STM32F101x6 STM32F101x8 STM32F101xB Access line, advanced ARM-based 32-bit MCU with Flash memory, six 16-bit timers, ADC and seven communication interfaces Preliminary Data Features ■ ■ ■ ■ ■ Core: ARM 32-bit Cortex™-M3 CPU – 36 MHz, 45 DMIPS with 1.25 DMIPS/MHz – Single-cycle multiplication and hardware division – Nested interrupt controller with 43 maskable interrupt channels – Interrupt processing (down to 6 CPU cycles) with tail chaining Memories – 32-to-128 Kbytes of Flash memory – 6-to-16 Kbytes of SRAM Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage detector (PVD) – 4-to-16 MHz high-speed quartz oscillator – Internal 8 MHz factory-trimmed RC – Internal 32 kHz RC – PLL for CPU clock – Dedicated 32 kHz oscillator for RTC with calibration Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers LQFP48 7 x 7 mm DMA – 7-channel DMA controller – Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs ■ 12-bit, 1 µs A/D converter (16-channel) – Conversion range: 0 to 3.6 V July 2007 LQFP100 14 x 14 mm – Temperature sensor ■ Up to 80 fast I/O ports – 32/49/80 5 V-tolerant I/Os – All mappable on 16 external interrupt vectors – Atomic read/modify/write operations ■ Up to 6 timers – Up to three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter – 2 x 16-bit watchdog timers (Independent and Window) – SysTick timer: 24-bit downcounter ■ Up to 7 communication interfaces – Up to 2 x I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 2 SPIs (18 Mbit/s) Table 1. Debug mode – Serial wire debug (SWD) and JTAG interfaces ■ LQFP64 10 x 10 mm Device summary Reference Root part number STM32F101x6 STM32F101C6, STM32F101R6 STM32F101x8 STM32F101C8, STM32F101R8 STM32F101V8 STM32F101xB STM32F101RB, STM32F101VB Rev 2 This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice. 1/64 www.st.com 1 Contents STM32F101xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1 2/64 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 26 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 27 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5.3.7 Internal Clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 40 5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F101xx 6 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.1 8 5.3.14 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1 7 Contents Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3/64 List of tables STM32F101xx List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. 4/64 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Device features and peripheral counts (STM32F101xx access line) . . . . . . . . . . . . . . . . . . 7 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 27 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Maximum current consumption in Run and Sleep modes (TA = 85 °C) . . . . . . . . . . . . . . . 28 Maximum current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . 29 Typical current consumption in Run and Sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Typical current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . 31 High-speed user external (HSE) clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flash endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 ADC accuracy (fPCLK2 = 10 MHz, fADC = 10 MHz, RAIN < 10 kΩ, VDDA = 3.3 V) . . . . . . . . 55 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 58 LQFP64 – 64-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 59 LQFP48 – 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 60 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 STM32F101xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. STM32F101xx access line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 STM32F101xx access line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM32F101xx access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F101xx access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Unused I/O pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 SPI timing diagram - slave mode and CPHA=11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 56 Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . . 56 LQPF100 – 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . 58 LQFP64 – 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 LQFP48 – 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5/64 Introduction 1 STM32F101xx Introduction This datasheet contains the description of the STM32F101xx access line family features, pinout, Electrical Characteristics, Mechanical Data and Ordering information. For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F10x Flash Programming Reference Manual For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual. 2 Description The STM32F101xx access line family incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash memory up to 128Kbytes and SRAM up to 16 Kbytes), and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (two I2Cs, two SPIs, and up to three USARTs), one 12-bit ADC and three general purpose 16-bit timers. The STM32F101 family operates in the −40 to +85°C temperature range, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows to design low-power applications. The complete STM32F101xx access line family includes devices in 3 different package types: from 48 pins to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F101xx access line microcontroller family suitable for a wide range of applications: ● Application control and user interface ● Medical and handheld equipment ● PC peripherals, gaming and GPS platforms ● Industrial applications: PLC, inverters, printers, and scanners ● Alarm systems, Video intercom, and HVAC Figure 1 shows the general block diagram of the device family. 6/64 STM32F101xx Device overview Table 2. Device features and peripheral counts (STM32F101xx access line) Peripheral STM32F101Cx STM32F101Rx STM32F101Vx Flash - Kbytes 32 64 32 64 128 64 128 SRAM - Kbytes 6 10 6 10 16 10 16 General purpose 2 3 SPI 1 2 1 2 2 I C 1 2 1 2 2 USART 2 3 2 3 3 Communication Timers 2.1 Description 2 12-bit synchronized ADC number of channels GPIOs 1 10 channels 32 CPU frequency 3 1 16 channels 49 80 36 MHz Operating voltage 2.0 to 3.6 V Operating temperature Packages 3 -40 to +85 °C LQFP48 LQFP64 LQFP100 7/64 Description 2.2 STM32F101xx Overview ARM® CortexTM-M3 core with embedded Flash and SRAM The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F101xx access line family having an embedded ARM core, is therefore compatible with all ARM tools and software. Embedded Flash memory Up to 128 Kbytes of embedded Flash is available for storing programs and data. Embedded SRAM Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. Nested vectored interrupt controller (NVIC) The STM32F101xx access line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels. ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail-chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 8/64 STM32F101xx Description External interrupt/event controller (EXTI) The external interrupt/event controller consists of 19 edge detectors lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect external line with pulse width lower than the Internal APB2 clock period. Up to 80 GPIOs are connected to the 16 external interrupt lines. Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected and is monitored for failure. During such a scenario, it is disabled and software interrupt management follows. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator). Several prescalers allow the configuration of the AHB frequency, the High Speed APB (APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 36 MHz. Boot modes At startup, boot pins are used to select one of five boot options: ● Boot from User Flash ● Boot from System Memory ● Boot from SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using the USART. Power supply schemes ● VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through VDD pins. ● VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs and PLL. In VDD range (ADC is limited at 2.4 V). ● VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded Programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 9: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD. 9/64 Description STM32F101xx Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. ● MR is used in the nominal regulation mode (Run) ● LPR is used in the Stop modes ● Power down is used in Standby Mode: the regulator output is in high impedance: the kernel circuitry is powered-down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after RESET. It is disabled in Standby Mode, providing high impedance output. Low-power modes The STM32F101xx access line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode allows to achieve the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE RC oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. ● Standby mode The Standby mode allows to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI and the HSE RC oscillators are also switched off. After entering Standby mode, SRAM and registers content are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. DMA The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general purpose timers TIMx and ADC. 10/64 STM32F101xx Description RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers (ten 16-bit registers) can be used to store data when VDD power is not present. The Real-Time Clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by an external 32.768 kHz oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512Hz output to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application time out management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source General purpose timers (TIMx) There are up to 3 synchronizable standard timers embedded in the STM32F101xx access line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture, output compare, PWM or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on the largest packages. They can work together via the Timer Link feature for synchronization or event chaining. The counter can be frozen in debug mode. Any of the standard timers can be used to generate PWM outputs. Each of the timers has independent DMA request generations. 11/64 Description STM32F101xx I²C bus Up to two I²C bus interfaces can operate in multi-master and slave modes. They can support standard and fast modes. They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. They can be served by DMA and they support SM Bus 2.0/PM Bus. Universal synchronous/asynchronous receiver transmitter (USART) The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable from 8-bit to 16-bit. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller. GPIOs (general purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high currentcapable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. ADC (analog to digital converter) The 12-bit Analog to Digital Converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. Temperature sensor The temperature sensor has to generate a linear voltage with any variation in temperature. The conversion range is between 2V < VDDA < 3.6V. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. 12/64 STM32F101xx Description Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. STM32F101xx access line block diagram Ibus Cortex M3 CPU Fmax: 36 MHz NVIC NVIC Dbus System AHB:Fmax=36 MHz 7 channels SUPPLY SUPERVISION NRST VDDA VSSA POR / PDR Rst PVD Int PCLK1 PCLK2 HCLK FCLK @VDD PLL & CLOCK MANAGT PB[15:0] GPIOB PC[15:0] GPIOC PD[15:0] GPIOD PE[15:0] GPIOE MOSI,MISO, SCK,NSS as AF SPI1 XTAL OSC 4-16 MHz OSC_IN OSC_OUT RC 8 MHz IWDG RC 32 kHz Standby interface @VDDA VBAT @VBAT RTC AWU AHB2 APB1 Backup reg OSC32_IN OSC32_OUT ANTI_TAMP Backup interface APB2 : Fmax= 36 MHz GPIOA VDD = 2 to 3.6V VSS @VDD 64 bit EXTI WAKEUP PA[15:0] RX,TX, CTS, RTS, SmartCard as AF FLASH 128 KB XTAL 32 kHz AHB2 APB2 80AF VOLT. REG. 3.3V TO 1.8V SRAM 16 KB GP DMA @VDDA POWER APB1 : Fmax=24 / 36 MHz JNTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF Trace Controller pbus Flash obl Interface JTAG & SWD BusMatrix Figure 1. TIM2 4 Channels TIM3 4 Channels TIM4 4 Channels USART2 RX,TX, CTS, RTS, SmartCard as AF USART3 RX,TX, CTS, RTS, SmartCard as AF 2x(8x16bit)SPI2 MOSI,MISO,SCK,NSS as AF I2C1 SCL,SDA,SMBAL as AF I2C2 SCL,SDA as AF USART1 @VDDA 16AF VREF+ 12bit ADC1 IF WWDG VREFTemp sensor ai14385 1. AF = alternate function on I/O port pin. 2. TA = –40 °C to +85 °C (junction temperature up to 125 °C). 13/64 Pin descriptions 3 STM32F101xx Pin descriptions STM32F101xx access line LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 2. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PE2 PE3 PE4 PE5 PE6 VBAT PC13-ANTI_TAMP PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14386 14/64 STM32F101xx STM32F101xx access line LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 3. Pin descriptions 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 VBAT PC13-ANTI_TAMP PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 ai14387 VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PA15 PA14 STM32F101xx access line LQFP48 pinout VBAT PC13-ANTI_TAMP PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST VSSA VDDA PA0-WKUP PA1 PA2 48 47 46 45 44 43 42 41 40 39 38 37 36 1 2 35 3 34 33 4 32 5 31 6 LQFP48 30 7 29 8 28 9 27 10 26 11 25 12 13 14 15 16 17 18 19 20 21 22 23 24 PA3 PA4 PA5 PA6 PA7 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 Figure 4. VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PB15 PB14 PB13 PB12 ai14378 15/64 Pin descriptions Table 3. STM32F101xx Pin definitions LQFP48 LQFP64 LQFP100 Type(1) I / O level(2) Pins Main function(3) (after reset) - - 1 PE2/TRACECK I/O FT PE2 TRACECK - - 2 PE3/TRACED0 I/O FT PE3 TRACED0 - - 3 PE4/TRACED1 I/O FT PE4 TRACED1 - - 4 PE5/TRACED2 I/O FT PE5 TRACED2 - - 5 PE6/TRACED3 I/O FT PE6 TRACED3 1 1 6 VBAT S VBAT 2 2 7 PC13-ANTI_TAMP(4) I/O PC13 3 3 8 PC14-OSC32_IN(4) I/O PC14OSC32_IN 4 4 9 PC15-OSC32_OUT(4) I/O PC15OSC32_OUT - - 10 VSS_5 S VSS_5 - - 11 VDD_5 S VDD_5 5 5 12 OSC_IN I OSC_IN 6 6 13 OSC_OUT O OSC_OUT 7 7 14 NRST I/O NRST - 8 15 PC0/ADC_IN10 I/O PC0 ADC_IN10 - 9 16 PC1/ADC_IN11 I/O PC1 ADC_IN11 - 10 17 PC2/ADC_IN12 I/O PC2 ADC_IN12 - 11 18 PC3/ADC_IN13 I/O PC3 ADC_IN13 8 12 19 VSSA S VSSA - - 20 VREF- S VREF- - - 21 VREF+ S VREF+ 9 13 22 VDDA S VDDA 10 14 23 PA0-WKUP/USART2_CTS/ ADC_IN0/TIM2_CH1_ETR I/O PA0 WKUP/USART2_CTS(7)/ ADC_IN0/ TIM2_CH1_ETR(7) 11 15 24 PA1/USART2_RTS/ADC_ IN1/TIM2_CH2 I/O PA1 USART2_RTS(7)/ADC_IN1/ TIM2_CH2(7) 12 16 25 PA2/USART2_TX/ADC_IN2/ TIM2_CH3 I/O PA2 USART2_TX(7)/ADC_IN2/ TIM2_CH3(7) 13 17 26 PA3/USART2_RX/ADC_IN3/ TIM2_CH4 I/O PA3 USART2_RX(7)/ADC_IN3/ TIM2_CH4(7) - 18 27 VSS_4 S VSS_4 - 19 28 VDD_4 S VDD_4 16/64 Pin name Default alternate functions(3) ANTI_TAMP STM32F101xx Pin definitions (continued) LQFP100 Default alternate functions(3) LQFP64 Main function(3) (after reset) LQFP48 Pin name Type(1) Pins I / O level(2) Table 3. Pin descriptions 14 20 29 PA4/SPI1_NSS/ USART2_CK/ADC_IN4 I/O PA4 SPI1_NSS/USART2_CK(7)/ ADC_IN4 15 21 30 PA5/SPI1_SCK/ADC_IN5 I/O PA5 SPI1_SCK/ADC_IN5 16 22 31 PA6/SPI1_MISO/ADC_IN6/ TIM3_CH1 I/O PA6 SPI1_MISO/ADC_IN6/ TIM3_CH1(7) 17 23 32 PA7/SPI1_MOSI/ADC_IN7/ TIM3_CH2 I/O PA7 SPI1_MOSI/ADC_IN7/ TIM3_CH2(7) - 24 33 PC4/ADC_IN14 I/O PC4 ADC_IN14 - 25 34 PC5/ADC_IN15 I/O PC5 ADC_IN15 18 26 35 PB0/ADC_IN8/TIM3_CH3 I/O PB0 ADC_IN8/TIM3_CH3(7) 19 27 36 PB1/ADC_IN9/TIM3_CH4 I/O PB1 ADC_IN9/TIM3_CH4(7) 20 28 37 PB2/BOOT1 I/O FT PB2/BOOT1 - - 38 PE7 I/O FT PE7 - - 39 PE8 I/O FT PE8 - - 40 PE9 I/O FT PE9 - - 41 PE10 I/O FT PE10 - - 42 PE11 I/O FT PE11 - - 43 PE12 I/O FT PE12 - - 44 PE13 I/O FT PE13 - - 45 PE14 I/O FT PE14 - - 46 PE15 I/O FT PE15 21 29 47 PB10/I2C2_SCL USART3_TX I/O FT PB10 I2C2_SCL(5)/USART3_TX(5) (7) 22 30 48 PB11/I2C2_SDA USART3_RX I/O FT PB11 I2C2_SDA(5)/USART3_RX(5) (7) 23 31 49 VSS_1 S VSS_1 24 32 50 VDD_1 S VDD_1 25 33 51 PB12/SPI2_NSS/ I2C2_SMBAl/USART3_CK I/O FT PB12 SPI2_NSS(5) (7)/I2C2_SMBAl(5)/ USART3_CK(5) (7) 26 34 52 PB13/SPI2_SCK/ USART3_CTS I/O FT PB13 SPI2_SCK(5)(7)/USART3_CTS(5)(7) 27 35 53 PB14/SPI2_MISO/ USART3_RTS I/O FT PB14 SPI2_MISO(5)(7)/USART3_RTS(5)(7) 28 36 54 PB15/SPI2_MOSI I/O FT PB15 SPI2_MOSI(5) (7) - - 55 PD8 I/O FT PD8 17/64 Pin descriptions Table 3. STM32F101xx Pin definitions (continued) LQFP48 LQFP64 LQFP100 Type(1) I / O level(2) Pins Main function(3) (after reset) - - 56 PD9 I/O FT PD9 - - 57 PD10 I/O FT PD10 - - 58 PD11 I/O FT PD11 - - 59 PD12 I/O FT PD12 - - 60 PD13 I/O FT PD13 - - 61 PD14 I/O FT PD14 - - 62 PD15 I/O FT PD15 - 37 63 PC6 I/O FT PC6 38 64 PC7 I/O FT PC7 39 65 PC8 I/O FT PC8 - 40 66 PC9 I/O FT PC9 29 41 67 PA8/USART1_CK/MCO I/O FT PA8 USART1_CK/MCO 30 42 68 PA9/USART1_TX I/O FT PA9 USART1_TX(7) 31 43 69 PA10/USART1_RX I/O FT PA10 USART1_RX(7) 32 44 70 PA11/USART1_CTS I/O FT PA11 USART1_CTS 33 45 71 PA12/USART1_RTS I/O FT PA12 USART1_RTS 34 46 72 PA13/JTMS/SWDIO I/O FT JTMS-SWDIO PA13 - - 73 35 47 74 VSS_2 S VSS_2 36 48 75 VDD_2 S VDD_2 37 49 76 PA14/JTCK/SWCLK I/O FT JTCK/SWCLK PA14 38 50 77 PA15/JTDI I/O FT JTDI PA15 - 51 78 PC10 I/O FT PC10 - 52 79 PC11 I/O FT PC11 - 53 80 PC12 I/O FT PC12 5 5 81 PD0 I/O FT OSC_IN(6) 6 6 82 PD1 I/O FT OSC_OUT(6) 54 83 PD2/TIM3_ETR I/O FT PD2 - - 84 PD3 I/O FT PD3 - - 85 PD4 I/O FT PD4 - - 86 PD5 I/O FT PD5 - - 87 PD6 I/O FT PD6 18/64 Pin name Default alternate functions(3) Not connected TIM3_ETR STM32F101xx Table 3. Pin descriptions Pin definitions (continued) LQFP48 LQFP64 LQFP100 Type(1) I / O level(2) Pins Main function(3) (after reset) - - 88 PD7 I/O FT PD7 39 55 89 PB3/JTDO/TRACESWO I/O FT JTDO PB3/TRACESWO 40 56 90 PB4/JNTRST I/O FT JNTRST PB4 41 57 91 PB5/I2C1_SMBAl I/O PB5 I2C1_SMBAl 42 58 92 PB6/I2C1_SCL/TIM4_CH1 I/O FT PB6 I2C1_SCL(7)/TIM4_CH1(5) (7) 43 59 93 PB7/I2C1_SDA/TIM4_CH2 I/O FT PB7 I2C1_SDA(7)/TIM4_CH2(5) (7) 44 60 94 BOOT0 I 45 61 95 PB8/TIM4_CH3 I/O FT PB8 TIM4_CH3(5) (7) 46 62 96 PB9/TIM4_CH4 I/O FT PB9 TIM4_CH4(5) (7) - - 97 PE0/TIM4_ETR I/O FT PE0 TIM4_ETR(5) - - 98 PE1 I/O FT PE1 47 63 99 VSS_3 S VSS_3 48 64 100 VDD_3 S VDD_3 Pin name Default alternate functions(3) BOOT0 1. I = input, O = output, S = supply, HiZ= high impedance. 2. FT= 5 V tolerant. 3. Function availability depends on the chosen device. Refer to Table 2 on page 7. 4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in ouptut mode is limited: they can be used only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time. 5. Available only on devices with a Flash memory density equal or higher than 64 Kbytes. 6. For the LQFP48 and LQFP64 packages, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. 7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual, UM0306, available from the STMicroelectronics website: www.st.com. 19/64 Memory mapping 4 STM32F101xx Memory mapping The memory map is shown in Figure 5. Figure 5. Memory map APB memory space 0xFFFF FFFF 0xE010 0000 0x6000 0000 0x4002 3400 0x4002 3000 0xFFFF FFFF 7 0xE010 0000 0xE000 0000 Cortex-M3 internal peripherals 6 reserved reserved 4K reserved 1K reserved 3K 0x4002 2000 Flash interface 1K 0x4002 1400 reserved 3K 0x4002 1000 RCC 1K 0x4002 0400 reserved 3K 0x4002 0000 DMA 1K reserved 1K USART1 1K reserved 1K 0x4002 2400 0xFFFF F000 reserved 0x4001 3C00 0x4001 3800 0xC000 0000 0x4001 3400 SPI1 1K reserved 1K reserved 1K ADC1 1K reserved 2K 0x4001 1800 Port E 1K 0x4001 1400 Port D 1K 0x4001 1000 Port C 1K 0x4001 0C00 Port B 1K 0x4001 0800 Port A 1K 0x4001 0400 EXTI 1K 0x4001 0000 AFIO 1K reserved 35K 0x4001 3000 0x4001 2C00 5 0x4001 2800 0x4001 2400 0xA000 0000 0x4001 1C00 4 0x1FFF FFFF reserved 0x1FFF F9FF 0x8000 0000 Option bytes 0x1FFF F800 3 System memory 0x1FFF F000 0x6000 0000 0x4000 7400 0x4000 7000 2 0x4000 0000 0x4000 6C00 reserved Peripherals 0x4000 6800 0x4000 6400 0x4000 6000 0x2000 0000 SRAM 1K BKP 1K reserved 1K reserved 1K reserved 1K reserved 1K 0x4000 5800 I2C2 1K 0x4000 5400 I2C1 1K 0x4000 5C00 1 PWR reserved 2K 0x4000 4800 USART3 1K 0x4000 4400 USART2 1K reserved 2K SPI2 1K 0x4000 3400 reserved 1K 0x4000 3000 IWDG 1K 0x4000 2C00 WWDG 1K 0x4000 2800 RTC 1K reserved 7K 0x4000 0800 TIM4 1K 0x4000 0400 TIM3 1K 0x4000 0000 TIM2 1K 0x0801 FFFF 0x4000 4C00 0 0x0000 0000 Flash memory 0x0800 0000 Code 0x4000 3C00 0x4000 3800 Reserved 0x4000 0C00 ai14379 20/64 STM32F101xx 5 Electrical characteristics 5.1 Test conditions Electrical characteristics Unless otherwise specified, all voltages are referred to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 6. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 7. 21/64 Electrical characteristics Figure 6. STM32F101xx Pin loading conditions Figure 7. Pin input voltage STM32F101 PIN STM32F101 PIN C=50pF VIN ai14123 Power supply scheme Figure 8. Power supply scheme VBAT 3.3 V Backup circuitry (OSC32K,RTC, Wake-up logic Backup registers) Po wer swi tch 1.8-3.6V OUT GP I/Os IN Level shifter 5.1.6 ai14124 IO Logic Kernel logic (CPU, Digital & Memories) VDD VDD 1/2/3/4/5 5 × 100 nF + 1 × 10 µF Regulator VSS 1/2/3/4/5 3.3V VDD VDDA VREF 10 nF + 1 µF 10 nF + 1 µF VREF+ VREF- ADC Analog: RCs, PLL, ... VSSA ai14125 22/64 STM32F101xx 5.1.7 Electrical characteristics Current consumption measurement Figure 9. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 23/64 Electrical characteristics 5.2 STM32F101xx Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 4: Voltage characteristics, Table 5: Current characteristics, and Table 6: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 4. Voltage characteristics Symbol Ratings Min Max −0.3 4.0 Input voltage on five volt tolerant pin(2) VSS −0.3 +5.5 Input voltage on any other pin(2) VSS − 0.3 VDD+0.3 Variations between different power pins 50 50 Variations between all the different ground pins 50 50 External 3.3 V supply voltage (including VDDA and VDD)(1) VDD−VSS VIN |∆VDDx| |VSSX − VSS| Electrostatic discharge voltage (human body model) VESD(HBM) Unit V mV see Section 5.3.11: Absolute maximum ratings (electrical sensitivity) 1. All 3.3 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 3.3 V supply. 2. IINJ(PIN) must never be exceeded (see Table 5: Current characteristics). This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. Table 5. Current characteristics Symbol Ratings Max. IVDD Total current into VDD power lines (source)(1) 150 IVSS (sink)(1) 150 IIO IINJ(PIN) (2)(3) ΣIINJ(PIN)(2) Total current out of VSS ground lines Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin −25 Injected current on NRST pin ±5 Injected current on High-speed external OSC_IN and Lowspeed external OSC_IN pins ±5 Injected current on any other pin(4) ±5 Total injected current (sum of all I/O and control pins)(4) ± 25 Unit mA 1. All 3.3 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 3.3 V supply. 2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC characteristics. 4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 24/64 STM32F101xx Electrical characteristics Table 6. Thermal characteristics Symbol Ratings Value Unit TSTG Storage temperature range –65 to +150 °C TJ Maximum junction temperature (see Thermal characteristics) 25/64 Electrical characteristics STM32F101xx 5.3 Operating conditions 5.3.1 General operating conditions Table 7. 5.3.2 General operating conditions Symbol Parameter fHCLK Conditions Min Max Unit Internal AHB clock frequency 0 36 fPCLK1 Internal APB1 clock frequency 0 36 fPCLK2 Internal APB2 clock frequency 0 36 VDD Standard operating voltage 2 3.6 V VBAT Backup operating voltage 1.8 3.6 V TA Ambient temperature range −40 85 °C MHz Operating conditions at power-up / power-down The parameters given in Table 8 are derived from tests performed under the ambient temperature condition summarized in Table 7. Table 8. Operating conditions at power-up / power-down Symbol Parameter tVDD VDD rise/fall time Conditions Min Typ Max Unit 20 26/64 µs/V 20 ms/V STM32F101xx 5.3.3 Electrical characteristics Embedded reset and power control block characteristics The parameters given in Table 9 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. . Table 9. Symbol VPVD Parameter Programmable voltage detector level selection VPVDhyst PVD hysteresis VPOR/PDR Power on/power down reset threshold VPDRhyst PDR hysteresis tRSTTEMPO 5.3.4 Embedded reset and power control block characteristics Conditions Min Typ Max Unit PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V PLS[2:0]=111 (rising edge) 2.76 2.88 3 V PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V 100 Falling edge 1.8 Rising edge 1.84 1.92 mV 1.88 1.96 2.0 40 Reset temporization 1.5 2.5 V V mV 3.5 ms Embedded reference voltage The parameters given in Table 10 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 10. Symbol VREFINT Embedded internal reference voltage Parameter Internal reference voltage Conditions Min Typ Max Unit -45 °C < TA < +85 °C 1.16 1.20 1.24 V 27/64 Electrical characteristics 5.3.5 STM32F101xx Supply current characteristics The current consumption is measured as described in Figure 9: Current consumption measurement scheme. Maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) The parameters given in Table 11 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 11. Symbol Maximum current consumption in Run and Sleep modes (TA = 85 °C)(1) Parameter Supply current in Run mode IDD FHCLK External clock with PLL, code running from Flash, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK 36 MHz 22 TBD 24 MHz 21 TBD 8 MHz 10 TBD 36 MHz 13 18 24 MHz 11 15 8 MHz 4.5 TBD 36 MHz 13 22 24 MHz 10 17 8 MHz 3.5 TBD External clock, PLL stopped, code running from Flash, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK External clock with PLL, code running from RAM, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK External clock, PLL stopped, code running from RAM, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK Supply current in Sleep mode Typ (2) Max(3) Unit Conditions External clock with PLL, code running from RAM or Flash, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK External clock, PLL stopped, code running from RAM or Flash, all peripherals enabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2=fHCLK mA 1. TBD stands for to be determined. 2. Typical values are measured at TA = 25 °C, and VDD = 3.3 V. 3. Data based on characterization results, tested in production at VDmax, fHCLK max. TAmax, and code executed from RAM. 28/64 STM32F101xx Table 12. Electrical characteristics Maximum current consumption in Stop and Standby modes(1) Typ(2) Symbol Parameter VDD/VBAT = 3.3 V TA = 85 °C Regulator in Run mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) TBD 24 TBD Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog) TBD(4) 14(4) TBD(4) Supply current in Standby mode(5) Low-speed internal RC oscillator and independent watchdog OFF, lowspeed oscillator and RTC OFF TBD(4) 2(4) TBD(4) Backup domain supply current Low-speed oscillator and RTC ON 1(4) 1.4(4) TBD(4) IDD T Unit VDD/ VBAT = 2.4 V Supply current in Stop mode IDD_VBA Conditions Max(3) µA 1. TBD stands for to be determined. 2. Typical values are measured at TA = 25 °C, VDD = 3.3 V, unless otherwise specified. 3. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max. 4. Values expected for next silicon revision. 5. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when VDD is present the Backup Domain is powered by VDD supply). 29/64 Electrical characteristics STM32F101xx Typical current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● The Flash access time is adjusted to fHCLK frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 36 MHz) The parameters given in Table 13 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 13. Symbol Typical current consumption in Run and Sleep modes(1) Parameter Conditions Oscillator running at 8 MHz with PLL, code running from Flash, all peripheral disabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK Running on HSI clock, code running from Flash, all peripheral disabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used Supply current in to reduce the frequency Run mode IDD Running on HSI clock, code running from RAM, all peripheral disabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used to reduce the frequency Oscillator running at 8 MHz with PLL, code running from Flash, all peripheral disabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK Supply current in Sleep mode Running on HSI clock, code running from Flash, all peripheral disabled (see RCC register description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used to reduce the frequency 1. TBD stands for to be determined. 2. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 30/64 fHCLK Typ(2) 36 MHz TBD 24 MHz 13 16 MHz TBD 8 MHz 7.8 4 MHz 7 2 MHz 6.3 1 MHz 6.2 500 kHz 6.1 125 kHz 5.95 8 MHz 2.3 4 MHz 1.6 2 MHz 1.2 1 MHz 1 500 kHz 0.88 125 kHz 0.82 36 MHz TBD 24 MHz TBD 16 MHz 1 8 MHz TBD 4 MHz TBD 2 MHz TBD 1 MHz TBD 500 kHz TBD Unit mA mA mA mA mA STM32F101xx Table 14. Symbol Electrical characteristics Typical current consumption in Stop and Standby modes(1) VDD Typ(2) 3.3 V 24 2.4 V TBD 3.3 V 14(3) 2.4 V TBD(3) Low-speed internal RC oscillator and independent watchdog OFF 3.3 V 2(3) 2.4 V TBD(3) Low-speed internal RC oscillator and independent watchdog ON 3.3 V 3.1(3) 2.4 V TBD(3) Low-speed internal RC oscillator ON, independent watchdog OFF 3.3 V 2.9(3) 2.4 V TBD(3) 3.3 V 1.4(3) 2.4 V 1(3) 3.3 V 0.5(3) 2.4 V TBD(3) Parameter Conditions Regulator in Run mode, Low-speed and high-speed internal RC oscillators OFF High-speed oscillator OFF (no Supply current in Stop independent watchdog) mode Regulator in Low Power mode, Low-speed and high-speed internal RC oscillators OFF, High-speed oscillator OFF (no independent watchdog) IDD Supply current in Standby mode(4) Low-speed oscillator and RTC ON IDD_VBAT Backup domain supply current Low-speed oscillator OFF, RTC ON Unit µA µA µA 1. TBD stands for to be determined. 2. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 3. Values expected for next silicon revision. 4. To obtain Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator, RTC ON) to IDD Standby. 31/64 Electrical characteristics 5.3.6 STM32F101xx External clock source characteristics High-speed user external clock The characteristics given in Table 15 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. Table 15. High-speed user external (HSE) clock characteristics Symbol Parameter Conditions Min fHSE_ext User external clock source frequency(1) VHSEH OSC_IN input pin high level voltage VHSEL OSC_IN input pin low level voltage VSS tw(HSE) tw(HSE) OSC_IN high or low time(1) 16 Typ Max Unit 8 25 MHz VDD 0.7VDD V tr(HSE) tf(HSE) IL 0.3VDD ns OSC_IN rise or fall time(1) OSC_IN Input leakage current 5 VSS ≤ VIN ≤ VDD ±1 µA 1. Value based on design simulation and/or technology characteristics. It is not tested in production. Low-speed user external clock The characteristics given in Table 16 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 7. Table 16. Symbol Low-speed user external clock characteristics Parameter Conditions Min Typ Max Unit 32.768 1000 kHz fLSE_ext User external clock source frequency(1) VLSEH OSC32_IN input pin high level voltage 0.7VDD VDD VLSEL OSC32_IN input pin low level voltage VSS 0.3VDD tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 tr(LSE) tf(LSE) OSC32_IN rise or fall time(1) V IL ns OSC32_IN Input leakage current 5 VSS ≤ VIN ≤ VDD ±1 1. Value based on design simulation and/or technology characteristics. It is not tested in production. 32/64 µA STM32F101xx Electrical characteristics Figure 10. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE EXTER NAL CLOCK SOURC E fHSE_ext OSC _IN IL STM32F101 ai14127 Figure 11. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE EXTER NAL CLOCK SOURC E fLSE_ext STM32F101 ai14140b 33/64 Electrical characteristics STM32F101xx High-speed external clock The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 17. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 17. HSE 4-16 MHz oscillator characteristics(1) Symbol fOSC_IN RF CL1 CL2(2) Parameter Conditions Oscillator frequency Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) Max Unit 4 8 16 MHz 200 kΩ 30 pF RS = 30 Ω VDD = 3.3 V VIN = VSS with 30 pF load HSE driving current gm Oscillator transconductance (4) Typ Feedback resistor i2 tSU(HSE) Min Startup Startup time 1 25 VSS is stabilized mA mA/V 2 ms 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board capacitance). 3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 12. Typical application with an 8 MHz crystal RESONATOR WITH IN TEGRATED CAPAC ITORS CL1 fHSE OSC_IN 8 MH z resonator CL2 REXT(1) RF OSC_OU T Bias controlled gain STM32F101xx ai14128 1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS. 34/64 STM32F101xx Electrical characteristics Low-speed external clock The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 18. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 18. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol Parameter Conditions Min Typ Max Unit RF Feedback resistor CL1 CL2 Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(1) RS = 30 KΩ 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS 1.4 µA gm Oscillator transconductance tSU(LSE)(2) 5 5 Startup time VSS is stabilized MΩ µA/V 3 s 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details 2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 13. Typical application with a 32.768 kHz crystal RESONATOR WITH IN TEGRATED CAPAC ITORS CL1 fLSE OSC32_IN 32.768 KH z resonator CL2 RF OSC32_OU T Bias controlled gain STM32F101xx ai14129 35/64 Electrical characteristics 5.3.7 STM32F101xx Internal Clock source characteristics The parameters given in Table 19 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. High-speed internal (HSI) RC oscillator Table 19. Symbol fHSI HSI oscillator characteristics(1)(2) Parameter Conditions Min Frequency ACCHSI Accuracy of HSI oscillator tsu(HSI) HSI oscillator startup time IDD(HSI) HSI oscillator power consumption Typ Max(3) 8 Unit MHz TA = –40 to 85 °C TBD ±3 TBD % at TA = 25 °C TBD ±1 TBD % 2 µs 80 100 µA Typ Max(2) Unit 60 kHz 85 µs 1.2 µA 1 1. VDD = 3.3 V, TA = −40 to 85 °C unless otherwise specified. 2. TBD stands for to be determined. 3. Values based on device characterization, not tested in production. LSI Low Speed Internal RC Oscillator Table 20. Symbol fLSI LSI oscillator characteristics (1) Parameter Conditions Frequency tsu(LSI) LSI oscillator start up time IDD(LSI) LSI oscillator power consumption 1. VDD = 3 V, TA = −40 to 85 °C unless otherwise specified. 2. Value based on device characterization, not tested in production. 36/64 Min 30 0.65 STM32F101xx Electrical characteristics Wakeup time from low power mode The wakeup times given in Table 21 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: ● Stop or Standby mode: the clock source is the RC oscillator ● Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 21. Symbol Low-power mode wakeup timings(1) Parameter tWUSLEEP(2) Wakeup from Sleep mode tWUSTOP(2) Conditions Wakeup on HSI RC clock Typ Max Unit 0.75 TBD µs Wakeup from Stop mode (regulator in run mode) HSI RC wakeup time = 2 µs 4 TBD Wakeup from Stop mode (regulator in low power mode) HSI RC wakeup time = 2 µs, Regulator wakeup from LP mode time = 5 µs 7 TBD HSI RC wakeup time = 2 µs, Regulator wakeup from power down time = 38 µs 40 TBD tWUSTDBY(3) Wakeup from Standby mode µs µs 1. TBD stands for to be determined. 2. The wakeup time from Sleep and Stop mode are measured from the wakeup event to the point in which the user application code reads the first instruction. 3. The wakeup time from Standby mode is measured from the wakeup event to the point in which the device exits from reset. 5.3.8 PLL characteristics The parameters given in Table 22 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 22. Symbol PLL characteristics(1) Parameter Test conditions Value Min PLL input clock fPLL_IN fPLL_OUT Typ Max(2) 8.0 Unit MHz PLL input clock duty cycle 40 60 % PLL multiplier output clock 16 36 MHz 200 µs TBD % tLOCK PLL lock time tJITTER Cycle to cycle jitter (+/-3Σ peak to VDD is stable peak) TBD 1. TBD stands for to be determined. 2. Data based on device characterization, not tested in production. 37/64 Electrical characteristics 5.3.9 STM32F101xx Memory characteristics Flash memory The characteristics are given at TA = −40 to 85 °C unless otherwise specified. Table 23. Flash memory characteristics(1) Max(2) Unit 20 40 µs TA = −40 to +85 °C 20 40 ms TA = −40 to +85 °C 20 40 ms Read mode fHCLK = 36MHz with 2 wait states, VDD = 3.3 V 20 mA Write / Erase modes fHCLK = 36 MHz, VDD = 3.3 V 5 mA Power-down mode / HALT, VDD=3.0 to 3.6 V 50 µA Symbol Parameter Conditions Min tprog Word programming time TA = −40 to +85 °C tERASE Page (1kB) erase time tME Mass erase time IDD Supply current Typ 1. TBD stands for to be determined. 2. Values based on characterization and not tested in production. Table 24. Flash endurance and data retention Value Symbol Parameter NEND Endurance tRET Data retention Conditions TA = 85° C 1. Values based on characterization not tested in production. 38/64 Unit Min(1) Typ 1 10 30 Max kcycles Years STM32F101xx 5.3.10 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic Discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 1000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 25. They are based on the EMS levels and classes defined in application note AN1709. Table 25. EMS characteristics(1) Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, TA=+25 °C, Voltage limits to be applied on any I/O pin to fHCLK = 36 MHz induce a functional disturbance conforms to IEC 1000-4-2 TBD VEFTB Fast transient voltage burst limits to be VDD = 3.3 V, TA=+25 °C, applied through 100pF on VDD and VSS pins fHCLK = 36 MHz to induce a functional disturbance conforms to IEC 1000-4-4 4A 1. TBD stands for to be determined. Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) 39/64 Electrical characteristics STM32F101xx Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J 1752/3 standard which specifies the test board and the pin loading. EMI characteristics(1) Table 26. Symbol Parameter Conditions Monitored frequency band Max vs. [fHSE/fHCLK] Unit 8/36 MHz SEMI Peak level VDD = 3.3 V, TA = 2 5°C, LQFP100 package compliant with SAE J 1752/3 0.1 MHz to 30 MHz TBD 30 MHz to 130 MHz TBD 130 MHz to 1GHz TBD SAE EMI Level TBD dBµV - 1. TBD stands for to be determined. 5.3.11 Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size is either 3 parts (cumulative mode) or 3 parts × (n + 1) supply pins (non-cumulative mode). The human body model (HBM) can be simulated. The tests are compliant with JESD22A114A standard. For more details, refer to the application note AN1181. Table 27. ESD absolute maximum ratings(1) Symbol Ratings VESD(HBM) Electrostatic discharge voltage (human body model) VESD(CDM) Electrostatic discharge voltage (charge device model) Conditions Unit 2000 TA = +25 °C 1. TBD stands for to be determined. 2. Values based on characterization results, not tested in production. 40/64 Maximum value(2) V TBD STM32F101xx Electrical characteristics Static latch-up Two complementary static tests are required on 10 parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78 IC latch-up standard. Table 28. Symbol LU Electrical sensitivities Parameter Static latch-up class Conditions TA = +105 °C Class II level A 41/64 Electrical characteristics 5.3.12 STM32F101xx I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 29 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. All unused pins must be held at a fixed voltage, by using the I/O output mode, an external pull-up or pull-down resistor (see Figure 14). Table 29. Symbol VIL VIH I/O static characteristics(1) Parameter Conditions Input low level voltage(2) TTL ports voltage(2) VIL Input low level VIH Input high level voltage(2) Ilkg Typ Max –0.5 0.8 2 VDD+0.5 2 5.5V –0.5 0.35 VDD 0.65 VDD VDD+0.5 Unit V IO TC input high level voltage(2) IO FT high level voltage(2) Vhys Min CMOS ports V IO TC Schmitt trigger voltage hysteresis(3) 200 mV IO TC Schmitt trigger voltage hysteresis(3) 5% VDD(4) mV Input leakage current (4) VSS ≤VIN ≤VDD Standard I/Os ±1 VIN = 5 V 5 V tolerant I/Os 3 µA RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kΩ RPD Weak pull-down equivalent resistor(6) VIN = VDD 30 40 50 kΩ CIO I/O pin capacitance 5 pF 1. VDD = 3.3 V, TA = −40 to 85 °C unless otherwise specified. 2. Values based on characterization results, and not tested in production. 3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 4. With a minimum of 100 mV. 5. Leakage could be higher than max. if negative current is injected on adjacent pins. 6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). 42/64 STM32F101xx Electrical characteristics Figure 14. Unused I/O pin connection VDD 1 0 kΩ STM32F101 UNU SED I/O PORT STM32F101 UNU SED I/O PORT 10 kΩ ai14130 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink +20 mA (with a relaxed VOL). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 5). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 5). 43/64 Electrical characteristics STM32F101xx Output voltage levels Unless otherwise specified, the parameters given in Table 30 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 30. Output voltage characteristics Symbol Parameter VOL(1) Output Low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2) Output High level voltage for an I/O pin when 4 pins are sourced at same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2) Output high level voltage for an I/O pin when 4 pins are sourced at same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH (2) Output high level voltage for an I/O pin when 4 pins are sourced at same time VOL(1) Output low level voltage for an I/O pin when 8 pins are sunk at same time VOH(2) Output high level voltage for an I/O pin when 4 pins are sourced at same time Conditions TTL port, IIO = +8 mA, 2.7 V < VDD < 3.6 V CMOS port IIO = +8 mA 2.7 V < VDD < 3.6 V IIO = +20 mA 2.7 V < VDD < 3.6 V IIO = +6 mA 2 V < VDD < 2.7 V Min Max Unit 0.4 V VDD–0.4 0.4 V 2.4 1.3 V VDD–1.3 0.4 V VDD–0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 44/64 STM32F101xx Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 15 and Table 31, respectively. Unless otherwise specified, the parameters given in Table 31 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 31. I/O mode(1) I/O AC characteristics(1) Symbol Parameter fmax(IO)out Maximum frequency(2) 10 tf(IO)out Output high to low level fall time(3) tr(IO)out Output low to high level rise time(3) fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time(3) tr(IO)out Output low to high level rise time(3) Fmax(IO)out Maximum 11 tf(IO)out tr(IO)out - tEXTIpw Frequency(2) Output high to low level fall time(3) Output low to high level rise time(3) Conditions Max Unit 2 MHz CL = 50 pF, VDD = 2 V to 3.6 V 125 CL = 50 pF, VDD = 2 V to 3.6 V ns 125 CL= 50 pF, VDD = 2 V to 3.6 V 10 MHz 25 CL= 50 pF, VDD = 2 V to 3.6 V ns 25 CL= 30 pF, VDD = 2.7 V to 3.6 V 50 MHz CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz CL = 50 pF, VDD = 2 V to 2.7 V 20 MHz CL = 30 pF, VDD = 2.7 V to 3.6 V 5 CL = 50 pF, VDD = 2.7 V to 3.6 V 8 CL = 50 pF, VDD = 2 V to 2.7 V 12 CL = 30 pF, VDD = 2.7 V to 3.6 V 5 CL = 50 pF, VDD = 2.7 V to 3.6 V 8 CL = 50 pF, VDD = 2 V to 2.7 V 12 Pulse width of external signals detected by the EXTI controller ns 10 ns 1. Refer to the Reference user manual UM0306 for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 15. 3. Values based on design simulation and validated on silicon, not tested in production. 45/64 Electrical characteristics STM32F101xx Figure 15. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% EXT ERNAL OUTPUT ON 50pF tr(I O)out tr(I O)out T Maximum frequency is achieved if (tr + tf) £ 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 46/64 STM32F101xx 5.3.13 Electrical characteristics NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 29). Unless otherwise specified, the parameters given in Table 32 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 7. Table 32. NRST pin characteristics(1) Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST Input low level voltage –0.5 0.8 VIH(NRST) NRST Input high level voltage 2 VDD+0.5 Vhys(NRST) NRST Schmitt trigger voltage hysteresis RPU VF(NRST) VNF(NRST) Unit V 200 Weak pull-up equivalent resistor(2) NRST Input filtered VIN = VSS 30 40 pulse(3) NRST Input not filtered pulse (3) 50 kΩ 100 ns 300 µs 1. TBD stands for to be determined. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 3. Values guaranteed by design, not tested in production. Figure 16. Recommended NRST pin protection VDD External reset circuit NRST RPU Internal Reset FILTER 0.1 µF STM32F101xx ai14132b 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 32. Otherwise the reset will not be taken into account by the device. 47/64 Electrical characteristics 5.3.14 STM32F101xx TIM timer characteristics Unless otherwise specified, the parameters given in Table 33 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 7. Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 33. TIMx characteristics Symbol Parameter tres(TIM) Timer resolution time fEXT ResTIM tCOUNTER TIMx(1) Conditions Max fTIMxCLK = 36 MHz tTIMxCLK 27.8 ns 0 fTIMxCLK/2 MHz 0 18 MHz 16 bit 65536 tTIMxCLK 1820 µs 65536 × 65536 tTIMxCLK 119.2 s Timer resolution 16-bit counter clock 1 period when internal x = 2, 3, 4 fTIMxCLK = 36 MHz 0.0278 clock is selected x = 2, 3, 4 fTIMxCLK = 36 MHz 1. x gives the TIM concerned; where x = 2, TIM2 is concerned, etc. Unit 1 x = 2, 3, 4 Timer external clock frequency on CH1 to x = 2, 3, 4 fTIMxCLK = 36 MHz CH4 Maximum possible tMAX_COUNT count 48/64 Min STM32F101xx 5.3.15 Electrical characteristics Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 7. The STM32F101xx access line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. In addition, there is a protection diode between the I/O pin and VDD. As a consequence, when multiple master devices are connected to the I2C bus, it is not possible to power off the STM32F101xx while another I2C master node remains powered on. Otherwise, the ST device would be powered by the protection diode. The I2C characteristics are described in Table 34. Refer also to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 34. I2C characteristics Symbol Parameter Standard mode I2C(1) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0(3) 0(4) 900(3) tr(SDA) tr(SCL) SDA and SCL rise time 1000 20+0.1Cb 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 20+0.1Cb 300 th(STA) Start condition hold time 4.0 0.6 tsu(STA) Repeated Start condition setup time 4.7 0.6 tsu(STO) Stop condition setup time 4.0 0.6 µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 1.3 µs Cb Capacitive load for each bus line µs ns µs 400 400 pF 2 1. Values based on standard I C protocol requirement, not tested in production. 2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be higher than 4 MHz to achieve the maximum fast mode I2C frequency. 3. The maximum hold time of the Start condition has only to be met if the interface does not stretch the low period of SCL signal. 4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 49/64 Electrical characteristics STM32F101xx Figure 17. I2C bus AC waveforms and measurement circuit VDD 4 .7 kΩ VDD 4 .7 kΩ 100 Ω 100 Ω I²C bus STM32F101 SDA SCL S TART REPEATED S TART S TART tsu(STA) SDA tf(SDA) tr(SDA) tsu(SDA) tw(SCKL) th(STA) SCL tw(SCKH) tr(SCK) th(SDA) tsu(STA:STO) S TOP tsu(STO) tf(SCK) ai14127b 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 35. SCL frequency (fPCLK1= 36 MHz, VDD = 3.3 V)(1)(2)(3) fSCL I2C_CCR value (kHz) RP = 4.7 kΩ 400 TBD 300 TBD 200 TBD 100 TBD 50 TBD 20 TBD 1. TBD = to be determined. 2. RP = External pull-up resistance, fSCL = I2C speed, 3. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external components used to design the application. 50/64 STM32F101xx Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 7. Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 36. Symbol fSCK 1/tc(SCK) tr(SCK) tf(SCK) SPI characteristics(1) Parameter Conditions Min Max Master mode TBD TBD Slave mode 0 TBD SPI clock frequency SPI clock rise and fall time MHz Capacitive load: C = 50 pF TBD tsu(NSS)(2) NSS setup time Slave mode 0 th(NSS)(2) NSS hold time Slave mode 0 Master mode, fPCLK = TBD, presc = TBD TBD Master mode TBD Slave mode TBD Master mode TBD Slave mode TBD Master mode, fPCLK = TBD TBD(3) Slave mode, fPCLK = TBD TBD(3) Slave mode TBD TBD Slave mode, fPCLK = TBD TBD TBD Slave mode TBD TBD (2) tw(SCKH) SCK high and low time tw(SCKL)(2) tsu(MI) (2) tsu(SI)(2) th(MI) (2) th(SI)(2) ta(SO)(2)(4) tdis(SO) (2)(5) Data input setup time Data input hold time Data output disable time tv(MO)(2)(1) Data output valid time (2) th(MO) (2) ns Data output access time tv(SO) (2)(1) Data output valid time th(SO) Unit Slave mode (after enable edge) TBD fPCLK = TBD TBD Master mode (after enable edge) TBD fPCLK = TBD TBD Slave mode (after enable edge) TBD Master mode (after enable edge) TBD TBD Data output hold time 1. TBD = to be determined. 2. Values based on design simulation and/or characterization results, and not tested in production. 3. Depends on fPCLK. For example, if fPCLK= 8 MHz, then tPCLK = 1/fPLCLK =125 ns and tv(MO) = 255 ns. 4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 51/64 Electrical characteristics STM32F101xx Figure 18. SPI timing diagram - slave mode and CPHA=0 NSS input SCK Input tSU(NSS) CPHA= 0 CPOL=0 tc(SCK) th(NSS) tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT M SB IN LSB IN B I T1 IN th(SI) ai14134 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Figure 19. SPI timing diagram - slave mode and CPHA=11) NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) M SB IN B I T1 IN LSB IN ai14135 52/64 STM32F101xx Electrical characteristics Figure 20. SPI timing diagram - master mode High NSS input SCK Input SCK Input tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) MS BIN tr(SCK) tf(SCK) BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT tv(MO) B I T1 OUT LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. 53/64 Electrical characteristics 5.3.16 STM32F101xx 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 37 are derived from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 7. Note: It is recommended to perform a calibration after each power-up. Table 37. ADC characteristics(1) Symbol Parameter Conditions Min Typ Max Unit VDDA ADC power supply 2.4 3.6 V VREF+ Positive reference voltage 2.0 VDDA V ADC clock frequency 0.6 14 MHz 0.05 1 MHz 823 kHz 17 1/fADC VDDA V fADC fS fTRIG Sampling rate TBD External trigger frequency range 2) VAIN Conversion voltage RAIN External input impedance CAIN Ilkg fADC = 14 MHz VSSA kΩ TBD(2)(3) External capacitor on analog input Negative input leakage current on analog pins pF VIN < VSS, | IIN |< 400 µA on adjacent analog pin 5 6 µA RADC Sampling switch resistance 1 kΩ CADC Internal sample and hold capacitor 5 pF tCAL Calibration time fADC = 14 MHz 5.9 µs 83 1/fADC 0.214 tlat Injection conversion latency tS Sampling time tSTAB Power-up time tCONV Total conversion time (including sampling time) fADC = 14 MHz fADC = 14 MHz 3 0.107 0 1 fADC = 14 MHz 0 µs 1/fADC 17.1 µs 1 µs 18 µs 14 (1.5 for sampling +12.5 for successive approximation) 1/fADC 1. TBD = to be determined. 2. Depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and reduced to allow the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies ≤14 MHz. 3. During the sample time the input capacitance CAIN (5 max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. 54/64 STM32F101xx Electrical characteristics Table 38. ADC accuracy (fPCLK2 = 10 MHz, fADC = 10 MHz, RAIN < 10 kΩ, VDDA = 3.3 V)(1) Symbol Parameter Conditions Typ Max |ET| Total unadjusted error(2) 3 TBD |EO| (2) 1 TBD 2 TBD 3 TBD 2 TBD Offset error (2) |EG| Gain Error |ED| Differential linearity error(2) |EL| (2) Integral linearity error Unit LSB 1. TBD = to be determined. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (nonrobust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not affect the ADC accuracy. Figure 21. ADC accuracy characteristics EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 1023 1022 1021 1LSB IDEAL V –V DDA SSA = ----------------------------------------- 1024 (2) ET 7 (1) 6 5 4 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 1021 1022 1023 1024 VDDA ai14395 Figure 22. Typical connection diagram using the ADC VDD STM32F101 VT 0.6V RAIN VAIN RADC AINx CAIN(1) VT 0.6V IL±1mA 12-bit A/D conversion CADC ai14139 1. Refer to Table 37 for the values of RADC and CADC. 2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 55/64 Electrical characteristics STM32F101xx General PCB design guidelines Power supply decoupling should be performed as shown in Figure 23 or Figure 24, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Figure 23. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F101xx V REF+ 1 µF // 10 nF V DDA 1 µF // 10 nF V SSA/V REF- ai14380 1. VREF+ and VREF- inputs are available only on 100-pin packages. Figure 24. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F101xx VREF+/VDDA 1 µF // 10 nF VREF–/VSSA ai14380 1. VREF+ and VREF- inputs are available only on 100-pin packages. 56/64 STM32F101xx 5.3.17 Electrical characteristics Temperature sensor characteristics Table 39. TS characteristics Symbol TL Avg_Slope V25 tSTART Parameter Conditions Min Typ Max Unit VSENSE linearity with temperature ±1.5 °C Average slope 4.478 mV/°C 1.4 V Voltage at 25°C Startup time 4 10 µs 57/64 Package characteristics 6 STM32F101xx Package characteristics Figure 25. LQPF100 – 100-pin low-profile quad flat package outline A D D1 A2 A1 b e E1 E c L1 L h ai14382 Table 40. LQPF100 – 100-pin low-profile quad flat package mechanical data mm inches Dim. Min Typ A Max Min 1.60 A1 0.05 A2 1.35 b 0.17 C 0.09 Max 0.063 0.15 0.002 0.006 1.40 1.45 0.053 0.055 0.057 0.22 0.27 0.007 0.009 0.011 0.20 0.004 0.008 D 16.00 0.630 D1 14.00 0.551 E 16.00 0.630 E1 14.00 0.551 e 0.50 0.020 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039 Number of pins N 58/64 Typ 100 STM32F101xx Package characteristics Figure 26. LQFP64 – 64-pin low-profile quad flat package outline D A D1 A2 A1 b E1 E e c L1 L ai14383 Table 41. LQFP64 – 64-pin low-profile quad flat package mechanical data mm inches Dim. Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 Max 0.063 0.15 0.002 0.006 1.40 1.45 0.053 0.055 0.057 0.22 0.27 0.007 0.009 0.011 0.20 0.004 0.008 D 12.00 0.472 D1 10.00 0.394 E 12.00 0.472 E1 10.00 0.394 e 0.50 0.020 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039 Number of pins N 64 59/64 Package characteristics STM32F101xx Figure 27. LQFP48 – 48-pin low-profile quad flat package outline D A D1 A2 A1 b E1 e E c L1 L ai14384 Table 42. LQFP48 – 48-pin low-profile quad flat package mechanical data inches(1) mm Dim. Min Typ A Max Min 1.60 A1 0.05 A2 1.35 b 0.17 C 0.09 Max 0.063 0.15 0.002 0.006 1.40 1.45 0.053 0.055 0.057 0.22 0.27 0.007 0.009 0.011 0.20 0.004 0.008 D 9.00 0.354 D1 7.00 0.276 E 9.00 0.354 E1 7.00 0.276 e 0.50 0.020 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.018 0.024 0.030 L1 1.00 0.039 Number of pins N 48 1. Values in inches are converted from mm and rounded to 3 decimal digits. 60/64 Typ STM32F101xx 6.1 Package characteristics Thermal characteristics The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x ΘJA) (1) Where: ● TA is the ambient temperature in ° C, ● ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, ● PD is the sum of PINT and PI/O (PD = PINT + PI/O), ● PINT is the product of IDD and VDD, expressed in Watts. This is the chip internal power. PI/O represents the power dissipation on input and output pins; Most of the time for the application PI/O < PINT and can be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273 °C) (2) Therefore (solving equations 1 and 2): K = PD x (TA + 273 °C) + ΘJA x PD2 (3) where: K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA. Table 43. Thermal characteristics Symbol Parameter ΘJA Value Thermal resistance junction-ambient LQFP 100 - 14 x 14 mm / 0.5 mm pitch 46 Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm / 0.5 mm pitch 45 Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm / 0.5 mm pitch 55 Unit °C/W 61/64 Order codes 7 STM32F101xx Order codes Table 44. Order codes Flash program memory SRAM memory Kbytes Kbytes STM32F101C6T6 32 6 STM32F101C8T6 64 10 STM32F101R6T6 32 6 STM32F101R8T6 64 10 STM32F101RBT6 128 16 STM32F101V8T6 64 10 STM32F101VBT6 128 16 Partnumber Package LQFP48 LQFP64 LQFP100 7.1 Future family enhancements Further developments of the STM32F101xx access line will see an expansion of the current options. Larger packages will soon be available with up to 512KB Flash, 48KB SRAM and with extended features such as EMI support, DAC and additional timers and USARTS. 62/64 STM32F101xx 8 Revision history Revision history Table 45. Document revision history Date Revision 06-Jun-2007 1 First draft. 2 IDD values modified in Table 11: Maximum current consumption in Run and Sleep modes (TA = 85 °C). VBAT range modified in Power supply schemes. VREF+ min value, tSTAB, tlat and fTRIG added to Table 37: ADC characteristics. Table 33: TIMx characteristics modified. Note 5 modified and Note 7, Note 4 and Note 6 added below Table 3: Pin definitions. Figure 11: Low-speed external clock source AC timing diagram, Figure 8: Power supply scheme, Figure 16: Recommended NRST pin protection and Figure 17: I2C bus AC waveforms and measurement circuit modified. Sample size modified and machine model removed in Electrostatic discharge (ESD). Number of parts modified and standard reference updated in Static latch-up. 25 °C and 85 °C conditions removed and class name modified in Table 28: Electrical sensitivities. tSU(LSE) changed to tSU(LSE) in Table 17: HSE 4-16 MHz oscillator characteristics. In Table 24: Flash endurance and data retention, typical endurance added, data retention for TA = 25 °C removed and data retention for TA = 85 °C added. Note removed below Table 7: General operating conditions. VBG changed to VREFINT in Table 10: Embedded internal reference voltage. IDD max values added to Table 11: Maximum current consumption in Run and Sleep modes (TA = 85 °C). IDD(HSI) max value added to Table 19: HSI oscillator characteristics. RPU and RPD min and max values added to Table 29: I/O static characteristics. RPU min and max values added to Table 32: NRST pin characteristics (two notes removed). Datasheet title corrected. USB characteristics section removed. Features on page 1 list optimized. Small text changes. 20-Jul-07 Changes 63/64 STM32F101xx Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 64/64