 2.2 2.3 2.4 0.5 0.5 0.5 0.6 Doc ID 023683 Rev 1 mA 43/97 Electrical characteristics Table 21. STM32F050xx Typical and maximum current consumption from the VDDA supply VDDA = 2.4 V Symbol Parameter Conditions (1) VDDA = 3.6 V Max @ TA(2) fHCLK Max @ TA(2) 25 °C HSE bypass, PLL on Supply current in Run mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off IDDA Unit Typ Typ 85 °C 105 °C 25 °C 85 °C 105 °C 48 MHz 150 170 178 182 164 183 195 198 32 MHz 104 121 126 128 113 129 135 138 24 MHz 82 96 100 103 88 102 106 108 8 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 1 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 48 MHz 220 240 248 252 244 263 275 278 32 MHz 174 191 196 198 193 209 215 218 24 MHz 152 167 173 174 168 183 190 192 8 MHz 72 79 82 83 83.5 91 94 95 48 MHz 150 170 178 182 164 183 195 198 32 MHz 104 121 126 128 113 129 135 138 24 MHz 82 96 100 103 88 102 106 108 8 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 1 MHz 2.0 2.7 3.1 3.3 3.5 3.8 4.1 4.4 48 MHz 220 240 248 252 244 263 275 278 32 MHz 174 191 196 198 193 209 215 218 24 MHz 152 167 173 174 168 183 190 192 8 MHz 72 79 82 83 83.5 91 94 95 µA HSE bypass, PLL on Supply current in Sleep mode, code executing from Flash or RAM HSE bypass, PLL off HSI clock, PLL on HSI clock, PLL off 1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the PLL is off, IDDA is independent from the frequency. 2. Data based on characterization results, not tested in production. 44/97 Doc ID 023683 Rev 1 STM32F050xx Table 22. Electrical characteristics Typical and maximum VDD consumption in Stop and Standby modes Symbol Parameter IDD Max(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions Regulator in run mode, all oscillators OFF Supply current in Regulator in low-power Stop mode mode, all oscillators OFF Supply current in Standby mode Typ @VDD (VDD = VDDA) 15 15.1 15.25 15.45 15.7 3.15 3.25 3.35 3.45 3.7 16 18(2) 38 55(2) 4 5.5(2) 22 41(2) Unit µA LSI ON and IWDG ON 0.8 0.95 1.05 1.2 1.35 1.5 - - - LSI OFF and IWDG OFF 0.65 0.75 0.85 0.95 1.1 1.3 2(2) 2.5 3(2) 1. Data based on characterization results, not tested in production unless otherwise specified. 2. Data based on characterization results and tested in production. Table 23. upply current Typical and maximum VDDA consumption in Stop and Standby modes Supply current in Stop mode Supply current in Standby mode Supply current in Standby mode VDDA monitoring OFF IDDA Supply current in Stop mode Max(1) 2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V TA = TA = TA = 25 °C 85 °C 105 °C Conditions VDDA monitoring ON Symbol Parameter Typ @VDD (VDD = VDDA) Regulator in run mode, 1.85 all oscillators OFF 2 2.15 2.3 2.45 2.6 3.5 3.5 4.5 Regulator in low-power mode, all oscillators 1.85 OFF 2 2.15 2.3 2.45 2.6 3.5 3.5 4.5 LSI ON and IWDG ON 2.25 2.5 2.65 2.85 3.05 3.3 - - - LSI OFF and IWDG OFF 1.9 2.5 3.5 3.5 4.5 Regulator in run mode, 1.11 1.15 1.18 1.22 1.27 1.35 all oscillators OFF - - - Regulator in low-power mode, all oscillators 1.11 1.15 1.18 1.22 1.27 1.35 OFF - - - LSI ON and IWDG ON LSI OFF and IWDG OFF 1.75 2 2.15 2.3 Unit µA 1.5 1.58 1.65 1.78 1.91 2.04 - - - 1 1.02 1.05 1.05 1.15 1.22 - - - 1. Data based on characterization results, not tested in production. Doc ID 023683 Rev 1 45/97 Electrical characteristics Table 24. STM32F050xx Typical and maximum current consumption from VBAT supply Max(1) Backup domain IDD_VBAT supply current = 3.6 V = 3.3 V = 2.7 V Conditions = 2.4 V Parameter = 1.8 V Symbol = 1.65 V Typ @ VBAT LSE & RTC ON; “Xtal mode”: lower driving 0.41 0.43 0.53 0.58 0.71 0.80 capability; LSEDRV[1:0] = '00' TA = 25 °C TA = 85 °C TA = 105 °C 0.85 1.1 1.5 Unit µA LSE & RTC ON; “Xtal mode” higher driving 0.71 0.75 0.85 0.91 1.06 1.16 capability; LSEDRV[1:0] = '11' 1.25 1.55 2 1. Data based on characterization results, not tested in production. Typical current consumption The MCU is placed under the following conditions: 46/97 ● VDD=VDDA=3.3 V ● All I/O pins are in analog input configuration ● The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz, 1 wait state above) ● Prefetch is ON when the peripherals are enabled, otherwise it is OFF ● When the peripherals are enabled, fPCLK = fHCLK ● PLL is used for frequencies greater than 8 MHz ● AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively ● A development tool is connected to the board and the parasitic pull-up current is around 30 µA Doc ID 023683 Rev 1 STM32F050xx Table 25. Electrical characteristics Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD Parameter Conditions Supply current in Run mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash IDDA Supply current in Run mode from VDDA supply fHCLK Peripherals enabled Peripherals disabled 48 MHz 18.4 11.4 36 MHz 13.9 8.9 32 MHz 12.4 7.9 24 MHz 9.9 6.2 16 MHz 6.6 4.3 8 MHz 3.3 2.2 4 MHz 1.7 1.6 2 MHz 1.3 1.2 1 MHz 0.8 0.7 500 kHz 0.6 0.6 48 MHz 140 140 36 MHz 109 109 32 MHz 96 96 24 MHz 76 76 16 MHz 51 51 8 MHz 1.7 1.7 4 MHz 1.6 1.6 2 MHz 1.5 1.5 1 MHz 1.1 1.1 500 kHz 1.1 1.1 Doc ID 023683 Rev 1 Unit mA µA 47/97 Electrical characteristics Table 26. STM32F050xx Typical current consumption in Sleep mode, code running from Flash or RAM Typ Symbol IDD Parameter Conditions Supply current in Sleep mode from VDD supply Running from HSE crystal clock 8 MHz, code executing from Flash or RAM IDDA 48/97 Supply current in Sleep mode from VDDA supply fHCLK Peripherals Peripherals enabled disabled 48 MHz 10.7 2.4 36 MHz 8.1 1.8 32 MHz 7.1 1.6 24 MHz 5.5 1.3 16 MHz 3.7 0.9 8 MHz 1.9 0.5 4 MHz 1.5 0.4 2 MHz 1.1 0.3 1 MHz 0.8 0.3 500 kHz 0.6 0.3 125 kHz 0.5 0.3 48 MHz 140 140 36 MHz 109 109 32 MHz 96 96 24 MHz 76 76 16 MHz 51 51 8 MHz 1.7 1.7 4 MHz 1.6 1.6 2 MHz 1.5 1.5 1 MHz 1.1 1.1 500 kHz 1.1 1.1 125 kHz 1.1 1.1 Doc ID 023683 Rev 1 Unit mA µA STM32F050xx Electrical characteristics I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 45: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 28: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DD × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the MCU supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. Doc ID 023683 Rev 1 49/97 Electrical characteristics Table 27. Symbol STM32F050xx Switching output I/O current consumption Parameter Conditions(1) VDD = 3.3 V C =CINT VDD = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS VDD = 3.3 V CEXT = 10 pF C = CINT + CEXT+ CS ISW I/O current consumption VDD = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDD = 3.3 V CEXT = 33 pF C = CINT + CEXT+ CS VDD = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint VDD = 2.4 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint 1. CS = 7 pF (estimated value). 50/97 Doc ID 023683 Rev 1 I/O toggling frequency (fSW) Typ 4 MHz 0.07 8 MHz 0.15 16 MHz 0.31 24 MHz 0.53 48 MHz 0.92 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.32 8 MHz 0.64 16 MHz 1.25 24 MHz 2.23 48 MHz 4.442 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.64 8 MHz 1.25 16 MHz 3.24 24 MHz 5.02 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 4 MHz 0.66 8 MHz 1.43 16 MHz 2.45 24 MHz 4.97 Unit mA STM32F050xx Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 28. The MCU is placed under the following conditions: ● all I/O pins are in input mode with a static value at VDD or VSS (no load) ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 12: Voltage characteristics Table 28. Peripheral current consumption Typical consumption at 25 °C Peripheral Unit IDD IDDA ADC(1) 0.53 0.964 CRC 0.10 - DBGMCU 0.18 - DMA 0.35 - GPIOA 0.48 - GPIOB 0.58 - GPIOC 0.12 - GPIOF 0.06 - I2C1 0.43 - PWR 0.22 - SPI1/I2S1 0.63 - SYSCFG 0.28 TIM1 1.01 - TIM2 1.00 - TIM3 0.78 - TIM6 0.32 - TIM14 0.45 - TIM16 0.57 - TIM17 0.59 - USART1 1.07 - WWDG 0.22 - mA 1. ADC is in ready state after setting the ADEN bit in the ADC_CR register (ADRDY bit in ADC_ISR is high). Doc ID 023683 Rev 1 51/97 Electrical characteristics 6.3.6 STM32F050xx External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 12: High-speed external clock source AC timing diagram. Table 29. High-speed external user clock characteristics Parameter(1) Symbol Conditions Min Typ Max Unit 1 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 12. High-speed external clock source AC timing diagram T7(3%( 6(3%( 6(3%, TR(3% TF(3% T7(3%, T 4(3% -36 52/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.13. However, the recommended clock input waveform is shown in Figure 13. Table 30. Low-speed external user clock characteristics Parameter(1) Symbol Conditions Min Typ Max Unit - 32.768 1000 kHz fLSE_ext User External clock source frequency VLSEH OSC32_IN input pin high level voltage 0.7VDD - VDD VLSEL OSC32_IN input pin low level voltage VSS - 0.3VDD tw(LSEH) tw(LSEL) OSC32_IN high or low time 450 - - tr(LSE) tf(LSE) OSC32_IN rise or fall time - - 50 V ns 1. Guaranteed by design, not tested in production. Figure 13. Low-speed external clock source AC timing diagram T7,3%( 6,3%( 6,3%, TR,3% TF,3% T7,3%, T 4,3% -36 Doc ID 023683 Rev 1 53/97 Electrical characteristics STM32F050xx High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 31. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 31. Symbol fOSC_IN RF HSE oscillator characteristics Parameter Conditions(1) gm tSU(HSE)(4) Typ Max(2) Unit 4 8 32 MHz - 200 - kΩ Oscillator frequency Feedback resistor During startup IDD Min(2) HSE current consumption Oscillator transconductance Startup time (3) - 8.5 VDD=3.3 V, Rm= 30Ω, CL=10 pF@8 MHz - 0.4 - VDD=3.3 V, Rm= 45Ω, CL=10 pF@8 MHz - 0.5 - VDD=3.3 V, Rm= 30Ω, CL=5 pF@32 MHz - 0.8 - VDD=3.3 V, Rm= 30Ω, CL=10 pF@32 MHz - 1 - VDD=3.3 V, Rm= 30Ω, CL=20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: 54/97 For information on electing the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Figure 14. Typical application with an 8 MHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F(3% /3#?). -( Z RESONATOR #, 2%84 2& "IAS CONTROLLED GAIN /3#?/5 4 -36 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 32. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 32. Symbol IDD gm LSE oscillator characteristics (fLSE = 32.768 kHz) Parameter Conditions(1) Min(2) Typ Max(2) Unit LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]= 01 medium low driving capability - - 1 LSEDRV[1:0] = 10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]= 01 medium low driving capability 8 - - LSEDRV[1:0] = 10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDD is stabilized - 2 - LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time µA µA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. Doc ID 023683 Rev 1 55/97 Electrical characteristics STM32F050xx Figure 15. Typical application with a 32.768 kHz crystal 2ESONATORWITH INTEGRATEDCAPACITORS #, F,3% /3#?). $RIVE PROGRAMMABLE AMPLIFIER K( Z RESONATOR #, /3#?/5 4 -36 Note: 56/97 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. Doc ID 023683 Rev 1 STM32F050xx 6.3.7 Electrical characteristics Internal clock source characteristics The parameters given in Table 33 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 15: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 33. HSI oscillator characteristics(1) Symbol fHSI TRIM DuCy(HSI) ACCHSI Parameter Conditions Min Typ Frequency - 8 HSI user trimming step - - 1(2) % - 55(2) % % 45(2) Duty cycle Accuracy of the HSI oscillator (factory calibrated) Max Unit MHz TA = –40 to 105 °C –3.8(3) - 4.6(3) TA = –10 to 85 °C –2.9(3) - 2.9(3) % TA = 0 to 70 °C –2.3(3) - 2.2(3) % –1 - 1 % TA = 25 °C tsu(HSI) HSI oscillator startup time 1(2) - 2(2) µs IDDA(HSI) HSI oscillator power consumption - 80 100(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 16. HSI oscillator accuracy characterization results -!8 -). 4!; #= -36 Doc ID 023683 Rev 1 57/97 Electrical characteristics STM32F050xx High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 34. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Frequency HSI14 user-trimming step Min Typ - 14 - DuCy(HSI14) Duty cycle 45 Accuracy of the HSI14 oscillator (factory calibrated) TA = –10 to 85 °C TA = 25 °C tsu(HSI14) IDDA(HSI14) HSI14 oscillator startup time HSI14 oscillator power consumption % 1 - 55 (2) % (3) - 5.1 % –3.2(3) - 3.1(3) % –2.5 - (3) 2.3 % –1 (3) TA = 0 to 70 °C MHz (3) TA = –40 to 105 °C –4.2 ACCHSI14 Unit (2) - (2) Max - 1 % 1(2) - 2(2) µs - 100 150(2) µA 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. Data based on characterization results, not tested in production. Figure 17. HSI14 oscillator accuracy characterization results -!8 -). 4!; #= -36 58/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Low-speed internal (LSI) RC oscillator Table 35. LSI oscillator characteristics(1) Symbol fLSI Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 µs LSI oscillator power consumption - 0.75 1.2 µA Frequency tsu(LSI)(2) IDDA(LSI) Parameter (2) 1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. Wakeup time from low-power mode The wakeup times given in Table 36 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The event used to wake up the device depends from the current operating mode: ● Stop or sleep mode: the wakeup event is WFE. ● The wakeup pin used in sleep, stop and standby modes is PA0. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. Table 36. Low-power mode wakeup timings Typ @VDD Symbol Parameter Conditions Max Unit = 2.0 V = 2.4 V = 2.7 V tWUSTOP Wakeup from Stop mode =3V = 3.3 V Regulator in run mode 4.2 4.2 4.2 4.2 4.2 5 Regulator in low power mode 8.05 7.05 6.6 6.27 6.05 9 60.35 55.6 53.5 52.02 50.96 1.1 1.1 1.1 1.1 1.1 µs tWUSTANDBY Wakeup from Standby mode tWUSLEEP Wakeup from Sleep mode Doc ID 023683 Rev 1 59/97 Electrical characteristics 6.3.8 STM32F050xx PLL characteristics The parameters given in Table 37 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 15: General operating conditions. Table 37. PLL characteristics Value Symbol Parameter Unit Min Typ Max PLL input clock(1) 1(2) 8.0 24(2) PLL input clock duty cycle 40(2) - fPLL_OUT PLL multiplier output clock 16(2) - 48 MHz tLOCK PLL lock time - - 200(2) µs - 300(2) ps fPLL_IN JitterPLL Cycle-to-cycle jitter - MHz (2) 60 % 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 60/97 Doc ID 023683 Rev 1 STM32F050xx 6.3.9 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 38. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = –40 to +105 °C 40 53.5 60 µs Page (1 KB) erase time TA = –40 to +105 °C 20 - 40 ms tME Mass erase time TA = –40 to +105 °C 20 - 40 ms Write mode - - 10 mA IDD Supply current Erase mode - - 12 mA Symbol tprog tERASE Parameter Conditions 1. Guaranteed by design, not tested in production. Table 39. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Data retention Conditions TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 1 kcycle 10 (2) at TA = 105 °C kcycles(2) at TA = 55 °C Unit Min(1) 10 kcycles Years 20 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 40. They are based on the EMS levels and classes defined in application note AN1709. Doc ID 023683 Rev 1 61/97 Electrical characteristics Table 40. STM32F050xx EMS characteristics Symbol Parameter Level/ Class Conditions VFESD VDD = 3.3 V, LQFP64, TA = +25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 48 MHz induce a functional disturbance conforms to IEC 61000-4-2 2B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP64, TA = +25 °C, fHCLK = 48 MHz conforms to IEC 61000-4-4 3B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 41. Symbol SEMI 62/97 EMI characteristics Parameter Peak level Conditions Monitored frequency band 0.1 to 30 MHz VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz LQFP64 package compliant with IEC 130 MHz to 1GHz 61967-2 SAE EMI Level Doc ID 023683 Rev 1 Max vs. [fHSE/fHCLK] Unit 8/48 MHz -3 28 dBµV 23 4 - STM32F050xx 6.3.11 Electrical characteristics Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 42. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge TA = +25 °C, conforming voltage (human body model) to JESD22-A114 2 2000 VESD(CDM) Electrostatic discharge TA = +25 °C, conforming voltage (charge device model) to JESD22-C101 II 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 43. Symbol LU 6.3.12 Electrical sensitivities Parameter Conditions Static latch-up class TA = +105 °C conforming to JESD78A Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (more than 5 LSB TUE), out of conventional limits of current injection on adjacent pins (more than –5 µA) or other functional failure (reset occurrence or oscillator frequency deviation, for example). Doc ID 023683 Rev 1 63/97 Electrical characteristics STM32F050xx The characterization results are given in Table 44. Table 44. I/O current injection susceptibility Functional susceptibility Symbol IINJ 64/97 Description Unit Negative injection Positive injection Injected current on BOOT0 –0 NA Injected current on all FT and FTf pins with induced leakage current on adjacent pins less than –5 µA –5 NA Injected current on all TTa pins with induced leakage current on adjacent pins less than –5 µA –5 +5 Injected current on all TC & RESET pins with induced leakage current on adjacent pins less than –5 µA –5 +5 Doc ID 023683 Rev 1 mA STM32F050xx 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the conditions summarized in Table 15: General operating conditions. All I/Os are CMOS and TTL compliant. Table 45. Symbol VIL I/O static characteristics Parameter Low level input voltage Conditions High level input voltage Vhys Ilkg RPU Weak pull-up equivalent resistor(3) Unit (1) - 0.3 VDD+0.07 FT and FTf I/O - - 0.475 VDD–0.2(1) BOOT0 - - 0.3 VDD–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDD - - 0.5 VDD+0.2(1) - - +0.95(1) - - 0.445 FT and FTf I/O BOOT0 VDD+0.398(1) 0.2 VDD 0.7 VDD V V - (1) - TC and TTa I/O - 200 FT and FTf I/O - 100(1) - - (1) 300 - VSS ≤VIN ≤VDD I/O TC, FT and FTf - - ±0.1 VSS ≤VIN ≤VDD 2 V≤VDD ≤VDDA ≤3.6 V I/O TTa used in digital mode - - ±0.1 VIN= 5 V I/O FT and FTf - - 10 BOOT0 Input leakage current (2) Max - All I/Os except BOOT0 pin Schmitt trigger hysteresis Typ TC and TTa I/O TC and TTa I/O VIH Min mV µA VIN= 3.6 V, 2 V≤VDD ≤VIN VDDA = 3.6 V I/O TTa used in digital mode - - 1 VSS ≤VIN ≤VDDA 2 V≤VDD ≤VDDA ≤3.6 V I/O TTa used in analog mode - - ±0.2 VIN = VSS 25 40 55 Doc ID 023683 Rev 1 kΩ 65/97 Electrical characteristics Table 45. Symbol STM32F050xx I/O static characteristics (continued) Parameter RPD Weak pull-down equivalent resistor(3) CIO I/O pin capacitance Conditions Min Typ Max Unit VIN = VDD 25 40 55 kΩ - 5 - pF 1. Data based on design simulation only. Not tested in production. 2. Leakage could be higher than maximum value, if negative current is injected on adjacent pins. 3. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). 66/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 18 and Figure 19 for standard I/Os, and in Figure 20 and Figure 21 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. Figure 18. TC and TTa I/O input characteristics - CMOS port VIL/VIH (V) V DD ard tand Ss CMO VIHmin 2.0 nts eme V IHmin = 0.7 ir requ 98 +0.3 45V DD V IHmin = 0.4 0.07 V DD+ = 0.3 V ILmax 1.3 Input range not guaranteed CMOS standard requirements VILmax = 0.3VDD VILmax 0.7 0.6 VDD (V) 2.0 2.7 3.0 3.3 3.6 MS30255V1 Figure 19. TC and TTa I/O input characteristics - TTL port VIL/VIH (V) 98 +0.3 45V DD = 0.4 min TTL standard requirements VIHmin = 2 V V IH VIHmin 2.0 x= V ILma 1.3 0.07 D+ 0.3V D Input range not guaranteed VILmax 0.8 0.7 TTL standard requirements VILmax = 0.8 V VDD (V) 2.0 2.7 3.0 3.3 3.6 MS30256V1 Doc ID 023683 Rev 1 67/97 Electrical characteristics STM32F050xx Figure 20. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port VIL/VIH (V) CMOS standard requirements VIH min= 0.7VDD 2.0 = 0.5 -0.2 75V DD Input range not guaranteed 1.0 0.2 V DD+ V IHmin = 0.4 V ILmax CMOS standard requirements VILmax = 0.3VDD 0.5 VDD (V) 2.0 3.6 MS30257V1 Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port VIL/VIH (V) TTL standard requirements VIHmin = 2 V 2.0 Input range not guaranteed 1.0 0.2 V DD+ V IHmin = 0.5 -0.2 75V DD V ILmin = 0.4 0.8 TTL standard requirements VILmax = 0.8 V 0.5 VDD (V) 2.0 2.7 3.6 MS30258V1 68/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 13: Current characteristics). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 13: Current characteristics). Output voltage levels Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified). Table 46. Symbol Output voltage characteristics Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1)(4) Output low level voltage for an I/O pin VOH(3)(4) Output high level voltage for an I/O pin VOL(1)(4) Output low level voltage for an I/O pin VOH (3)(4) VOLFM+(1) Conditions Min CMOS port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V - 0.4 VDD–0.4 - - 0.4 2.4 - - 1.3 VDD–1.3 - - 0.4 VDD–0.4 - - 0.4 V TTL port(2) IIO =+ 8mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V Output high level voltage for an I/O pin IIO = +6 mA 2 V < VDD < 2.7 V Output low level voltage for an FTf I/O pin in FM+ mode IIO = +20 mA 2.7 V < VDD < 3.6 V Max Unit V V V V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 13: Current characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 13: Current characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Data based on design simulation only. Not tested in production. Doc ID 023683 Rev 1 69/97 Electrical characteristics STM32F050xx Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 22 and Table 47, respectively. Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. Table 47. I/O AC characteristics(1) OSPEEDRy [1:0] value(1) Symbol Parameter fmax(IO)out Maximum frequency(2) x0 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum 11 tf(IO)out tr(IO)out frequency(2) Output high to low level fall time Output low to high level rise time fmax(IO)out Maximum frequency(2) FM+ configuration tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time tEXTIpw Pulse width of external signals detected by the EXTI controller Conditions Min Max Unit - 2 MHz - 125(3) - 125(3) - 10 - 25(3) - 25(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 50 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 CL = 50 pF, VDD = 2 V to 2.7 V - 20 CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V - 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V - 8(3) CL = 50 pF, VDD = 2 V to 2.7 V - 12(3) CL = 50 pF, VDD = 2 V to 3.6 V - 2(3) CL = 50 pF, VDD = 2 V to 3.6 V - 12(3) - 34(3) 10 - CL = 50 pF, VDD = 2 V to 3.6 V CL = 50 pF, VDD = 2 V to 3.6 V CL = 50 pF, VDD = 2 V to 3.6 V ns CL = 50 pF, VDD = 2 V to 3.6 V MHz ns MHz ns MHz ns (4) CL = 50 pF, VDD = 2 V to 3.6 V ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0091 reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 22. 3. Guaranteed by design, not tested in production. 4. When FM+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F05xxx reference manual RM0091 for a detailed description of FM+ I/O configuration. 70/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Figure 22. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) £ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 6.3.14 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 45: I/O static characteristics). Unless otherwise specified, the parameters given in Table 48 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 15: General operating conditions. Table 48. NRST pin characteristics Symbol Min Typ Max –0.3 - 0.8 VIH(NRST)(1) NRST input high level voltage 2 - VDD+0.3 NRST Schmitt trigger voltage hysteresis - 200 - mV 25 40 55 kΩ - - 100 ns 300 - - ns VIL(NRST)(1) Vhys(NRST) RPU Parameter Conditions NRST input low level voltage Weak pull-up equivalent resistor(2) VF(NRST)(1) NRST input filtered pulse VNF(NRST)(1) NRST input not filtered pulse Unit V VIN = VSS 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 23. Recommended NRST pin protection 6$$ %XTERNAL RESETCIRCUIT .234 205 )NTERNAL2ESET &ILTER & -36 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 48. Otherwise the reset will not be taken into account by the device. Doc ID 023683 Rev 1 71/97 Electrical characteristics 6.3.15 STM32F050xx 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 49 are preliminary values derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 15: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 49. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON 2.4 - 3.6 V fADC ADC clock frequency 0.6 - 14 MHz fS(1) Sampling rate 0.05 - 1 MHz - - 823 kHz - - 17 1/fADC 0 - VDDA V - - 50 kΩ fADC = 14 MHz fTRIG(1) External trigger frequency VAIN Conversion voltage range RAIN(1) External input impedance RADC(1) Sampling switch resistance - - 1 kΩ CADC(1) Internal sample and hold capacitor - - 8 pF tCAL(1) Calibration time tlatr(1) JitterADC Trigger conversion latency fADC = 14 MHz 5.9 µs 83 1/fADC fADC = fPCLK/2 = 14 MHz 0.196 µs fADC = fPCLK/2 5.5 1/fPCLK fADC = fPCLK/4 = 12 MHz 0.219 µs fADC = fPCLK/4 10.5 1/fPCLK fADC = fHSI14 = 14 MHz 0.188 - 0.259 µs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 µs 1.5 - 239.5 1/fADC 0 0 1 µs 18 µs ADC jitter on trigger conversion tS(1) Sampling time tSTAB(1) Power-up time tCONV(1) See Equation 1 and Table 50 for details Total conversion time (including sampling time) fADC = 14 MHz 14 to 252 (tS for sampling +12.5 for successive approximation) 1. Guaranteed by design, not tested in production. 72/97 1 Doc ID 023683 Rev 1 1/fADC STM32F050xx Electrical characteristics Equation 1: RAIN max formula TS R AIN < --------------------------------------------------------------- – R ADC N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 50. RAIN max for fADC = 14 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 51. Symbol ADC accuracy(1)(2) (3) Parameter Test conditions Typ Max(4) ±1.3 ±2 ±1 ±1.5 ±0.5 ±1.5 ±0.7 ±1 ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error ±0.8 ±1.5 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 ET Total unadjusted error ±3.3 ±4 EO Offset error ±1.9 ±2.8 EG Gain error ±2.8 ±3 ED Differential linearity error ±0.7 ±1.3 EL Integral linearity error ±1.2 ±1.7 fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 3 V to 3.6 V TA = 25 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.7 V to 3.6 V TA = −40 to 105 °C fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V TA = 25 °C Unit LSB LSB LSB 1. ADC DC accuracy values are measured after internal calibration. Doc ID 023683 Rev 1 73/97 Electrical characteristics STM32F050xx 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.13 does not affect the ADC accuracy. 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Figure 24. ADC accuracy characteristics VDDA 1 LSBIDEAL EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET 7 (1) 6 5 4 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA -36 Figure 25. Typical connection diagram using the ADC 6$$! RAIN(1) VAIN Sample and hold ADC converter VT 0.6 V RADC AINx Cparasitic VT 0.6 V IL±1 μA 12-bit converter CADC -36 1. Refer to Table 49: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 10. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 74/97 Doc ID 023683 Rev 1 STM32F050xx 6.3.16 Electrical characteristics Temperature sensor characteristics Table 52. TS characteristics Symbol Parameter Min Typ Max Unit - ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C V25 Voltage at 25 °C 1.34 1.43 1.52 V tSTART(1) Startup time 4 - 10 µs TS_temp(1)(2) ADC sampling time when reading the temperature 17.1 - - µs TL(1) VSENSE linearity with temperature Avg_Slope (1) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.17 VBAT monitoring characteristics Table 53. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit KΩ R Resistor bridge for VBAT - 50 - Q Ratio on VBAT measurement - 2 - Error on Q –1 - +1 % ADC sampling time when reading the VBAT 1mV accuracy 5 - - µs Er(1) TS_vbat(1)(2) 1. Guaranteed by design, not tested in production. 2. Shortest sampling time can be determined in the application by multiple iterations. 6.3.18 Timer characteristics The parameters given in Table 54 are guaranteed by design. Refer to Section 6.3.13: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 54. Symbol tres(TIM) fEXT ResTIM TIMx(1) characteristics Parameter Conditions Min Max Unit 1 - tTIMxCLK 20.8 - ns 0 fTIMxCLK/2 MHz 0 24 MHz TIMx (except TIM2) - 16 TIM2 - 32 Timer resolution time fTIMxCLK = 48 MHz Timer external clock frequency on CH1 to CH4 f TIMxCLK = 48 MHz Timer resolution bit Doc ID 023683 Rev 1 75/97 Electrical characteristics Table 54. STM32F050xx TIMx(1) characteristics (continued) Symbol Parameter tCOUNTER 16-bit counter clock period tMAX_COUNT Conditions fTIMxCLK = 48 MHz Maximum possible count with 32-bit counter fTIMxCLK = 48 MHz Min Max Unit 1 65536 tTIMxCLK 0.0208 1365 µs - 65536 × 65536 tTIMxCLK - 89.48 s 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM6, TIM14, TIM15, TIM16 and TIM17 timers. Table 55. IWDG min/max timeout period at 40 kHz (LSI) (1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 56. WWDG min-max timeout value @48 MHz (PCLK) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms 76/97 Doc ID 023683 Rev 1 STM32F050xx 6.3.19 Electrical characteristics Communication interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature, fPCLK frequency and VDD supply voltage conditions summarized in Table 15: General operating conditions. The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 57. Refer also to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 57. I2C characteristics(1) Standard mode Symbol Fast mode Fast Mode Plus Parameter Unit Min Max Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 - tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 - tsu(SDA) SDA setup time 250 - 100 - 50 - th(SDA) SDA data hold time 0(3) 3450(2) 0(3) 900(2) 0(4) 450(2) tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 - 120 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 - 120 th(STA) Start condition hold time 4.0 - 0.6 - 0.26 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - 0.26 - tsu(STO) Stop condition setup time 4.0 - 0.6 - 0.26 - μs tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - 0.5 - μs Cb Capacitive load for each bus line - 400 - 400 - 550 pF µs ns µs 1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production. 2. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. 3. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The device must internally provide a hold time of at least 120ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. Doc ID 023683 Rev 1 77/97 Electrical characteristics Table 58. STM32F050xx I2C analog filter characteristics(1) Symbol tSP Parameter Pulse width of spikes that are suppressed by the analog filter Min Max Unit 50 260 ns 1. Guaranteed by design, not tested in production. Figure 26. I2C bus AC waveforms and measurement circuit 6$$ 6$$ 2 2 -#5 Ω 3$! )#BUS Ω 3#, 3 4!242%0%!4%$ 3 4!24 3 4!24 TSU34! 3$! TF3$! TR3$! TH34! 3#, TW3#,( TSU3$! TW3#,, TR3#, TH3$! 3 4/0 TF3#, TW34/34! TSU34/ -36 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. SPI/I2S characteristics Unless otherwise specified, the parameters given in Table 59 for SPI or in Table 60 for I2S are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 15: General operating conditions. Refer to Section 6.3.13: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S). 78/97 Doc ID 023683 Rev 1 STM32F050xx Table 59. Symbol Electrical characteristics SPI characteristics Min Max Master mode - 18 Slave mode - 18 SPI clock rise and fall time Capacitive load: C = 15 pF - 6 tsu(NSS)(1) NSS setup time Slave mode 4Tpclk - th(NSS)(1) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - fSCK 1/tc(SCK) tr(SCK) tf(SCK) Parameter SPI clock frequency (1) tw(SCKH) tw(SCKL)(1) tsu(MI) (1) tsu(SI)(1) th(MI) MHz Data input hold time ta(SO)(1)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(1)(3) Data output disable time Slave mode 0 18 (1) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO)(1) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - 25 75 tv(SO) th(SO) (1) th(MO) (1) DuCy(SCK) Unit ns Data input setup time (1) th(SI)(1) Conditions ns Data output hold time SPI slave input clock duty Slave mode cycle % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z Doc ID 023683 Rev 1 79/97 Electrical characteristics STM32F050xx Figure 27. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 28. SPI timing diagram - slave mode and CPHA = 1(1) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 80/97 Doc ID 023683 Rev 1 STM32F050xx Electrical characteristics Figure 29. SPI timing diagram - master mode(1) High NSS input SCK Output SCK Output tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Doc ID 023683 Rev 1 81/97 Electrical characteristics STM32F050xx I2S characteristics Table 60. Symbol fCK 1/tc(CK) Parameter I2S clock frequency Conditions Master mode (data: 16 bits, Audio frequency = 48 kHz) Slave mode 2 I S clock rise time tr(CK) 2 I S clock fall time tf(CK) tw(CKH) (1) I2S clock high time Capacitive load CL = 15 pF Min Max 1.597 1.601 MHz 0 6.5 - 10 - 12 306 - 312 - I2S clock low time Master fPCLK= 16 MHz, audio frequency = 48 kHz (1) WS valid time Master mode 2 - th(WS) (1) WS hold time Master mode 2 - tsu(WS) (1) WS setup time Slave mode 7 - WS hold time Slave mode 0 - DuCy(SCK) I2S slave input clock duty cycle Slave mode 25 75 tsu(SD_MR) (1) Data input setup time Master receiver 6 - (1) Data input setup time Slave receiver 2 - Master receiver 4 - 0.5 - tw(CKL) tv(WS) th(WS) (1) ns (1) tsu(SD_SR) th(SD_MR)(1)(2) th(SD_SR) (1)(2) % Data input hold time Slave receiver tv(SD_ST) (1)(2) Data output valid time Slave transmitter (after enable edge) - 20 th(SD_ST) (1) Data output hold time Slave transmitter (after enable edge) 13 - tv(SD_MT) (1)(2) Data output valid time Master transmitter (after enable edge) - 4 th(SD_MT) (1) Data output hold time Master transmitter (after enable edge) 0 - 1. Data based on design simulation and/or characterization results, not tested in production. 2. Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPLCLK =125 ns. 82/97 Unit Doc ID 023683 Rev 1 ns STM32F050xx Electrical characteristics Figure 30. I2S slave timing diagram (Philips protocol) CK Input tc(CK) CPOL = 0 CPOL = 1 tw(CKH) th(WS) tw(CKL) WS input tv(SD_ST) tsu(WS) SDtransmit LSB transmit(2) MSB transmit Bitn transmit tsu(SD_SR) LSB receive(2) SDreceive th(SD_ST) LSB transmit th(SD_SR) MSB receive Bitn receive LSB receive ai14881b 1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 31. I2S master timing diagram (Philips protocol) tf(CK) tr(CK) CK output tc(CK) CPOL = 0 tw(CKH) CPOL = 1 tv(WS) th(WS) tw(CKL) WS output tv(SD_MT) SDtransmit LSB transmit(2) MSB transmit LSB receive(2) LSB transmit th(SD_MR) tsu(SD_MR) SDreceive Bitn transmit th(SD_MT) MSB receive Bitn receive LSB receive ai14884b 1. Data based on characterization results, not tested in production. 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Doc ID 023683 Rev 1 83/97 Package characteristics STM32F050xx 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 84/97 Doc ID 023683 Rev 1 STM32F050xx Package characteristics Figure 32. LQFP48 - 7 x 7 mm, 48-pin low-profile quad flat package outline D ccc C D1 D3 A A2 25 36 24 37 L1 b E3 E1 E 48 Pin 1 identification 13 1 L A1 K c 12 5B_ME 1. Drawing is not to scale. Table 61. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.600 A1 0.050 A2 1.350 b 0.170 c 0.090 D 8.800 D1 6.800 D3 Max 0.0630 0.150 0.0020 1.400 1.450 0.0531 0.0551 0.0571 0.220 0.270 0.0067 0.0087 0.0106 0.200 0.0035 9.000 9.200 0.3465 0.3543 0.3622 7.000 7.200 0.2677 0.2756 0.2835 5.500 0.0059 0.0079 0.2165 E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 5.500 0.2165 e 0.500 0.0197 L 0.450 L1 k ccc 0.600 0.750 0.0177 1.000 0° 3.5° 0.0236 0.0295 0.0394 7° 0.080 0° 3.5° 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 023683 Rev 1 85/97 Package characteristics STM32F050xx Figure 33. LQFP48 recommended footprint 0.50 1.20 9.70 0.30 25 36 37 24 0.20 7.30 5.80 7.30 48 13 12 1 1.20 5.80 9.70 ai14911b 1. Drawing is not to scale. 2. Dimensions are in millimeters. 86/97 Doc ID 023683 Rev 1 STM32F050xx Package characteristics Figure 34. UFQFPN32 - 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package outline Seating plane C ddd C A A1 A3 D e 16 9 17 8 E b E2 24 1 L 32 Pin # 1 ID R = 0.30 D2 L Bottom view A0B8_ME 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in Table 8: Pin definitions. Table 62. UFQFPN32 – 5 x 5 mm, 32-lead ultra thin fine pitch quad flat no-lead package mechanical data inches(1) millimeters Dim. Min Typ Max Min Typ Max A 0.5 0.55 0.6 0.0197 0.0217 0.0236 A1 0.00 0.02 0.05 0 0.0008 0.0020 A3 0.152 0.006 b 0.18 0.23 0.28 0.0071 0.0091 0.0110 D 4.90 5.00 5.10 0.1929 0.1969 0.2008 D2 3.50 0.1378 E 4.90 5.00 5.10 0.1929 0.1969 0.2008 E2 3.40 3.50 3.60 0.1339 0.1378 0.1417 e L ddd 0.500 0.30 0.40 0.0197 0.50 0.08 0.0118 0.0157 0.0197 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 023683 Rev 1 87/97 Package characteristics STM32F050xx Figure 35. UFQFPN32 recommended footprint 1. Drawing is not to scale. 2. Dimensions are in millimeters. 88/97 Doc ID 023683 Rev 1 STM32F050xx Package characteristics Figure 36. UFQFPN28 - 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package outline $ " $ ! 3EATING 0LANE #OX 0INCORNER % % , , 0IN)$ $ETAIL: $ETAIL: E 4 2O4YP ! ! 3EATING 0LANE B !"?-%?6 1. Drawing is not to scale. 2. Dimensions are in millimeters. 3. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. Table 63. X UFQFPN28 – 4 x 4 mm, 28-lead ultra thin fine pitch quad flat no-lead package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.5 0.55 0.6 0.0197 0.0217 0.0236 A1 -0.05 0 0.05 -0.002 0 0.002 D 3.9 4 4.1 0.1535 0.1575 0.1614 D1 2.9 3 3.1 0.1142 0.1181 0.122 E 3.9 4 4.1 0.1535 0.1575 0.1614 E1 2.9 3 3.1 0.1142 0.1181 0.122 L 0.3 0.4 0.5 0.0118 0.0157 0.0197 L1 0.25 0.35 0.45 0.0098 0.0138 0.0177 T b e 0.152 0.2 0.25 0.006 0.3 0.5 0.0079 0.0098 0.0118 0.0197 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 023683 Rev 1 89/97 Package characteristics STM32F050xx Figure 37. UFQFPN28 recommended footprint 1. Dimensions are in millimeters 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 90/97 Doc ID 023683 Rev 1 !"?-%?&0 STM32F050xx Package characteristics Figure 38. TSSOP20 - 20-pin thin shrink small outline $ C % % K AAA #0 , ! ! ! , B E 9!?-% 1. Drawing is not to scale. Table 64. TSSOP20 – 20-pin thin shrink small outline package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.2 A1 0.05 A2 0.8 b 0.0472 0.15 0.002 1.05 0.0315 0.19 0.3 0.0075 0.0118 c 0.09 0.2 0.0035 0.0079 D 6.4 6.5 6.6 0.252 0.2559 0.2598 E 6.2 6.4 6.6 0.2441 0.252 0.2598 E1 4.3 4.4 4.5 0.1693 0.1732 0.1772 e L 0.65 0.45 L1 k aaa 1 0.6 0.0394 0.0413 0.0256 0.75 0.0177 1 0.0° 0.0059 0.0236 0.0295 0.0394 8.0° 0.1 0.0° 8.0° 0.0039 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 023683 Rev 1 91/97 Package characteristics STM32F050xx Figure 39. TSSOP20 recommended footprint 1. Dimensions are in millimeters 92/97 Doc ID 023683 Rev 1 STM32F050xx 7.2 Package characteristics Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 15: General operating conditions on page 39. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: ● TA max is the maximum ambient temperature in °C, ● ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 65. Package thermal characteristics Symbol ΘJA 7.2.1 Parameter Value Thermal resistance junction-ambient LQFP48 - 7 × 7 mm 55 Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm 38 Unit °C/W Thermal resistance junction-ambient UFQFPN28 - 4 × 4 mm 118 Thermal resistance junction-ambient TSSOP20 110 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 7.2.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 8: Part numbering. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F05xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Doc ID 023683 Rev 1 93/97 Package characteristics STM32F050xx Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 80 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Using the values obtained in Table 65 TJmax is calculated as follows: – For LQFP48, 55 °C/W TJmax = 80 °C + (55°C/W × 447 mW) = 80 °C + 24.585 °C = 104.585 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C) see Table 15: General operating conditions on page 39. In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 8: Part numbering). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (55°C/W × 447 mW) = 105-24.585 = 80.415 °C Suffix 7: TAmax = TJmax - (55°C/W × 447 mW) = 125-24.585 = 100.415 °C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 100 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Using the values obtained in Table 65 TJmax is calculated as follows: – For LQFP48, 55 °C/W TJmax = 100 °C + (55 °C/W × 134 mW) = 100 °C + 7.37 °C = 107.37 °C This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Section 8: Part numbering) unless we reduce the power dissipation in order to be able to use suffix 6 parts. 94/97 Doc ID 023683 Rev 1 STM32F050xx 8 Part numbering Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. Example: STM32 F 050 C 6 T 6 A x Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 050 = STM32F050xx Pin count F = 20 pins G = 28 pins K = 32 pins C = 48 pins Code size 4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory Package P = TSSOP U = UFQFPN T = LQFP Temperature range 6 = –40 °C to +85 °C 7 = –40 °C to +105 °C Internal code A = non-optimized die Blank = standard die Options xxx = programmed parts TR = tape and real Doc ID 023683 Rev 1 95/97 Revision history 9 STM32F050xx Revision history Table 66. 96/97 Document revision history Date Revision 22-Nov-2012 1 Changes Initial release Doc ID 023683 Rev 1 STM32F050xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 023683 Rev 1 97/97